Properties

Label 810.4.e.p.271.1
Level $810$
Weight $4$
Character 810.271
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.271
Dual form 810.4.e.p.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(2.00000 + 3.46410i) q^{7} -8.00000 q^{8} -10.0000 q^{10} +(-24.0000 - 41.5692i) q^{11} +(-1.00000 + 1.73205i) q^{13} +(-4.00000 + 6.92820i) q^{14} +(-8.00000 - 13.8564i) q^{16} +114.000 q^{17} +140.000 q^{19} +(-10.0000 - 17.3205i) q^{20} +(48.0000 - 83.1384i) q^{22} +(36.0000 - 62.3538i) q^{23} +(-12.5000 - 21.6506i) q^{25} -4.00000 q^{26} -16.0000 q^{28} +(105.000 + 181.865i) q^{29} +(-136.000 + 235.559i) q^{31} +(16.0000 - 27.7128i) q^{32} +(114.000 + 197.454i) q^{34} -20.0000 q^{35} -334.000 q^{37} +(140.000 + 242.487i) q^{38} +(20.0000 - 34.6410i) q^{40} +(-99.0000 + 171.473i) q^{41} +(134.000 + 232.095i) q^{43} +192.000 q^{44} +144.000 q^{46} +(108.000 + 187.061i) q^{47} +(163.500 - 283.190i) q^{49} +(25.0000 - 43.3013i) q^{50} +(-4.00000 - 6.92820i) q^{52} +78.0000 q^{53} +240.000 q^{55} +(-16.0000 - 27.7128i) q^{56} +(-210.000 + 363.731i) q^{58} +(120.000 - 207.846i) q^{59} +(-151.000 - 261.540i) q^{61} -544.000 q^{62} +64.0000 q^{64} +(-5.00000 - 8.66025i) q^{65} +(-298.000 + 516.151i) q^{67} +(-228.000 + 394.908i) q^{68} +(-20.0000 - 34.6410i) q^{70} +768.000 q^{71} -478.000 q^{73} +(-334.000 - 578.505i) q^{74} +(-280.000 + 484.974i) q^{76} +(96.0000 - 166.277i) q^{77} +(320.000 + 554.256i) q^{79} +80.0000 q^{80} -396.000 q^{82} +(-174.000 - 301.377i) q^{83} +(-285.000 + 493.634i) q^{85} +(-268.000 + 464.190i) q^{86} +(192.000 + 332.554i) q^{88} -210.000 q^{89} -8.00000 q^{91} +(144.000 + 249.415i) q^{92} +(-216.000 + 374.123i) q^{94} +(-350.000 + 606.218i) q^{95} +(767.000 + 1328.48i) q^{97} +654.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 5 q^{5} + 4 q^{7} - 16 q^{8} - 20 q^{10} - 48 q^{11} - 2 q^{13} - 8 q^{14} - 16 q^{16} + 228 q^{17} + 280 q^{19} - 20 q^{20} + 96 q^{22} + 72 q^{23} - 25 q^{25} - 8 q^{26} - 32 q^{28}+ \cdots + 1308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.107990 + 0.187044i 0.914956 0.403554i \(-0.132225\pi\)
−0.806966 + 0.590598i \(0.798892\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −24.0000 41.5692i −0.657843 1.13942i −0.981173 0.193131i \(-0.938136\pi\)
0.323330 0.946286i \(-0.395198\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.0213346 + 0.0369527i −0.876496 0.481410i \(-0.840125\pi\)
0.855161 + 0.518363i \(0.173458\pi\)
\(14\) −4.00000 + 6.92820i −0.0763604 + 0.132260i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 114.000 1.62642 0.813208 0.581974i \(-0.197719\pi\)
0.813208 + 0.581974i \(0.197719\pi\)
\(18\) 0 0
\(19\) 140.000 1.69043 0.845216 0.534425i \(-0.179472\pi\)
0.845216 + 0.534425i \(0.179472\pi\)
\(20\) −10.0000 17.3205i −0.111803 0.193649i
\(21\) 0 0
\(22\) 48.0000 83.1384i 0.465165 0.805690i
\(23\) 36.0000 62.3538i 0.326370 0.565290i −0.655418 0.755266i \(-0.727508\pi\)
0.981789 + 0.189976i \(0.0608410\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −4.00000 −0.0301717
\(27\) 0 0
\(28\) −16.0000 −0.107990
\(29\) 105.000 + 181.865i 0.672345 + 1.16454i 0.977237 + 0.212149i \(0.0680463\pi\)
−0.304892 + 0.952387i \(0.598620\pi\)
\(30\) 0 0
\(31\) −136.000 + 235.559i −0.787946 + 1.36476i 0.139278 + 0.990253i \(0.455522\pi\)
−0.927223 + 0.374509i \(0.877811\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 114.000 + 197.454i 0.575025 + 0.995972i
\(35\) −20.0000 −0.0965891
\(36\) 0 0
\(37\) −334.000 −1.48403 −0.742017 0.670381i \(-0.766131\pi\)
−0.742017 + 0.670381i \(0.766131\pi\)
\(38\) 140.000 + 242.487i 0.597658 + 1.03517i
\(39\) 0 0
\(40\) 20.0000 34.6410i 0.0790569 0.136931i
\(41\) −99.0000 + 171.473i −0.377102 + 0.653161i −0.990639 0.136505i \(-0.956413\pi\)
0.613537 + 0.789666i \(0.289746\pi\)
\(42\) 0 0
\(43\) 134.000 + 232.095i 0.475228 + 0.823119i 0.999597 0.0283717i \(-0.00903221\pi\)
−0.524369 + 0.851491i \(0.675699\pi\)
\(44\) 192.000 0.657843
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) 108.000 + 187.061i 0.335179 + 0.580547i 0.983519 0.180804i \(-0.0578698\pi\)
−0.648340 + 0.761351i \(0.724536\pi\)
\(48\) 0 0
\(49\) 163.500 283.190i 0.476676 0.825628i
\(50\) 25.0000 43.3013i 0.0707107 0.122474i
\(51\) 0 0
\(52\) −4.00000 6.92820i −0.0106673 0.0184763i
\(53\) 78.0000 0.202153 0.101077 0.994879i \(-0.467771\pi\)
0.101077 + 0.994879i \(0.467771\pi\)
\(54\) 0 0
\(55\) 240.000 0.588393
\(56\) −16.0000 27.7128i −0.0381802 0.0661300i
\(57\) 0 0
