Properties

Label 810.4.e.i.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.i.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(2.50000 + 4.33013i) q^{5} +(2.00000 - 3.46410i) q^{7} +8.00000 q^{8} -10.0000 q^{10} +(24.0000 - 41.5692i) q^{11} +(-1.00000 - 1.73205i) q^{13} +(4.00000 + 6.92820i) q^{14} +(-8.00000 + 13.8564i) q^{16} -114.000 q^{17} +140.000 q^{19} +(10.0000 - 17.3205i) q^{20} +(48.0000 + 83.1384i) q^{22} +(-36.0000 - 62.3538i) q^{23} +(-12.5000 + 21.6506i) q^{25} +4.00000 q^{26} -16.0000 q^{28} +(-105.000 + 181.865i) q^{29} +(-136.000 - 235.559i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(114.000 - 197.454i) q^{34} +20.0000 q^{35} -334.000 q^{37} +(-140.000 + 242.487i) q^{38} +(20.0000 + 34.6410i) q^{40} +(99.0000 + 171.473i) q^{41} +(134.000 - 232.095i) q^{43} -192.000 q^{44} +144.000 q^{46} +(-108.000 + 187.061i) q^{47} +(163.500 + 283.190i) q^{49} +(-25.0000 - 43.3013i) q^{50} +(-4.00000 + 6.92820i) q^{52} -78.0000 q^{53} +240.000 q^{55} +(16.0000 - 27.7128i) q^{56} +(-210.000 - 363.731i) q^{58} +(-120.000 - 207.846i) q^{59} +(-151.000 + 261.540i) q^{61} +544.000 q^{62} +64.0000 q^{64} +(5.00000 - 8.66025i) q^{65} +(-298.000 - 516.151i) q^{67} +(228.000 + 394.908i) q^{68} +(-20.0000 + 34.6410i) q^{70} -768.000 q^{71} -478.000 q^{73} +(334.000 - 578.505i) q^{74} +(-280.000 - 484.974i) q^{76} +(-96.0000 - 166.277i) q^{77} +(320.000 - 554.256i) q^{79} -80.0000 q^{80} -396.000 q^{82} +(174.000 - 301.377i) q^{83} +(-285.000 - 493.634i) q^{85} +(268.000 + 464.190i) q^{86} +(192.000 - 332.554i) q^{88} +210.000 q^{89} -8.00000 q^{91} +(-144.000 + 249.415i) q^{92} +(-216.000 - 374.123i) q^{94} +(350.000 + 606.218i) q^{95} +(767.000 - 1328.48i) q^{97} -654.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 5 q^{5} + 4 q^{7} + 16 q^{8} - 20 q^{10} + 48 q^{11} - 2 q^{13} + 8 q^{14} - 16 q^{16} - 228 q^{17} + 280 q^{19} + 20 q^{20} + 96 q^{22} - 72 q^{23} - 25 q^{25} + 8 q^{26} - 32 q^{28}+ \cdots - 1308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.00000 3.46410i 0.107990 0.187044i −0.806966 0.590598i \(-0.798892\pi\)
0.914956 + 0.403554i \(0.132225\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 24.0000 41.5692i 0.657843 1.13942i −0.323330 0.946286i \(-0.604802\pi\)
0.981173 0.193131i \(-0.0618643\pi\)
\(12\) 0 0
\(13\) −1.00000 1.73205i −0.0213346 0.0369527i 0.855161 0.518363i \(-0.173458\pi\)
−0.876496 + 0.481410i \(0.840125\pi\)
\(14\) 4.00000 + 6.92820i 0.0763604 + 0.132260i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −114.000 −1.62642 −0.813208 0.581974i \(-0.802281\pi\)
−0.813208 + 0.581974i \(0.802281\pi\)
\(18\) 0 0
\(19\) 140.000 1.69043 0.845216 0.534425i \(-0.179472\pi\)
0.845216 + 0.534425i \(0.179472\pi\)
\(20\) 10.0000 17.3205i 0.111803 0.193649i
\(21\) 0 0
\(22\) 48.0000 + 83.1384i 0.465165 + 0.805690i
