Properties

Label 8100.2.a.j
Level $8100$
Weight $2$
Character orbit 8100.a
Self dual yes
Analytic conductor $64.679$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(64.6788256372\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{7} + O(q^{10}) \) \( q + q^{7} + 3q^{11} + q^{13} - 6q^{17} - 4q^{19} + 3q^{23} + 3q^{29} + 5q^{31} - 2q^{37} + 3q^{41} + q^{43} + 9q^{47} - 6q^{49} + 6q^{53} - 3q^{59} - 13q^{61} + 7q^{67} - 12q^{71} + 10q^{73} + 3q^{77} + 11q^{79} + 9q^{83} + 6q^{89} + q^{91} - 11q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8100.2.a.j 1
3.b odd 2 1 8100.2.a.g 1
5.b even 2 1 324.2.a.c 1
5.c odd 4 2 8100.2.d.h 2
9.c even 3 2 900.2.i.b 2
9.d odd 6 2 2700.2.i.b 2
15.d odd 2 1 324.2.a.a 1
15.e even 4 2 8100.2.d.c 2
20.d odd 2 1 1296.2.a.k 1
40.e odd 2 1 5184.2.a.f 1
40.f even 2 1 5184.2.a.e 1
45.h odd 6 2 108.2.e.a 2
45.j even 6 2 36.2.e.a 2
45.k odd 12 4 900.2.s.b 4
45.l even 12 4 2700.2.s.b 4
60.h even 2 1 1296.2.a.b 1
120.i odd 2 1 5184.2.a.ba 1
120.m even 2 1 5184.2.a.bb 1
180.n even 6 2 432.2.i.c 2
180.p odd 6 2 144.2.i.a 2
315.q odd 6 2 1764.2.i.c 2
315.r even 6 2 1764.2.i.a 2
315.u even 6 2 5292.2.l.c 2
315.v odd 6 2 5292.2.l.a 2
315.z even 6 2 5292.2.j.a 2
315.bg odd 6 2 1764.2.j.b 2
315.bn odd 6 2 1764.2.l.a 2
315.bo even 6 2 1764.2.l.c 2
315.bq even 6 2 5292.2.i.a 2
315.br odd 6 2 5292.2.i.c 2
360.z odd 6 2 576.2.i.e 2
360.bd even 6 2 1728.2.i.c 2
360.bh odd 6 2 1728.2.i.d 2
360.bk even 6 2 576.2.i.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.2.e.a 2 45.j even 6 2
108.2.e.a 2 45.h odd 6 2
144.2.i.a 2 180.p odd 6 2
324.2.a.a 1 15.d odd 2 1
324.2.a.c 1 5.b even 2 1
432.2.i.c 2 180.n even 6 2
576.2.i.e 2 360.z odd 6 2
576.2.i.f 2 360.bk even 6 2
900.2.i.b 2 9.c even 3 2
900.2.s.b 4 45.k odd 12 4
1296.2.a.b 1 60.h even 2 1
1296.2.a.k 1 20.d odd 2 1
1728.2.i.c 2 360.bd even 6 2
1728.2.i.d 2 360.bh odd 6 2
1764.2.i.a 2 315.r even 6 2
1764.2.i.c 2 315.q odd 6 2
1764.2.j.b 2 315.bg odd 6 2
1764.2.l.a 2 315.bn odd 6 2
1764.2.l.c 2 315.bo even 6 2
2700.2.i.b 2 9.d odd 6 2
2700.2.s.b 4 45.l even 12 4
5184.2.a.e 1 40.f even 2 1
5184.2.a.f 1 40.e odd 2 1
5184.2.a.ba 1 120.i odd 2 1
5184.2.a.bb 1 120.m even 2 1
5292.2.i.a 2 315.bq even 6 2
5292.2.i.c 2 315.br odd 6 2
5292.2.j.a 2 315.z even 6 2
5292.2.l.a 2 315.v odd 6 2
5292.2.l.c 2 315.u even 6 2
8100.2.a.g 1 3.b odd 2 1
8100.2.a.j 1 1.a even 1 1 trivial
8100.2.d.c 2 15.e even 4 2
8100.2.d.h 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8100))\):

\( T_{7} - 1 \)
\( T_{11} - 3 \)
\( T_{17} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( T \)
$7$ \( -1 + T \)
$11$ \( -3 + T \)
$13$ \( -1 + T \)
$17$ \( 6 + T \)
$19$ \( 4 + T \)
$23$ \( -3 + T \)
$29$ \( -3 + T \)
$31$ \( -5 + T \)
$37$ \( 2 + T \)
$41$ \( -3 + T \)
$43$ \( -1 + T \)
$47$ \( -9 + T \)
$53$ \( -6 + T \)
$59$ \( 3 + T \)
$61$ \( 13 + T \)
$67$ \( -7 + T \)
$71$ \( 12 + T \)
$73$ \( -10 + T \)
$79$ \( -11 + T \)
$83$ \( -9 + T \)
$89$ \( -6 + T \)
$97$ \( 11 + T \)
show more
show less