\(58\) −210.000 + 363.731i −0.475420 + 0.823451i
\(59\) 120.000 207.846i 0.264791 0.458631i −0.702718 0.711469i \(-0.748030\pi\)
0.967509 + 0.252837i \(0.0813637\pi\)
\(60\) 0 0
\(61\) −151.000 261.540i −0.316944 0.548963i 0.662905 0.748704i \(-0.269323\pi\)
−0.979849 + 0.199741i \(0.935990\pi\)
\(62\) −544.000 −1.11432
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −5.00000 8.66025i −0.00954113 0.0165257i
\(66\) 0 0
\(67\) −298.000 + 516.151i −0.543381 + 0.941163i 0.455326 + 0.890325i \(0.349523\pi\)
−0.998707 + 0.0508381i \(0.983811\pi\)
\(68\) −228.000 + 394.908i −0.406604 + 0.704259i
\(69\) 0 0
\(70\) −20.0000 34.6410i −0.0341494 0.0591485i
\(71\) 768.000 1.28373 0.641865 0.766818i \(-0.278161\pi\)
0.641865 + 0.766818i \(0.278161\pi\)
\(72\) 0 0
\(73\) −478.000 −0.766379 −0.383190 0.923670i \(-0.625174\pi\)
−0.383190 + 0.923670i \(0.625174\pi\)
\(74\) −334.000 578.505i −0.524685 0.908782i
\(75\) 0 0
\(76\) −280.000 + 484.974i −0.422608 + 0.731978i
\(77\) 96.0000 166.277i 0.142081 0.246091i
\(78\) 0 0
\(79\) 320.000 + 554.256i 0.455732 + 0.789351i 0.998730 0.0503832i \(-0.0160443\pi\)
−0.542998 + 0.839734i \(0.682711\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −396.000 −0.533303
\(83\) −174.000 301.377i −0.230108 0.398559i 0.727732 0.685862i \(-0.240575\pi\)
−0.957840 + 0.287303i \(0.907241\pi\)
\(84\) 0 0
\(85\) −285.000 + 493.634i −0.363678 + 0.629908i
\(86\) −268.000 + 464.190i −0.336037 + 0.582033i
\(87\) 0 0
\(88\) 192.000 + 332.554i 0.232583 + 0.402845i
\(89\) −210.000 −0.250112 −0.125056 0.992150i \(-0.539911\pi\)
−0.125056 + 0.992150i \(0.539911\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) 144.000 + 249.415i 0.163185 + 0.282645i
\(93\) 0 0
\(94\) −216.000 + 374.123i −0.237007 + 0.410509i
\(95\) −350.000 + 606.218i −0.377992 + 0.654701i
\(96\) 0 0
\(97\) 767.000 + 1328.48i 0.802856 + 1.39059i 0.917729 + 0.397207i \(0.130021\pi\)
−0.114873 + 0.993380i \(0.536646\pi\)
\(98\) 654.000 0.674122
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 861.000 + 1491.30i 0.848245 + 1.46920i 0.882773 + 0.469799i \(0.155674\pi\)
−0.0345288 + 0.999404i \(0.510993\pi\)
\(102\) 0 0
\(103\) −526.000 + 911.059i −0.503188 + 0.871546i 0.496806 + 0.867862i \(0.334506\pi\)
−0.999993 + 0.00368461i \(0.998827\pi\)
\(104\) 8.00000 13.8564i 0.00754293 0.0130647i
\(105\) 0 0
\(106\) 78.0000 + 135.100i 0.0714720 + 0.123793i
\(107\) 564.000 0.509570 0.254785 0.966998i \(-0.417995\pi\)
0.254785 + 0.966998i \(0.417995\pi\)
\(108\) 0 0
\(109\) −610.000 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(110\) 240.000 + 415.692i 0.208028 + 0.360315i
\(111\) 0 0
\(112\) 32.0000 55.4256i 0.0269975 0.0467610i
\(113\) 651.000 1127.57i 0.541955 0.938694i −0.456837 0.889551i \(-0.651018\pi\)
0.998792 0.0491432i \(-0.0156491\pi\)
\(114\) 0 0
\(115\) 180.000 + 311.769i 0.145957 + 0.252805i
\(116\) −840.000 −0.672345
\(117\) 0 0
\(118\) 480.000 0.374471
\(119\) 228.000 + 394.908i 0.175636 + 0.304211i
\(120\) 0 0
\(121\) −486.500 + 842.643i −0.365515 + 0.633090i
\(122\) 302.000 523.079i 0.224113 0.388175i
\(123\) 0 0
\(124\) −544.000 942.236i −0.393973 0.682381i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −124.000 −0.0866395 −0.0433198 0.999061i \(-0.513793\pi\)
−0.0433198 + 0.999061i \(0.513793\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 10.0000 17.3205i 0.00674660 0.0116855i
\(131\) 96.0000 166.277i 0.0640272 0.110898i −0.832235 0.554423i \(-0.812939\pi\)
0.896262 + 0.443525i \(0.146272\pi\)
\(132\) 0 0
\(133\) 280.000 + 484.974i 0.182549 + 0.316185i
\(134\) −1192.00 −0.768456
\(135\) 0 0
\(136\) −912.000 −0.575025
\(137\) −1257.00 2177.19i −0.783889 1.35774i −0.929661 0.368417i \(-0.879900\pi\)
0.145772 0.989318i \(-0.453433\pi\)
\(138\) 0 0
\(139\) −670.000 + 1160.47i −0.408839 + 0.708130i −0.994760 0.102238i \(-0.967400\pi\)
0.585921 + 0.810368i \(0.300733\pi\)
\(140\) 40.0000 69.2820i 0.0241473 0.0418243i
\(141\) 0 0
\(142\) 768.000 + 1330.22i 0.453867 + 0.786121i
\(143\) 96.0000 0.0561393
\(144\) 0 0
\(145\) −1050.00 −0.601364
\(146\) −478.000 827.920i −0.270956 0.469309i
\(147\) 0 0
\(148\) 668.000 1157.01i 0.371009 0.642606i
\(149\) 705.000 1221.10i 0.387623 0.671383i −0.604506 0.796600i \(-0.706630\pi\)
0.992129 + 0.125217i \(0.0399629\pi\)
\(150\) 0 0
\(151\) 1064.00 + 1842.90i 0.573424 + 0.993200i 0.996211 + 0.0869709i \(0.0277187\pi\)
−0.422786 + 0.906229i \(0.638948\pi\)
\(152\) −1120.00 −0.597658
\(153\) 0 0
\(154\) 384.000 0.200932
\(155\) −680.000 1177.79i −0.352380 0.610340i