\(23\) −36.0000 62.3538i −0.326370 0.565290i 0.655418 0.755266i \(-0.272492\pi\)
−0.981789 + 0.189976i \(0.939159\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 4.00000 0.0301717
\(27\) 0 0
\(28\) −16.0000 −0.107990
\(29\) −105.000 + 181.865i −0.672345 + 1.16454i 0.304892 + 0.952387i \(0.401380\pi\)
−0.977237 + 0.212149i \(0.931954\pi\)
\(30\) 0 0
\(31\) −136.000 235.559i −0.787946 1.36476i −0.927223 0.374509i \(-0.877811\pi\)
0.139278 0.990253i \(-0.455522\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 114.000 197.454i 0.575025 0.995972i
\(35\) 20.0000 0.0965891
\(36\) 0 0
\(37\) −334.000 −1.48403 −0.742017 0.670381i \(-0.766131\pi\)
−0.742017 + 0.670381i \(0.766131\pi\)
\(38\) −140.000 + 242.487i −0.597658 + 1.03517i
\(39\) 0 0
\(40\) 20.0000 + 34.6410i 0.0790569 + 0.136931i
\(41\) 99.0000 + 171.473i 0.377102 + 0.653161i 0.990639 0.136505i \(-0.0435871\pi\)
−0.613537 + 0.789666i \(0.710254\pi\)
\(42\) 0 0
\(43\) 134.000 232.095i 0.475228 0.823119i −0.524369 0.851491i \(-0.675699\pi\)
0.999597 + 0.0283717i \(0.00903221\pi\)
\(44\) −192.000 −0.657843
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) −108.000 + 187.061i −0.335179 + 0.580547i −0.983519 0.180804i \(-0.942130\pi\)
0.648340 + 0.761351i \(0.275464\pi\)
\(48\) 0 0
\(49\) 163.500 + 283.190i 0.476676 + 0.825628i
\(50\) −25.0000 43.3013i −0.0707107 0.122474i
\(51\) 0 0
\(52\) −4.00000 + 6.92820i −0.0106673 + 0.0184763i
\(53\) −78.0000 −0.202153 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(54\) 0 0
\(55\) 240.000 0.588393
\(56\) 16.0000 27.7128i 0.0381802 0.0661300i
\(57\) 0 0
\(58\) −210.000 363.731i −0.475420 0.823451i
\(59\) −120.000 207.846i −0.264791 0.458631i 0.702718 0.711469i \(-0.251970\pi\)
−0.967509 + 0.252837i \(0.918636\pi\)
\(60\) 0 0
\(61\) −151.000 + 261.540i −0.316944 + 0.548963i −0.979849 0.199741i \(-0.935990\pi\)
0.662905 + 0.748704i \(0.269323\pi\)
\(62\) 544.000 1.11432
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 5.00000 8.66025i 0.00954113 0.0165257i
\(66\) 0 0
\(67\) −298.000 516.151i −0.543381 0.941163i −0.998707 0.0508381i \(-0.983811\pi\)
0.455326 0.890325i \(-0.349523\pi\)
\(68\) 228.000 + 394.908i 0.406604 + 0.704259i
\(69\) 0 0
\(70\) −20.0000 + 34.6410i −0.0341494 + 0.0591485i
\(71\) −768.000 −1.28373 −0.641865 0.766818i \(-0.721839\pi\)
−0.641865 + 0.766818i \(0.721839\pi\)
\(72\) 0 0
\(73\) −478.000 −0.766379 −0.383190 0.923670i \(-0.625174\pi\)
−0.383190 + 0.923670i \(0.625174\pi\)
\(74\) 334.000 578.505i 0.524685 0.908782i
\(75\) 0 0
\(76\) −280.000 484.974i −0.422608 0.731978i
\(77\) −96.0000 166.277i −0.142081 0.246091i
\(78\) 0 0
\(79\) 320.000 554.256i 0.455732 0.789351i −0.542998 0.839734i \(-0.682711\pi\)
0.998730 + 0.0503832i \(0.0160443\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −396.000 −0.533303
\(83\) 174.000 301.377i 0.230108 0.398559i −0.727732 0.685862i \(-0.759425\pi\)
