Properties

Label 810.4.e.w
Level $810$
Weight $4$
Character orbit 810.e
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 4 \zeta_{6} q^{4} + 5 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{7} - 8 q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{6} + 2) q^{2} - 4 \zeta_{6} q^{4} + 5 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{7} - 8 q^{8} + 10 q^{10} + ( - 12 \zeta_{6} + 12) q^{11} + 58 \zeta_{6} q^{13} - 8 \zeta_{6} q^{14} + (16 \zeta_{6} - 16) q^{16} - 66 q^{17} - 100 q^{19} + ( - 20 \zeta_{6} + 20) q^{20} - 24 \zeta_{6} q^{22} + 132 \zeta_{6} q^{23} + (25 \zeta_{6} - 25) q^{25} + 116 q^{26} - 16 q^{28} + (90 \zeta_{6} - 90) q^{29} - 152 \zeta_{6} q^{31} + 32 \zeta_{6} q^{32} + (132 \zeta_{6} - 132) q^{34} + 20 q^{35} - 34 q^{37} + (200 \zeta_{6} - 200) q^{38} - 40 \zeta_{6} q^{40} - 438 \zeta_{6} q^{41} + (32 \zeta_{6} - 32) q^{43} - 48 q^{44} + 264 q^{46} + (204 \zeta_{6} - 204) q^{47} + 327 \zeta_{6} q^{49} + 50 \zeta_{6} q^{50} + ( - 232 \zeta_{6} + 232) q^{52} - 222 q^{53} + 60 q^{55} + (32 \zeta_{6} - 32) q^{56} + 180 \zeta_{6} q^{58} + 420 \zeta_{6} q^{59} + (902 \zeta_{6} - 902) q^{61} - 304 q^{62} + 64 q^{64} + (290 \zeta_{6} - 290) q^{65} + 1024 \zeta_{6} q^{67} + 264 \zeta_{6} q^{68} + ( - 40 \zeta_{6} + 40) q^{70} - 432 q^{71} + 362 q^{73} + (68 \zeta_{6} - 68) q^{74} + 400 \zeta_{6} q^{76} - 48 \zeta_{6} q^{77} + ( - 160 \zeta_{6} + 160) q^{79} - 80 q^{80} - 876 q^{82} + ( - 72 \zeta_{6} + 72) q^{83} - 330 \zeta_{6} q^{85} + 64 \zeta_{6} q^{86} + (96 \zeta_{6} - 96) q^{88} - 810 q^{89} + 232 q^{91} + ( - 528 \zeta_{6} + 528) q^{92} + 408 \zeta_{6} q^{94} - 500 \zeta_{6} q^{95} + (1106 \zeta_{6} - 1106) q^{97} + 654 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} + 5 q^{5} + 4 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 4 q^{4} + 5 q^{5} + 4 q^{7} - 16 q^{8} + 20 q^{10} + 12 q^{11} + 58 q^{13} - 8 q^{14} - 16 q^{16} - 132 q^{17} - 200 q^{19} + 20 q^{20} - 24 q^{22} + 132 q^{23} - 25 q^{25} + 232 q^{26} - 32 q^{28} - 90 q^{29} - 152 q^{31} + 32 q^{32} - 132 q^{34} + 40 q^{35} - 68 q^{37} - 200 q^{38} - 40 q^{40} - 438 q^{41} - 32 q^{43} - 96 q^{44} + 528 q^{46} - 204 q^{47} + 327 q^{49} + 50 q^{50} + 232 q^{52} - 444 q^{53} + 120 q^{55} - 32 q^{56} + 180 q^{58} + 420 q^{59} - 902 q^{61} - 608 q^{62} + 128 q^{64} - 290 q^{65} + 1024 q^{67} + 264 q^{68} + 40 q^{70} - 864 q^{71} + 724 q^{73} - 68 q^{74} + 400 q^{76} - 48 q^{77} + 160 q^{79} - 160 q^{80} - 1752 q^{82} + 72 q^{83} - 330 q^{85} + 64 q^{86} - 96 q^{88} - 1620 q^{89} + 464 q^{91} + 528 q^{92} + 408 q^{94} - 500 q^{95} - 1106 q^{97} + 1308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.50000 4.33013i 0 2.00000 + 3.46410i −8.00000 0 10.0000
541.1 1.00000 1.73205i 0 −2.00000 3.46410i 2.50000 + 4.33013i 0 2.00000 3.46410i −8.00000 0 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.e.w 2
3.b odd 2 1 810.4.e.c 2
9.c even 3 1 90.4.a.a 1