\(156\) 0 0
\(157\) −1513.00 + 2620.59i −0.769112 + 1.33214i 0.168933 + 0.985627i \(0.445968\pi\)
−0.938045 + 0.346513i \(0.887366\pi\)
\(158\) −640.000 + 1108.51i −0.322251 + 0.558155i
\(159\) 0 0
\(160\) 80.0000 + 138.564i 0.0395285 + 0.0684653i
\(161\) 288.000 0.140979
\(162\) 0 0
\(163\) 2612.00 1.25514 0.627569 0.778561i \(-0.284050\pi\)
0.627569 + 0.778561i \(0.284050\pi\)
\(164\) −396.000 685.892i −0.188551 0.326580i
\(165\) 0 0
\(166\) 348.000 602.754i 0.162711 0.281824i
\(167\) −12.0000 + 20.7846i −0.00556041 + 0.00963091i −0.868792 0.495177i \(-0.835103\pi\)
0.863232 + 0.504808i \(0.168437\pi\)
\(168\) 0 0
\(169\) 1096.50 + 1899.19i 0.499090 + 0.864449i
\(170\) −1140.00 −0.514318
\(171\) 0 0
\(172\) −1072.00 −0.475228
\(173\) 981.000 + 1699.14i 0.431122 + 0.746725i 0.996970 0.0777846i \(-0.0247846\pi\)
−0.565849 + 0.824509i \(0.691451\pi\)
\(174\) 0 0
\(175\) 50.0000 86.6025i 0.0215980 0.0374088i
\(176\) −384.000 + 665.108i −0.164461 + 0.284854i
\(177\) 0 0
\(178\) −210.000 363.731i −0.0884279 0.153162i
\(179\) 120.000 0.0501074 0.0250537 0.999686i \(-0.492024\pi\)
0.0250537 + 0.999686i \(0.492024\pi\)
\(180\) 0 0
\(181\) 902.000 0.370415 0.185208 0.982699i \(-0.440704\pi\)
0.185208 + 0.982699i \(0.440704\pi\)
\(182\) −8.00000 13.8564i −0.00325824 0.00564344i
\(183\) 0 0
\(184\) −288.000 + 498.831i −0.115389 + 0.199860i
\(185\) 835.000 1446.26i 0.331840 0.574764i
\(186\) 0 0
\(187\) −2736.00 4738.89i −1.06993 1.85317i
\(188\) −864.000 −0.335179
\(189\) 0 0
\(190\) −1400.00 −0.534561
\(191\) −84.0000 145.492i −0.0318221 0.0551175i 0.849676 0.527306i \(-0.176798\pi\)
−0.881498 + 0.472188i \(0.843464\pi\)
\(192\) 0 0
\(193\) 659.000 1141.42i 0.245782 0.425706i −0.716569 0.697516i \(-0.754289\pi\)
0.962351 + 0.271809i \(0.0876220\pi\)
\(194\) −1534.00 + 2656.97i −0.567705 + 0.983294i
\(195\) 0 0
\(196\) 654.000 + 1132.76i 0.238338 + 0.412814i
\(197\) 4014.00 1.45170 0.725852 0.687851i \(-0.241446\pi\)
0.725852 + 0.687851i \(0.241446\pi\)
\(198\) 0 0
\(199\) 2000.00 0.712443 0.356222 0.934401i \(-0.384065\pi\)
0.356222 + 0.934401i \(0.384065\pi\)
\(200\) 100.000 + 173.205i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −1722.00 + 2982.59i −0.599799 + 1.03888i
\(203\) −420.000 + 727.461i −0.145213 + 0.251516i
\(204\) 0 0
\(205\) −495.000 857.365i −0.168645 0.292102i
\(206\) −2104.00 −0.711615
\(207\) 0 0
\(208\) 32.0000 0.0106673
\(209\) −3360.00 5819.69i −1.11204 1.92611i
\(210\) 0 0
\(211\) 1934.00 3349.79i 0.631005 1.09293i −0.356342 0.934356i \(-0.615976\pi\)
0.987347 0.158577i \(-0.0506906\pi\)
\(212\) −156.000 + 270.200i −0.0505383 + 0.0875349i
\(213\) 0 0
\(214\) 564.000 + 976.877i 0.180160 + 0.312046i
\(215\) −1340.00 −0.425057
\(216\) 0 0
\(217\) −1088.00 −0.340361
\(218\) −610.000 1056.55i −0.189516 0.328251i
\(219\) 0 0
\(220\) −480.000 + 831.384i −0.147098 + 0.254781i
\(221\) −114.000 + 197.454i −0.0346990 + 0.0601004i
\(222\) 0 0
\(223\) 1574.00 + 2726.25i 0.472658 + 0.818668i 0.999510 0.0312886i \(-0.00996110\pi\)
−0.526852 + 0.849957i \(0.676628\pi\)
\(224\) 128.000 0.0381802
\(225\) 0 0
\(226\) 2604.00 0.766440
\(227\) 1278.00 + 2213.56i 0.373673 + 0.647221i 0.990128 0.140170i \(-0.0447648\pi\)
−0.616454 + 0.787391i \(0.711431\pi\)
\(228\) 0 0
\(229\) 305.000 528.275i 0.0880130 0.152443i −0.818658 0.574281i \(-0.805282\pi\)
0.906671 + 0.421838i \(0.138615\pi\)
\(230\) −360.000 + 623.538i −0.103207 + 0.178760i
\(231\) 0 0
\(232\) −840.000 1454.92i −0.237710 0.411726i
\(233\) 2058.00 0.578644 0.289322 0.957232i \(-0.406570\pi\)
0.289322 + 0.957232i \(0.406570\pi\)
\(234\) 0 0
\(235\) −1080.00 −0.299793
\(236\) 480.000 + 831.384i 0.132396 + 0.229316i
\(237\) 0 0
\(238\) −456.000 + 789.815i −0.124194 + 0.215110i
\(239\) 2460.00 4260.84i 0.665792 1.15318i −0.313279 0.949661i \(-0.601427\pi\)
0.979070 0.203523i \(-0.0652393\pi\)
\(240\) 0 0
\(241\) 719.000 + 1245.34i 0.192178 + 0.332862i 0.945972 0.324249i \(-0.105112\pi\)
−0.753794 + 0.657111i \(0.771778\pi\)
\(242\) −1946.00 −0.516916
\(243\) 0 0
\(244\) 1208.00 0.316944
\(245\) 817.500 + 1415.95i 0.213176 + 0.369232i
\(246\) 0 0
\(247\) −140.000 + 242.487i −0.0360647 + 0.0624659i
\(248\) 1088.00 1884.47i 0.278581 0.482516i
\(249\) 0 0
\(250\) 125.000 + 216.506i 0.0316228 + 0.0547723i
\(251\) −792.000 −0.199166 −0.0995829 0.995029i \(-0.531751\pi\)
−0.0995829 + 0.995029i \(0.531751\pi\)
\(252\) 0 0
\(253\) −3456.00 −0.858802
\(254\) −124.000 214.774i −0.0306317 0.0530557i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 1083.00 1875.81i 0.262863 0.455291i −0.704139 0.710062i \(-0.748667\pi\)