0.957840 + 0.287303i \(0.0927587\pi\)
\(84\) 0 0
\(85\) −285.000 493.634i −0.363678 0.629908i
\(86\) 268.000 + 464.190i 0.336037 + 0.582033i
\(87\) 0 0
\(88\) 192.000 332.554i 0.232583 0.402845i
\(89\) 210.000 0.250112 0.125056 0.992150i \(-0.460089\pi\)
0.125056 + 0.992150i \(0.460089\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) −144.000 + 249.415i −0.163185 + 0.282645i
\(93\) 0 0
\(94\) −216.000 374.123i −0.237007 0.410509i
\(95\) 350.000 + 606.218i 0.377992 + 0.654701i
\(96\) 0 0
\(97\) 767.000 1328.48i 0.802856 1.39059i −0.114873 0.993380i \(-0.536646\pi\)
0.917729 0.397207i \(-0.130021\pi\)
\(98\) −654.000 −0.674122
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −861.000 + 1491.30i −0.848245 + 1.46920i 0.0345288 + 0.999404i \(0.489007\pi\)
−0.882773 + 0.469799i \(0.844326\pi\)
\(102\) 0 0
\(103\) −526.000 911.059i −0.503188 0.871546i −0.999993 0.00368461i \(-0.998827\pi\)
0.496806 0.867862i \(-0.334506\pi\)
\(104\) −8.00000 13.8564i −0.00754293 0.0130647i
\(105\) 0 0
\(106\) 78.0000 135.100i 0.0714720 0.123793i
\(107\) −564.000 −0.509570 −0.254785 0.966998i \(-0.582005\pi\)
−0.254785 + 0.966998i \(0.582005\pi\)
\(108\) 0 0
\(109\) −610.000 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(110\) −240.000 + 415.692i −0.208028 + 0.360315i
\(111\) 0 0
\(112\) 32.0000 + 55.4256i 0.0269975 + 0.0467610i
\(113\) −651.000 1127.57i −0.541955 0.938694i −0.998792 0.0491432i \(-0.984351\pi\)
0.456837 0.889551i \(-0.348982\pi\)
\(114\) 0 0
\(115\) 180.000 311.769i 0.145957 0.252805i
\(116\) 840.000 0.672345
\(117\) 0 0
\(118\) 480.000 0.374471
\(119\) −228.000 + 394.908i −0.175636 + 0.304211i
\(120\) 0 0
\(121\) −486.500 842.643i −0.365515 0.633090i
\(122\) −302.000 523.079i −0.224113 0.388175i
\(123\) 0 0
\(124\) −544.000 + 942.236i −0.393973 + 0.682381i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −124.000 −0.0866395 −0.0433198 0.999061i \(-0.513793\pi\)
−0.0433198 + 0.999061i \(0.513793\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 10.0000 + 17.3205i 0.00674660 + 0.0116855i
\(131\) −96.0000 166.277i −0.0640272 0.110898i 0.832235 0.554423i \(-0.187061\pi\)
−0.896262 + 0.443525i \(0.853728\pi\)
\(132\) 0 0
\(133\) 280.000 484.974i 0.182549 0.316185i
\(134\) 1192.00 0.768456
\(135\) 0 0
\(136\) −912.000 −0.575025
\(137\) 1257.00 2177.19i 0.783889 1.35774i −0.145772 0.989318i \(-0.546567\pi\)
0.929661 0.368417i \(-0.120100\pi\)
\(138\) 0 0
\(139\) −670.000 1160.47i −0.408839 0.708130i 0.585921 0.810368i \(-0.300733\pi\)
−0.994760 + 0.102238i \(0.967400\pi\)
\(140\) −40.0000 69.2820i −0.0241473 0.0418243i
\(141\) 0 0
\(142\) 768.000 1330.22i 0.453867 0.786121i
\(143\) −96.0000 −0.0561393
\(144\) 0 0
\(145\) −1050.00 −0.601364
\(146\) 478.000 827.920i 0.270956 0.469309i
\(147\) 0 0
\(148\) 668.000 + 1157.01i 0.371009 + 0.642606i