9.c even 3 1 inner 810.4.e.w 2
9.d odd 6 1 10.4.a.a 1
9.d odd 6 1 810.4.e.c 2
36.f odd 6 1 720.4.a.j 1
36.h even 6 1 80.4.a.f 1
45.h odd 6 1 50.4.a.c 1
45.j even 6 1 450.4.a.q 1
45.k odd 12 2 450.4.c.d 2
45.l even 12 2 50.4.b.a 2
63.i even 6 1 490.4.e.a 2
63.j odd 6 1 490.4.e.i 2
63.n odd 6 1 490.4.e.i 2
63.o even 6 1 490.4.a.o 1
63.s even 6 1 490.4.e.a 2
72.j odd 6 1 320.4.a.m 1
72.l even 6 1 320.4.a.b 1
99.g even 6 1 1210.4.a.b 1
117.n odd 6 1 1690.4.a.a 1
144.u even 12 2 1280.4.d.g 2
144.w odd 12 2 1280.4.d.j 2
180.n even 6 1 400.4.a.b 1
180.v odd 12 2 400.4.c.c 2
315.z even 6 1 2450.4.a.b 1
360.bd even 6 1 1600.4.a.bx 1
360.bh odd 6 1 1600.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 9.d odd 6 1
50.4.a.c 1 45.h odd 6 1
50.4.b.a 2 45.l even 12 2
80.4.a.f 1 36.h even 6 1
90.4.a.a 1 9.c even 3 1
320.4.a.b 1 72.l even 6 1
320.4.a.m 1 72.j odd 6 1
400.4.a.b 1 180.n even 6 1
400.4.c.c 2 180.v odd 12 2
450.4.a.q 1 45.j even 6 1
450.4.c.d 2 45.k odd 12 2
490.4.a.o 1 63.o even 6 1
490.4.e.a 2 63.i even 6 1
490.4.e.a 2 63.s even 6 1
490.4.e.i 2 63.j odd 6 1
490.4.e.i 2 63.n odd 6 1
720.4.a.j 1 36.f odd 6 1
810.4.e.c 2 3.b odd 2 1
810.4.e.c 2 9.d odd 6 1
810.4.e.w 2 1.a even 1 1 trivial
810.4.e.w 2 9.c even 3 1 inner
1210.4.a.b 1 99.g even 6 1
1280.4.d.g 2 144.u even 12 2
1280.4.d.j 2 144.w odd 12 2
1600.4.a.d 1 360.bh odd 6 1
1600.4.a.bx 1 360.bd even 6 1
1690.4.a.a 1 117.n odd 6 1
2450.4.a.b 1 315.z even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(810, [\chi])\):

\( T_{7}^{2} - 4T_{7} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} - 12T_{11} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$11$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$13$ \( T^{2} - 58T + 3364 \) Copy content Toggle raw display
$17$ \( (T + 66)^{2} \) Copy content Toggle raw display
$19$ \( (T + 100)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 132T + 17424 \) Copy content Toggle raw display
$29$ \( T^{2} + 90T + 8100 \) Copy content Toggle raw display
$31$ \( T^{2} + 152T + 23104 \) Copy content Toggle raw display
$37$ \( (T + 34)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 438T + 191844 \) Copy content Toggle raw display
$43$ \( T^{2} + 32T + 1024 \) Copy content Toggle raw display
$47$ \( T^{2} + 204T + 41616 \) Copy content Toggle raw display
$53$ \( (T + 222)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 420T + 176400 \) Copy content Toggle raw display
$61$ \( T^{2} + 902T + 813604 \) Copy content Toggle raw display
$67$ \( T^{2} - 1024 T + 1048576 \) Copy content Toggle raw display
$71$ \( (T + 432)^{2} \) Copy content Toggle raw display
$73$ \( (T - 362)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 160T + 25600 \) Copy content Toggle raw display
$83$ \( T^{2} - 72T + 5184 \) Copy content Toggle raw display
$89$ \( (T + 810)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1106 T + 1223236 \) Copy content Toggle raw display
show more
show less