0.967001 + 0.254771i \(0.0820001\pi\)
\(258\) 0 0
\(259\) −668.000 1157.01i −0.160261 0.277580i
\(260\) 40.0000 0.00954113
\(261\) 0 0
\(262\) 384.000 0.0905481
\(263\) 1596.00 + 2764.35i 0.374196 + 0.648127i 0.990206 0.139611i \(-0.0445854\pi\)
−0.616010 + 0.787738i \(0.711252\pi\)
\(264\) 0 0
\(265\) −195.000 + 337.750i −0.0452028 + 0.0782936i
\(266\) −560.000 + 969.948i −0.129082 + 0.223577i
\(267\) 0 0
\(268\) −1192.00 2064.60i −0.271690 0.470581i
\(269\) −5490.00 −1.24435 −0.622177 0.782877i \(-0.713752\pi\)
−0.622177 + 0.782877i \(0.713752\pi\)
\(270\) 0 0
\(271\) −6328.00 −1.41845 −0.709223 0.704985i \(-0.750954\pi\)
−0.709223 + 0.704985i \(0.750954\pi\)
\(272\) −912.000 1579.63i −0.203302 0.352129i
\(273\) 0 0
\(274\) 2514.00 4354.38i 0.554293 0.960064i
\(275\) −600.000 + 1039.23i −0.131569 + 0.227883i
\(276\) 0 0
\(277\) 287.000 + 497.099i 0.0622533 + 0.107826i 0.895472 0.445117i \(-0.146838\pi\)
−0.833219 + 0.552943i \(0.813505\pi\)
\(278\) −2680.00 −0.578186
\(279\) 0 0
\(280\) 160.000 0.0341494
\(281\) 2121.00 + 3673.68i 0.450278 + 0.779905i 0.998403 0.0564915i \(-0.0179914\pi\)
−0.548125 + 0.836397i \(0.684658\pi\)
\(282\) 0 0
\(283\) 314.000 543.864i 0.0659553 0.114238i −0.831162 0.556030i \(-0.812324\pi\)
0.897117 + 0.441792i \(0.145657\pi\)
\(284\) −1536.00 + 2660.43i −0.320933 + 0.555871i
\(285\) 0 0
\(286\) 96.0000 + 166.277i 0.0198482 + 0.0343782i
\(287\) −792.000 −0.162893
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) −1050.00 1818.65i −0.212614 0.368259i
\(291\) 0 0
\(292\) 956.000 1655.84i 0.191595 0.331852i
\(293\) −279.000 + 483.242i −0.0556292 + 0.0963526i −0.892499 0.451049i \(-0.851050\pi\)
0.836870 + 0.547402i \(0.184383\pi\)
\(294\) 0 0
\(295\) 600.000 + 1039.23i 0.118418 + 0.205106i
\(296\) 2672.00 0.524685
\(297\) 0 0
\(298\) 2820.00 0.548182
\(299\) 72.0000 + 124.708i 0.0139260 + 0.0241205i
\(300\) 0 0
\(301\) −536.000 + 928.379i −0.102640 + 0.177777i
\(302\) −2128.00 + 3685.80i −0.405472 + 0.702299i
\(303\) 0 0
\(304\) −1120.00 1939.90i −0.211304 0.365989i
\(305\) 1510.00 0.283483
\(306\) 0 0
\(307\) −6964.00 −1.29465 −0.647323 0.762216i \(-0.724112\pi\)
−0.647323 + 0.762216i \(0.724112\pi\)
\(308\) 384.000 + 665.108i 0.0710404 + 0.123046i
\(309\) 0 0
\(310\) 1360.00 2355.59i 0.249170 0.431576i
\(311\) 1416.00 2452.58i 0.258180 0.447181i −0.707574 0.706639i \(-0.750211\pi\)
0.965754 + 0.259458i \(0.0835439\pi\)
\(312\) 0 0
\(313\) −4321.00 7484.19i −0.780311 1.35154i −0.931761 0.363073i \(-0.881727\pi\)
0.151449 0.988465i \(-0.451606\pi\)
\(314\) −6052.00 −1.08769
\(315\) 0 0
\(316\) −2560.00 −0.455732
\(317\) −1107.00 1917.38i −0.196137 0.339719i 0.751136 0.660148i \(-0.229506\pi\)
−0.947273 + 0.320429i \(0.896173\pi\)
\(318\) 0 0
\(319\) 5040.00 8729.54i 0.884595 1.53216i
\(320\) −160.000 + 277.128i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 288.000 + 498.831i 0.0498435 + 0.0863315i
\(323\) 15960.0 2.74934
\(324\) 0 0
\(325\) 50.0000 0.00853385
\(326\) 2612.00 + 4524.12i 0.443759 + 0.768612i
\(327\) 0 0
\(328\) 792.000 1371.78i 0.133326 0.230927i
\(329\) −432.000 + 748.246i −0.0723919 + 0.125386i
\(330\) 0 0
\(331\) −5386.00 9328.83i −0.894385 1.54912i −0.834564 0.550911i \(-0.814281\pi\)
−0.0598204 0.998209i \(-0.519053\pi\)
\(332\) 1392.00 0.230108
\(333\) 0 0
\(334\) −48.0000 −0.00786360
\(335\) −1490.00 2580.76i −0.243007 0.420901i
\(336\) 0 0
\(337\) 827.000 1432.41i 0.133678 0.231537i −0.791414 0.611281i \(-0.790654\pi\)
0.925092 + 0.379744i \(0.123988\pi\)
\(338\) −2193.00 + 3798.39i −0.352910 + 0.611258i
\(339\) 0 0
\(340\) −1140.00 1974.54i −0.181839 0.314954i
\(341\) 13056.0 2.07338
\(342\) 0 0
\(343\) 2680.00 0.421885
\(344\) −1072.00 1856.76i −0.168019 0.291017i
\(345\) 0 0
\(346\) −1962.00 + 3398.28i −0.304849 + 0.528014i
\(347\) 1098.00 1901.79i 0.169867 0.294218i −0.768506 0.639842i \(-0.779000\pi\)
0.938373 + 0.345625i \(0.112333\pi\)
\(348\) 0 0
\(349\) −4135.00 7162.03i −0.634216 1.09849i −0.986681 0.162670i \(-0.947990\pi\)
0.352464 0.935825i \(-0.385344\pi\)
\(350\) 200.000 0.0305441
\(351\) 0 0
\(352\) −1536.00 −0.232583
\(353\) 5151.00 + 8921.79i 0.776657 + 1.34521i 0.933858 + 0.357643i \(0.116420\pi\)
−0.157201 + 0.987567i \(0.550247\pi\)
\(354\) 0 0
\(355\) −1920.00 + 3325.54i −0.287051 + 0.497186i
\(356\) 420.000 727.461i 0.0625280 0.108302i
\(357\) 0 0
\(358\) 120.000 + 207.846i 0.0177156 + 0.0306844i