\(149\) −705.000 1221.10i −0.387623 0.671383i 0.604506 0.796600i \(-0.293370\pi\)
−0.992129 + 0.125217i \(0.960037\pi\)
\(150\) 0 0
\(151\) 1064.00 1842.90i 0.573424 0.993200i −0.422786 0.906229i \(-0.638948\pi\)
0.996211 0.0869709i \(-0.0277187\pi\)
\(152\) 1120.00 0.597658
\(153\) 0 0
\(154\) 384.000 0.200932
\(155\) 680.000 1177.79i 0.352380 0.610340i
\(156\) 0 0
\(157\) −1513.00 2620.59i −0.769112 1.33214i −0.938045 0.346513i \(-0.887366\pi\)
0.168933 0.985627i \(-0.445968\pi\)
\(158\) 640.000 + 1108.51i 0.322251 + 0.558155i
\(159\) 0 0
\(160\) 80.0000 138.564i 0.0395285 0.0684653i
\(161\) −288.000 −0.140979
\(162\) 0 0
\(163\) 2612.00 1.25514 0.627569 0.778561i \(-0.284050\pi\)
0.627569 + 0.778561i \(0.284050\pi\)
\(164\) 396.000 685.892i 0.188551 0.326580i
\(165\) 0 0
\(166\) 348.000 + 602.754i 0.162711 + 0.281824i
\(167\) 12.0000 + 20.7846i 0.00556041 + 0.00963091i 0.868792 0.495177i \(-0.164897\pi\)
−0.863232 + 0.504808i \(0.831563\pi\)
\(168\) 0 0
\(169\) 1096.50 1899.19i 0.499090 0.864449i
\(170\) 1140.00 0.514318
\(171\) 0 0
\(172\) −1072.00 −0.475228
\(173\) −981.000 + 1699.14i −0.431122 + 0.746725i −0.996970 0.0777846i \(-0.975215\pi\)
0.565849 + 0.824509i \(0.308549\pi\)
\(174\) 0 0
\(175\) 50.0000 + 86.6025i 0.0215980 + 0.0374088i
\(176\) 384.000 + 665.108i 0.164461 + 0.284854i
\(177\) 0 0
\(178\) −210.000 + 363.731i −0.0884279 + 0.153162i
\(179\) −120.000 −0.0501074 −0.0250537 0.999686i \(-0.507976\pi\)
−0.0250537 + 0.999686i \(0.507976\pi\)
\(180\) 0 0
\(181\) 902.000 0.370415 0.185208 0.982699i \(-0.440704\pi\)
0.185208 + 0.982699i \(0.440704\pi\)
\(182\) 8.00000 13.8564i 0.00325824 0.00564344i
\(183\) 0 0
\(184\) −288.000 498.831i −0.115389 0.199860i
\(185\) −835.000 1446.26i −0.331840 0.574764i
\(186\) 0 0
\(187\) −2736.00 + 4738.89i −1.06993 + 1.85317i
\(188\) 864.000 0.335179
\(189\) 0 0
\(190\) −1400.00 −0.534561
\(191\) 84.0000 145.492i 0.0318221 0.0551175i −0.849676 0.527306i \(-0.823202\pi\)
0.881498 + 0.472188i \(0.156536\pi\)
\(192\) 0 0
\(193\) 659.000 + 1141.42i 0.245782 + 0.425706i 0.962351 0.271809i \(-0.0876220\pi\)
−0.716569 + 0.697516i \(0.754289\pi\)
\(194\) 1534.00 + 2656.97i 0.567705 + 0.983294i
\(195\) 0 0
\(196\) 654.000 1132.76i 0.238338 0.412814i
\(197\) −4014.00 −1.45170 −0.725852 0.687851i \(-0.758554\pi\)
−0.725852 + 0.687851i \(0.758554\pi\)
\(198\) 0 0
\(199\) 2000.00 0.712443 0.356222 0.934401i \(-0.384065\pi\)
0.356222 + 0.934401i \(0.384065\pi\)
\(200\) −100.000 + 173.205i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −1722.00 2982.59i −0.599799 1.03888i
\(203\) 420.000 + 727.461i 0.145213 + 0.251516i
\(204\) 0 0
\(205\) −495.000 + 857.365i −0.168645 + 0.292102i
\(206\) 2104.00 0.711615
\(207\) 0 0
\(208\) 32.0000 0.0106673
\(209\) 3360.00 5819.69i 1.11204 1.92611i
\(210\) 0 0
\(211\) 1934.00 + 3349.79i 0.631005 + 1.09293i 0.987347 + 0.158577i \(0.0506906\pi\)