\(359\) 2280.00 0.335192 0.167596 0.985856i \(-0.446400\pi\)
0.167596 + 0.985856i \(0.446400\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) 902.000 + 1562.31i 0.130962 + 0.226832i
\(363\) 0 0
\(364\) 16.0000 27.7128i 0.00230392 0.00399051i
\(365\) 1195.00 2069.80i 0.171368 0.296817i
\(366\) 0 0
\(367\) 4382.00 + 7589.85i 0.623266 + 1.07953i 0.988873 + 0.148759i \(0.0475278\pi\)
−0.365608 + 0.930769i \(0.619139\pi\)
\(368\) −1152.00 −0.163185
\(369\) 0 0
\(370\) 3340.00 0.469293
\(371\) 156.000 + 270.200i 0.0218305 + 0.0378115i
\(372\) 0 0
\(373\) 659.000 1141.42i 0.0914792 0.158447i −0.816655 0.577127i \(-0.804174\pi\)
0.908134 + 0.418680i \(0.137507\pi\)
\(374\) 5472.00 9477.78i 0.756552 1.31039i
\(375\) 0 0
\(376\) −864.000 1496.49i −0.118504 0.205254i
\(377\) −420.000 −0.0573769
\(378\) 0 0
\(379\) 1100.00 0.149085 0.0745425 0.997218i \(-0.476250\pi\)
0.0745425 + 0.997218i \(0.476250\pi\)
\(380\) −1400.00 2424.87i −0.188996 0.327351i
\(381\) 0 0
\(382\) 168.000 290.985i 0.0225016 0.0389740i
\(383\) −1764.00 + 3055.34i −0.235343 + 0.407625i −0.959372 0.282144i \(-0.908955\pi\)
0.724030 + 0.689769i \(0.242288\pi\)
\(384\) 0 0
\(385\) 480.000 + 831.384i 0.0635404 + 0.110055i
\(386\) 2636.00 0.347588
\(387\) 0 0
\(388\) −6136.00 −0.802856
\(389\) −4815.00 8339.82i −0.627584 1.08701i −0.988035 0.154229i \(-0.950711\pi\)
0.360451 0.932778i \(-0.382623\pi\)
\(390\) 0 0
\(391\) 4104.00 7108.34i 0.530814 0.919396i
\(392\) −1308.00 + 2265.52i −0.168531 + 0.291903i
\(393\) 0 0
\(394\) 4014.00 + 6952.45i 0.513255 + 0.888983i
\(395\) −3200.00 −0.407619
\(396\) 0 0
\(397\) −3094.00 −0.391142 −0.195571 0.980690i \(-0.562656\pi\)
−0.195571 + 0.980690i \(0.562656\pi\)
\(398\) 2000.00 + 3464.10i 0.251887 + 0.436281i
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.0250000 + 0.0433013i
\(401\) −819.000 + 1418.55i −0.101992 + 0.176656i −0.912505 0.409065i \(-0.865855\pi\)
0.810513 + 0.585721i \(0.199188\pi\)
\(402\) 0 0
\(403\) −272.000 471.118i −0.0336211 0.0582334i
\(404\) −6888.00 −0.848245
\(405\) 0 0
\(406\) −1680.00 −0.205362
\(407\) 8016.00 + 13884.1i 0.976261 + 1.69093i
\(408\) 0 0
\(409\) 6875.00 11907.8i 0.831166 1.43962i −0.0659483 0.997823i \(-0.521007\pi\)
0.897114 0.441799i \(-0.145659\pi\)
\(410\) 990.000 1714.73i 0.119250 0.206548i
\(411\) 0 0
\(412\) −2104.00 3644.23i −0.251594 0.435773i
\(413\) 960.000 0.114379
\(414\) 0 0
\(415\) 1740.00 0.205815
\(416\) 32.0000 + 55.4256i 0.00377146 + 0.00653237i
\(417\) 0 0
\(418\) 6720.00 11639.4i 0.786330 1.36196i
\(419\) −6240.00 + 10808.0i −0.727551 + 1.26016i 0.230364 + 0.973105i \(0.426008\pi\)
−0.957915 + 0.287051i \(0.907325\pi\)
\(420\) 0 0
\(421\) −3631.00 6289.08i −0.420342 0.728054i 0.575631 0.817710i \(-0.304757\pi\)
−0.995973 + 0.0896557i \(0.971423\pi\)
\(422\) 7736.00 0.892376
\(423\) 0 0
\(424\) −624.000 −0.0714720
\(425\) −1425.00 2468.17i −0.162642 0.281703i
\(426\) 0 0
\(427\) 604.000 1046.16i 0.0684534 0.118565i
\(428\) −1128.00 + 1953.75i −0.127392 + 0.220650i
\(429\) 0 0
\(430\) −1340.00 2320.95i −0.150280 0.260293i
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) 0 0
\(433\) 1802.00 0.199997 0.0999984 0.994988i \(-0.468116\pi\)
0.0999984 + 0.994988i \(0.468116\pi\)
\(434\) −1088.00 1884.47i −0.120336 0.208427i
\(435\) 0 0
\(436\) 1220.00 2113.10i 0.134008 0.232108i
\(437\) 5040.00 8729.54i 0.551707 0.955584i
\(438\) 0 0
\(439\) 1160.00 + 2009.18i 0.126113 + 0.218435i 0.922168 0.386791i \(-0.126416\pi\)
−0.796054 + 0.605225i \(0.793083\pi\)
\(440\) −1920.00 −0.208028
\(441\) 0 0
\(442\) −456.000 −0.0490717
\(443\) 5586.00 + 9675.24i 0.599095 + 1.03766i 0.992955 + 0.118492i \(0.0378060\pi\)
−0.393861 + 0.919170i \(0.628861\pi\)
\(444\) 0 0
\(445\) 525.000 909.327i 0.0559267 0.0968679i
\(446\) −3148.00 + 5452.50i −0.334220 + 0.578886i
\(447\) 0 0
\(448\) 128.000 + 221.703i 0.0134987 + 0.0233805i
\(449\) −6810.00 −0.715777 −0.357888 0.933764i \(-0.616503\pi\)
−0.357888 + 0.933764i \(0.616503\pi\)
\(450\) 0 0
\(451\) 9504.00 0.992297
\(452\) 2604.00 + 4510.26i 0.270978 + 0.469347i
\(453\) 0 0
\(454\) −2556.00 + 4427.12i −0.264227 + 0.457654i
\(455\) 20.0000 34.6410i 0.00206069 0.00356922i
\(456\) 0 0
\(457\) −8533.00 14779.6i −0.873429 1.51282i −0.858427 0.512935i \(-0.828558\pi\)
−0.0150014 0.999887i \(-0.504775\pi\)
\(458\) 1220.00 0.124469
\(459\) 0 0
\(460\) −1440.00 −0.145957
\(461\) −9459.00 16383.5i −0.955639 1.65522i −0.732899 0.680337i \(-0.761833\pi\)
−0.222740 0.974878i \(-0.571500\pi\)
\(462\) 0 0
\(463\) −526.000 + 911.059i −0.0527976 + 0.0914481i −0.891216 0.453579i \(-0.850147\pi\)
0.838419 + 0.545027i \(0.183480\pi\)
\(464\) 1680.00 2909.85i 0.168086 0.291134i
\(465\) 0 0
\(466\) 2058.00 + 3564.56i 0.204582 + 0.354346i
\(467\) −11076.0 −1.09751 −0.548754 0.835984i \(-0.684898\pi\)
−0.548754 + 0.835984i \(0.684898\pi\)
\(468\) 0 0
\(469\) −2384.00 −0.234718
\(470\) −1080.00 1870.61i −0.105993 0.183585i
\(471\) 0 0
\(472\) −960.000 + 1662.77i −0.0936178 + 0.162151i
\(473\) 6432.00 11140.6i 0.625251 1.08297i
\(474\) 0 0
\(475\) −1750.00 3031.09i −0.169043 0.292791i
\(476\) −1824.00 −0.175636
\(477\) 0 0
\(478\) 9840.00 0.941571
\(479\) −4500.00 7794.23i −0.429249 0.743481i 0.567558 0.823334i \(-0.307888\pi\)
−0.996807 + 0.0798526i \(0.974555\pi\)
\(480\) 0 0
\(481\) 334.000 578.505i 0.0316613 0.0548390i
\(482\) −1438.00 + 2490.69i −0.135890 + 0.235369i
\(483\) 0 0
\(484\) −1946.00 3370.57i −0.182757 0.316545i
\(485\) −7670.00 −0.718096
\(486\) 0 0
\(487\) −8764.00 −0.815472 −0.407736 0.913100i \(-0.633682\pi\)
−0.407736 + 0.913100i \(0.633682\pi\)
\(488\) 1208.00 + 2092.32i 0.112057 + 0.194088i
\(489\) 0 0
\(490\) −1635.00 + 2831.90i −0.150738 + 0.261086i
\(491\) 2796.00 4842.81i 0.256989 0.445118i −0.708445 0.705766i \(-0.750603\pi\)
0.965434 + 0.260648i \(0.0839362\pi\)
\(492\) 0 0
\(493\) 11970.0 + 20732.6i 1.09351 + 1.89402i
\(494\) −560.000 −0.0510032
\(495\) 0 0
\(496\) 4352.00 0.393973
\(497\) 1536.00 + 2660.43i 0.138630 + 0.240114i
\(498\) 0 0
\(499\) −2350.00 + 4070.32i −0.210823 + 0.365155i −0.951972 0.306184i \(-0.900948\pi\)
0.741150 + 0.671340i \(0.234281\pi\)
\(500\) −250.000 + 433.013i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −792.000 1371.78i −0.0704157 0.121964i
\(503\) 11808.0 1.04671 0.523353 0.852116i \(-0.324681\pi\)
0.523353 + 0.852116i \(0.324681\pi\)
\(504\) 0 0
\(505\) −8610.00 −0.758693
\(506\) −3456.00 5985.97i −0.303632 0.525907i
\(507\) 0 0
\(508\) 248.000 429.549i 0.0216599 0.0375160i
\(509\) 585.000 1013.25i 0.0509424 0.0882348i −0.839430 0.543468i \(-0.817111\pi\)
0.890372 + 0.455233i \(0.150444\pi\)
\(510\) 0 0
\(511\) −956.000 1655.84i −0.0827612 0.143347i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 4332.00 0.371744
\(515\) −2630.00 4555.29i −0.225032 0.389767i
\(516\) 0 0
\(517\) 5184.00 8978.95i 0.440990 0.763818i
\(518\) 1336.00 2314.02i 0.113321 0.196278i
\(519\) 0 0
\(520\) 40.0000 + 69.2820i 0.00337330 + 0.00584273i
\(521\) 16638.0 1.39909 0.699543 0.714590i \(-0.253387\pi\)
0.699543 + 0.714590i \(0.253387\pi\)
\(522\) 0 0
\(523\) 15692.0 1.31198 0.655988 0.754771i \(-0.272252\pi\)
0.655988 + 0.754771i \(0.272252\pi\)
\(524\) 384.000 + 665.108i 0.0320136 + 0.0554492i
\(525\) 0 0
\(526\) −3192.00 + 5528.71i −0.264597 + 0.458295i
\(527\) −15504.0 + 26853.7i −1.28153 + 2.21967i
\(528\) 0 0
\(529\) 3491.50 + 6047.46i 0.286965 + 0.497038i
\(530\) −780.000 −0.0639265
\(531\) 0 0
\(532\) −2240.00 −0.182549
\(533\) −198.000 342.946i −0.0160907 0.0278699i
\(534\) 0 0
\(535\) −1410.00 + 2442.19i −0.113943 + 0.197355i
\(536\) 2384.00 4129.21i 0.192114 0.332751i
\(537\) 0 0
\(538\) −5490.00 9508.96i −0.439946 0.762008i
\(539\) −15696.0 −1.25431
\(540\) 0 0
\(541\) −22018.0 −1.74977 −0.874887 0.484327i \(-0.839064\pi\)
−0.874887 + 0.484327i \(0.839064\pi\)
\(542\) −6328.00 10960.4i −0.501496 0.868617i
\(543\) 0 0
\(544\) 1824.00 3159.26i 0.143756 0.248993i
\(545\) 1525.00 2641.38i 0.119860 0.207604i
\(546\) 0 0
\(547\) 2282.00 + 3952.54i 0.178375 + 0.308955i 0.941324 0.337504i \(-0.109583\pi\)
−0.762949 + 0.646459i \(0.776249\pi\)
\(548\) 10056.0 0.783889
\(549\) 0 0
\(550\) −2400.00 −0.186066
\(551\) 14700.0 + 25461.1i 1.13655 + 1.96857i
\(552\) 0 0
\(553\) −1280.00 + 2217.03i −0.0984288 + 0.170484i
\(554\) −574.000 + 994.197i −0.0440197 + 0.0762444i
\(555\) 0 0
\(556\) −2680.00 4641.90i −0.204420 0.354065i
\(557\) 7734.00 0.588331 0.294165 0.955755i \(-0.404958\pi\)
0.294165 + 0.955755i \(0.404958\pi\)
\(558\) 0 0
\(559\) −536.000 −0.0405552
\(560\) 160.000 + 277.128i 0.0120736 + 0.0209121i
\(561\) 0 0
\(562\) −4242.00 + 7347.36i −0.318395 + 0.551476i
\(563\) −10074.0 + 17448.7i −0.754118 + 1.30617i 0.191693 + 0.981455i \(0.438602\pi\)
−0.945812 + 0.324716i \(0.894731\pi\)
\(564\) 0 0
\(565\) 3255.00 + 5637.83i 0.242370 + 0.419797i
\(566\) 1256.00 0.0932749
\(567\) 0 0
\(568\) −6144.00 −0.453867
\(569\) −12015.0 20810.6i −0.885228 1.53326i −0.845452 0.534052i \(-0.820669\pi\)
−0.0397769 0.999209i \(-0.512665\pi\)
\(570\) 0 0