−0.356342 + 0.934356i \(0.615976\pi\)
\(212\) 156.000 + 270.200i 0.0505383 + 0.0875349i
\(213\) 0 0
\(214\) 564.000 976.877i 0.180160 0.312046i
\(215\) 1340.00 0.425057
\(216\) 0 0
\(217\) −1088.00 −0.340361
\(218\) 610.000 1056.55i 0.189516 0.328251i
\(219\) 0 0
\(220\) −480.000 831.384i −0.147098 0.254781i
\(221\) 114.000 + 197.454i 0.0346990 + 0.0601004i
\(222\) 0 0
\(223\) 1574.00 2726.25i 0.472658 0.818668i −0.526852 0.849957i \(-0.676628\pi\)
0.999510 + 0.0312886i \(0.00996110\pi\)
\(224\) −128.000 −0.0381802
\(225\) 0 0
\(226\) 2604.00 0.766440
\(227\) −1278.00 + 2213.56i −0.373673 + 0.647221i −0.990128 0.140170i \(-0.955235\pi\)
0.616454 + 0.787391i \(0.288569\pi\)
\(228\) 0 0
\(229\) 305.000 + 528.275i 0.0880130 + 0.152443i 0.906671 0.421838i \(-0.138615\pi\)
−0.818658 + 0.574281i \(0.805282\pi\)
\(230\) 360.000 + 623.538i 0.103207 + 0.178760i
\(231\) 0 0
\(232\) −840.000 + 1454.92i −0.237710 + 0.411726i
\(233\) −2058.00 −0.578644 −0.289322 0.957232i \(-0.593430\pi\)
−0.289322 + 0.957232i \(0.593430\pi\)
\(234\) 0 0
\(235\) −1080.00 −0.299793
\(236\) −480.000 + 831.384i −0.132396 + 0.229316i
\(237\) 0 0
\(238\) −456.000 789.815i −0.124194 0.215110i
\(239\) −2460.00 4260.84i −0.665792 1.15318i −0.979070 0.203523i \(-0.934761\pi\)
0.313279 0.949661i \(-0.398573\pi\)
\(240\) 0 0
\(241\) 719.000 1245.34i 0.192178 0.332862i −0.753794 0.657111i \(-0.771778\pi\)
0.945972 + 0.324249i \(0.105112\pi\)
\(242\) 1946.00 0.516916
\(243\) 0 0
\(244\) 1208.00 0.316944
\(245\) −817.500 + 1415.95i −0.213176 + 0.369232i
\(246\) 0 0
\(247\) −140.000 242.487i −0.0360647 0.0624659i
\(248\) −1088.00 1884.47i −0.278581 0.482516i
\(249\) 0 0
\(250\) 125.000 216.506i 0.0316228 0.0547723i
\(251\) 792.000 0.199166 0.0995829 0.995029i \(-0.468249\pi\)
0.0995829 + 0.995029i \(0.468249\pi\)
\(252\) 0 0
\(253\) −3456.00 −0.858802
\(254\) 124.000 214.774i 0.0306317 0.0530557i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −1083.00 1875.81i −0.262863 0.455291i 0.704139 0.710062i \(-0.251333\pi\)
−0.967001 + 0.254771i \(0.918000\pi\)
\(258\) 0 0
\(259\) −668.000 + 1157.01i −0.160261 + 0.277580i
\(260\) −40.0000 −0.00954113
\(261\) 0 0
\(262\) 384.000 0.0905481
\(263\) −1596.00 + 2764.35i −0.374196 + 0.648127i −0.990206 0.139611i \(-0.955415\pi\)
0.616010 + 0.787738i \(0.288748\pi\)
\(264\) 0 0
\(265\) −195.000 337.750i −0.0452028 0.0782936i
\(266\) 560.000 + 969.948i 0.129082 + 0.223577i
\(267\) 0 0
\(268\) −1192.00 + 2064.60i −0.271690 + 0.470581i
\(269\) 5490.00 1.24435 0.622177 0.782877i \(-0.286248\pi\)
0.622177 + 0.782877i \(0.286248\pi\)
\(270\) 0 0
\(271\) −6328.00 −1.41845 −0.709223 0.704985i \(-0.750954\pi\)
−0.709223 + 0.704985i \(0.750954\pi\)
\(272\) 912.000 1579.63i 0.203302 0.352129i
\(273\) 0 0
\(274\) 2514.00 + 4354.38i 0.554293 + 0.960064i
\(275\) 600.000 + 1039.23i 0.131569 + 0.227883i
\(276\) 0 0