\(571\) −1186.00 + 2054.21i −0.0869222 + 0.150554i −0.906209 0.422831i \(-0.861036\pi\)
0.819287 + 0.573384i \(0.194370\pi\)
\(572\) −192.000 + 332.554i −0.0140348 + 0.0243090i
\(573\) 0 0
\(574\) −792.000 1371.78i −0.0575914 0.0997512i
\(575\) −1800.00 −0.130548
\(576\) 0 0
\(577\) 8546.00 0.616594 0.308297 0.951290i \(-0.400241\pi\)
0.308297 + 0.951290i \(0.400241\pi\)
\(578\) 8083.00 + 14000.2i 0.581676 + 1.00749i
\(579\) 0 0
\(580\) 2100.00 3637.31i 0.150341 0.260398i
\(581\) 696.000 1205.51i 0.0496987 0.0860807i
\(582\) 0 0
\(583\) −1872.00 3242.40i −0.132985 0.230337i
\(584\) 3824.00 0.270956
\(585\) 0 0
\(586\) −1116.00 −0.0786716
\(587\) −7722.00 13374.9i −0.542966 0.940445i −0.998732 0.0503450i \(-0.983968\pi\)
0.455766 0.890100i \(-0.349365\pi\)
\(588\) 0 0
\(589\) −19040.0 + 32978.2i −1.33197 + 2.30704i
\(590\) −1200.00 + 2078.46i −0.0837343 + 0.145032i
\(591\) 0 0
\(592\) 2672.00 + 4628.04i 0.185504 + 0.321303i
\(593\) −18342.0 −1.27018 −0.635089 0.772439i \(-0.719037\pi\)
−0.635089 + 0.772439i \(0.719037\pi\)
\(594\) 0 0
\(595\) −2280.00 −0.157094
\(596\) 2820.00 + 4884.38i 0.193812 + 0.335692i
\(597\) 0 0
\(598\) −144.000 + 249.415i −0.00984715 + 0.0170558i
\(599\) 12300.0 21304.2i 0.839006 1.45320i −0.0517213 0.998662i \(-0.516471\pi\)
0.890727 0.454539i \(-0.150196\pi\)
\(600\) 0 0
\(601\) 4499.00 + 7792.50i 0.305354 + 0.528889i 0.977340 0.211675i \(-0.0678917\pi\)
−0.671986 + 0.740564i \(0.734558\pi\)
\(602\) −2144.00 −0.145154
\(603\) 0 0
\(604\) −8512.00 −0.573424
\(605\) −2432.50 4213.21i −0.163463 0.283126i
\(606\) 0 0
\(607\) −2038.00 + 3529.92i −0.136277 + 0.236038i −0.926084 0.377316i \(-0.876847\pi\)
0.789808 + 0.613354i \(0.210180\pi\)
\(608\) 2240.00 3879.79i 0.149414 0.258793i
\(609\) 0 0
\(610\) 1510.00 + 2615.40i 0.100226 + 0.173597i
\(611\) −432.000 −0.0286037
\(612\) 0 0
\(613\) −4078.00 −0.268693 −0.134347 0.990934i \(-0.542894\pi\)
−0.134347 + 0.990934i \(0.542894\pi\)
\(614\) −6964.00 12062.0i −0.457727 0.792806i
\(615\) 0 0
\(616\) −768.000 + 1330.22i −0.0502331 + 0.0870063i
\(617\) 5043.00 8734.73i 0.329049 0.569930i −0.653274 0.757122i \(-0.726605\pi\)
0.982324 + 0.187191i \(0.0599384\pi\)
\(618\) 0 0
\(619\) −4390.00 7603.70i −0.285055 0.493730i 0.687568 0.726120i \(-0.258679\pi\)
−0.972622 + 0.232391i \(0.925345\pi\)
\(620\) 5440.00 0.352380
\(621\) 0 0
\(622\) 5664.00 0.365122
\(623\) −420.000 727.461i −0.0270095 0.0467819i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 8642.00 14968.4i 0.551763 0.955682i
\(627\) 0 0
\(628\) −6052.00 10482.4i −0.384556 0.666070i
\(629\) −38076.0 −2.41366
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) −2560.00 4434.05i −0.161126 0.279078i
\(633\) 0 0
\(634\) 2214.00 3834.76i 0.138690 0.240217i
\(635\) 310.000 536.936i 0.0193732 0.0335553i
\(636\) 0 0
\(637\) 327.000 + 566.381i 0.0203394 + 0.0352289i
\(638\) 20160.0 1.25101
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 3801.00 + 6583.53i 0.234213 + 0.405669i 0.959044 0.283258i \(-0.0914154\pi\)
−0.724831 + 0.688927i \(0.758082\pi\)
\(642\) 0 0
\(643\) −12106.0 + 20968.2i −0.742479 + 1.28601i 0.208884 + 0.977940i \(0.433017\pi\)
−0.951363 + 0.308071i \(0.900317\pi\)
\(644\) −576.000 + 997.661i −0.0352447 + 0.0610456i
\(645\) 0 0
\(646\) 15960.0 + 27643.5i 0.972040 + 1.68362i
\(647\) −9456.00 −0.574581 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(648\) 0 0
\(649\) −11520.0 −0.696764
\(650\) 50.0000 + 86.6025i 0.00301717 + 0.00522589i
\(651\) 0 0
\(652\) −5224.00 + 9048.23i −0.313785 + 0.543491i
\(653\) −4779.00 + 8277.47i −0.286396 + 0.496053i −0.972947 0.231029i \(-0.925791\pi\)
0.686551 + 0.727082i \(0.259124\pi\)
\(654\) 0 0
\(655\) 480.000 + 831.384i 0.0286338 + 0.0495952i
\(656\) 3168.00 0.188551
\(657\) 0 0
\(658\) −1728.00 −0.102378
\(659\) −14640.0 25357.2i −0.865392 1.49890i −0.866657 0.498904i \(-0.833736\pi\)
0.00126511 0.999999i \(-0.499597\pi\)
\(660\) 0 0
\(661\) 14549.0 25199.6i 0.856113 1.48283i −0.0194961 0.999810i \(-0.506206\pi\)
0.875609 0.483021i \(-0.160460\pi\)
\(662\) 10772.0 18657.7i 0.632425 1.09539i
\(663\) 0 0
\(664\) 1392.00 + 2411.01i 0.0813555 + 0.140912i
\(665\) −2800.00 −0.163277
\(666\) 0 0
\(667\) 15120.0 0.877734
\(668\) −48.0000 83.1384i −0.00278020 0.00481545i
\(669\) 0 0
\(670\) 2980.00 5161.51i 0.171832 0.297622i
\(671\) −7248.00 + 12553.9i −0.416998 + 0.722262i
\(672\) 0 0
\(673\) 5819.00 + 10078.8i 0.333293 + 0.577280i 0.983155 0.182772i \(-0.0585069\pi\)
−0.649863 + 0.760052i \(0.725174\pi\)
\(674\) 3308.00 0.189050