\(277\) 287.000 497.099i 0.0622533 0.107826i −0.833219 0.552943i \(-0.813505\pi\)
0.895472 + 0.445117i \(0.146838\pi\)
\(278\) 2680.00 0.578186
\(279\) 0 0
\(280\) 160.000 0.0341494
\(281\) −2121.00 + 3673.68i −0.450278 + 0.779905i −0.998403 0.0564915i \(-0.982009\pi\)
0.548125 + 0.836397i \(0.315342\pi\)
\(282\) 0 0
\(283\) 314.000 + 543.864i 0.0659553 + 0.114238i 0.897117 0.441792i \(-0.145657\pi\)
−0.831162 + 0.556030i \(0.812324\pi\)
\(284\) 1536.00 + 2660.43i 0.320933 + 0.555871i
\(285\) 0 0
\(286\) 96.0000 166.277i 0.0198482 0.0343782i
\(287\) 792.000 0.162893
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 1050.00 1818.65i 0.212614 0.368259i
\(291\) 0 0
\(292\) 956.000 + 1655.84i 0.191595 + 0.331852i
\(293\) 279.000 + 483.242i 0.0556292 + 0.0963526i 0.892499 0.451049i \(-0.148950\pi\)
−0.836870 + 0.547402i \(0.815617\pi\)
\(294\) 0 0
\(295\) 600.000 1039.23i 0.118418 0.205106i
\(296\) −2672.00 −0.524685
\(297\) 0 0
\(298\) 2820.00 0.548182
\(299\) −72.0000 + 124.708i −0.0139260 + 0.0241205i
\(300\) 0 0
\(301\) −536.000 928.379i −0.102640 0.177777i
\(302\) 2128.00 + 3685.80i 0.405472 + 0.702299i
\(303\) 0 0
\(304\) −1120.00 + 1939.90i −0.211304 + 0.365989i
\(305\) −1510.00 −0.283483
\(306\) 0 0
\(307\) −6964.00 −1.29465 −0.647323 0.762216i \(-0.724112\pi\)
−0.647323 + 0.762216i \(0.724112\pi\)
\(308\) −384.000 + 665.108i −0.0710404 + 0.123046i
\(309\) 0 0
\(310\) 1360.00 + 2355.59i 0.249170 + 0.431576i
\(311\) −1416.00 2452.58i −0.258180 0.447181i 0.707574 0.706639i \(-0.249789\pi\)
−0.965754 + 0.259458i \(0.916456\pi\)
\(312\) 0 0
\(313\) −4321.00 + 7484.19i −0.780311 + 1.35154i 0.151449 + 0.988465i \(0.451606\pi\)
−0.931761 + 0.363073i \(0.881727\pi\)
\(314\) 6052.00 1.08769
\(315\) 0 0
\(316\) −2560.00 −0.455732
\(317\) 1107.00 1917.38i 0.196137 0.339719i −0.751136 0.660148i \(-0.770494\pi\)
0.947273 + 0.320429i \(0.103827\pi\)
\(318\) 0 0
\(319\) 5040.00 + 8729.54i 0.884595 + 1.53216i
\(320\) 160.000 + 277.128i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 288.000 498.831i 0.0498435 0.0863315i
\(323\) −15960.0 −2.74934
\(324\) 0 0
\(325\) 50.0000 0.00853385
\(326\) −2612.00 + 4524.12i −0.443759 + 0.768612i
\(327\) 0 0
\(328\) 792.000 + 1371.78i 0.133326 + 0.230927i
\(329\) 432.000 + 748.246i 0.0723919 + 0.125386i
\(330\) 0 0
\(331\) −5386.00 + 9328.83i −0.894385 + 1.54912i −0.0598204 + 0.998209i \(0.519053\pi\)
−0.834564 + 0.550911i \(0.814281\pi\)
\(332\) −1392.00 −0.230108
\(333\) 0 0
\(334\) −48.0000 −0.00786360
\(335\) 1490.00 2580.76i 0.243007 0.420901i
\(336\) 0 0
\(337\) 827.000 + 1432.41i 0.133678 + 0.231537i 0.925092 0.379744i \(-0.123988\pi\)
−0.791414 + 0.611281i \(0.790654\pi\)
\(338\) 2193.00 + 3798.39i 0.352910 + 0.611258i
\(339\) 0 0
\(340\) −1140.00 + 1974.54i −0.181839 + 0.314954i
\(341\) −13056.0 −2.07338
\(342\) 0 0
\(343\) 2680.00 0.421885