\(675\) 0 0
\(676\) −8772.00 −0.499090
\(677\) 1713.00 + 2967.00i 0.0972466 + 0.168436i 0.910544 0.413412i \(-0.135663\pi\)
−0.813297 + 0.581848i \(0.802330\pi\)
\(678\) 0 0
\(679\) −3068.00 + 5313.93i −0.173401 + 0.300339i
\(680\) 2280.00 3949.08i 0.128579 0.222706i
\(681\) 0 0
\(682\) 13056.0 + 22613.7i 0.733050 + 1.26968i
\(683\) 20148.0 1.12876 0.564379 0.825516i \(-0.309116\pi\)
0.564379 + 0.825516i \(0.309116\pi\)
\(684\) 0 0
\(685\) 12570.0 0.701131
\(686\) 2680.00 + 4641.90i 0.149159 + 0.258350i
\(687\) 0 0
\(688\) 2144.00 3713.52i 0.118807 0.205780i
\(689\) −78.0000 + 135.100i −0.00431286 + 0.00747010i
\(690\) 0 0
\(691\) 14714.0 + 25485.4i 0.810053 + 1.40305i 0.912826 + 0.408349i \(0.133895\pi\)
−0.102772 + 0.994705i \(0.532771\pi\)
\(692\) −7848.00 −0.431122
\(693\) 0 0
\(694\) 4392.00 0.240228
\(695\) −3350.00 5802.37i −0.182838 0.316686i
\(696\) 0 0
\(697\) −11286.0 + 19547.9i −0.613325 + 1.06231i
\(698\) 8270.00 14324.1i 0.448459 0.776753i
\(699\) 0 0
\(700\) 200.000 + 346.410i 0.0107990 + 0.0187044i
\(701\) −16242.0 −0.875110 −0.437555 0.899192i \(-0.644155\pi\)
−0.437555 + 0.899192i \(0.644155\pi\)
\(702\) 0 0
\(703\) −46760.0 −2.50866
\(704\) −1536.00 2660.43i −0.0822304 0.142427i
\(705\) 0 0
\(706\) −10302.0 + 17843.6i −0.549180 + 0.951207i
\(707\) −3444.00 + 5965.18i −0.183204 + 0.317318i
\(708\) 0 0
\(709\) −1015.00 1758.03i −0.0537646 0.0931231i 0.837890 0.545838i \(-0.183789\pi\)
−0.891655 + 0.452715i \(0.850455\pi\)
\(710\) −7680.00 −0.405951
\(711\) 0 0
\(712\) 1680.00 0.0884279
\(713\) 9792.00 + 16960.2i 0.514324 + 0.890836i
\(714\) 0 0
\(715\) −240.000 + 415.692i −0.0125531 + 0.0217427i
\(716\) −240.000 + 415.692i −0.0125268 + 0.0216971i
\(717\) 0 0
\(718\) 2280.00 + 3949.08i 0.118508 + 0.205262i
\(719\) −6960.00 −0.361007 −0.180504 0.983574i \(-0.557773\pi\)
−0.180504 + 0.983574i \(0.557773\pi\)
\(720\) 0 0
\(721\) −4208.00 −0.217357
\(722\) 12741.0 + 22068.1i 0.656746 + 1.13752i
\(723\) 0 0
\(724\) −1804.00 + 3124.62i −0.0926038 + 0.160394i
\(725\) 2625.00 4546.63i 0.134469 0.232907i
\(726\) 0 0
\(727\) −9298.00 16104.6i −0.474338 0.821578i 0.525230 0.850960i \(-0.323979\pi\)
−0.999568 + 0.0293826i \(0.990646\pi\)
\(728\) 64.0000 0.00325824
\(729\) 0 0
\(730\) 4780.00 0.242350
\(731\) 15276.0 + 26458.8i 0.772918 + 1.33873i
\(732\) 0 0
\(733\) −10621.0 + 18396.1i −0.535192 + 0.926979i 0.463962 + 0.885855i \(0.346427\pi\)
−0.999154 + 0.0411244i \(0.986906\pi\)
\(734\) −8764.00 + 15179.7i −0.440715 + 0.763342i
\(735\) 0 0
\(736\) −1152.00 1995.32i −0.0576947 0.0999301i
\(737\) 28608.0 1.42984
\(738\) 0 0
\(739\) −340.000 −0.0169244 −0.00846218 0.999964i \(-0.502694\pi\)
−0.00846218 + 0.999964i \(0.502694\pi\)
\(740\) 3340.00 + 5785.05i 0.165920 + 0.287382i
\(741\) 0 0
\(742\) −312.000 + 540.400i −0.0154365 + 0.0267368i
\(743\) −10944.0 + 18955.6i −0.540372 + 0.935952i 0.458510 + 0.888689i \(0.348383\pi\)
−0.998882 + 0.0472628i \(0.984950\pi\)
\(744\) 0 0
\(745\) 3525.00 + 6105.48i 0.173350 + 0.300252i
\(746\) 2636.00 0.129371
\(747\) 0 0
\(748\) 21888.0 1.06993
\(749\) 1128.00 + 1953.75i 0.0550283 + 0.0953119i
\(750\) 0 0
\(751\) −8896.00 + 15408.3i −0.432250 + 0.748679i −0.997067 0.0765376i \(-0.975613\pi\)
0.564817 + 0.825216i \(0.308947\pi\)
\(752\) 1728.00 2992.98i 0.0837948 0.145137i
\(753\) 0 0
\(754\) −420.000 727.461i −0.0202858 0.0351360i
\(755\) −10640.0 −0.512886
\(756\) 0 0
\(757\) 37346.0 1.79308 0.896541 0.442960i \(-0.146072\pi\)
0.896541 + 0.442960i \(0.146072\pi\)
\(758\) 1100.00 + 1905.26i 0.0527095 + 0.0912955i
\(759\) 0 0
\(760\) 2800.00 4849.74i 0.133640 0.231472i
\(761\) −5679.00 + 9836.32i −0.270517 + 0.468550i −0.968994 0.247083i \(-0.920528\pi\)
0.698477 + 0.715632i \(0.253861\pi\)
\(762\) 0 0
\(763\) −1220.00 2113.10i −0.0578859 0.100261i
\(764\) 672.000 0.0318221
\(765\) 0 0
\(766\) −7056.00 −0.332825
\(767\) 240.000 + 415.692i 0.0112984 + 0.0195695i
\(768\) 0 0
\(769\) 17135.0 29678.7i 0.803516 1.39173i −0.113772 0.993507i \(-0.536293\pi\)
0.917288 0.398224i \(-0.130373\pi\)
\(770\) −960.000 + 1662.77i −0.0449299 + 0.0778208i
\(771\) 0 0
\(772\) 2636.00 + 4565.69i 0.122891 + 0.212853i
\(773\) 13278.0 0.617822 0.308911 0.951091i \(-0.400035\pi\)
0.308911 + 0.951091i \(0.400035\pi\)
\(774\) 0 0
\(775\) 6800.00 0.315178
\(776\) −6136.00 10627.9i −0.283853 0.491647i
\(777\) 0 0
\(778\) 9630.00 16679.6i 0.443769 0.768630i
\(779\) −13860.0 + 24006.2i −0.637466 + 1.10412i
\(780\) 0 0
\(781\) −18432.0 31925.2i −0.844493 1.46270i
\(782\)