\(344\) 1072.00 1856.76i 0.168019 0.291017i
\(345\) 0 0
\(346\) −1962.00 3398.28i −0.304849 0.528014i
\(347\) −1098.00 1901.79i −0.169867 0.294218i 0.768506 0.639842i \(-0.221000\pi\)
−0.938373 + 0.345625i \(0.887667\pi\)
\(348\) 0 0
\(349\) −4135.00 + 7162.03i −0.634216 + 1.09849i 0.352464 + 0.935825i \(0.385344\pi\)
−0.986681 + 0.162670i \(0.947990\pi\)
\(350\) −200.000 −0.0305441
\(351\) 0 0
\(352\) −1536.00 −0.232583
\(353\) −5151.00 + 8921.79i −0.776657 + 1.34521i 0.157201 + 0.987567i \(0.449753\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(354\) 0 0
\(355\) −1920.00 3325.54i −0.287051 0.497186i
\(356\) −420.000 727.461i −0.0625280 0.108302i
\(357\) 0 0
\(358\) 120.000 207.846i 0.0177156 0.0306844i
\(359\) −2280.00 −0.335192 −0.167596 0.985856i \(-0.553600\pi\)
−0.167596 + 0.985856i \(0.553600\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) −902.000 + 1562.31i −0.130962 + 0.226832i
\(363\) 0 0
\(364\) 16.0000 + 27.7128i 0.00230392 + 0.00399051i
\(365\) −1195.00 2069.80i −0.171368 0.296817i
\(366\) 0 0
\(367\) 4382.00 7589.85i 0.623266 1.07953i −0.365608 0.930769i \(-0.619139\pi\)
0.988873 0.148759i \(-0.0475278\pi\)
\(368\) 1152.00 0.163185
\(369\) 0 0
\(370\) 3340.00 0.469293
\(371\) −156.000 + 270.200i −0.0218305 + 0.0378115i
\(372\) 0 0
\(373\) 659.000 + 1141.42i 0.0914792 + 0.158447i 0.908134 0.418680i \(-0.137507\pi\)
−0.816655 + 0.577127i \(0.804174\pi\)
\(374\) −5472.00 9477.78i −0.756552 1.31039i
\(375\) 0 0
\(376\) −864.000 + 1496.49i −0.118504 + 0.205254i
\(377\) 420.000 0.0573769
\(378\) 0 0
\(379\) 1100.00 0.149085 0.0745425 0.997218i \(-0.476250\pi\)
0.0745425 + 0.997218i \(0.476250\pi\)
\(380\) 1400.00 2424.87i 0.188996 0.327351i
\(381\) 0 0
\(382\) 168.000 + 290.985i 0.0225016 + 0.0389740i
\(383\) 1764.00 + 3055.34i 0.235343 + 0.407625i 0.959372 0.282144i \(-0.0910455\pi\)
−0.724030 + 0.689769i \(0.757712\pi\)
\(384\) 0 0
\(385\) 480.000 831.384i 0.0635404 0.110055i
\(386\) −2636.00 −0.347588
\(387\) 0 0
\(388\) −6136.00 −0.802856
\(389\) 4815.00 8339.82i 0.627584 1.08701i −0.360451 0.932778i \(-0.617377\pi\)
0.988035 0.154229i \(-0.0492895\pi\)
\(390\) 0 0
\(391\) 4104.00 + 7108.34i 0.530814 + 0.919396i
\(392\) 1308.00 + 2265.52i 0.168531 + 0.291903i
\(393\) 0 0
\(394\) 4014.00 6952.45i 0.513255 0.888983i
\(395\) 3200.00 0.407619
\(396\) 0 0
\(397\) −3094.00 −0.391142 −0.195571 0.980690i \(-0.562656\pi\)
−0.195571 + 0.980690i \(0.562656\pi\)
\(398\) −2000.00 + 3464.10i −0.251887 + 0.436281i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) 819.000 + 1418.55i 0.101992 + 0.176656i 0.912505 0.409065i \(-0.134145\pi\)
−0.810513 + 0.585721i \(0.800812\pi\)
\(402\) 0 0
\(403\) −272.000 + 471.118i −0.0336211 + 0.0582334i
\(404\) 6888.00 0.848245
\(405\) 0 0
\(406\) −1680.00 −0.205362
\(407\) −8016.00 + 13884.1i −0.976261 + 1.69093i
\(408\) 0 0
\(409\) 6875.00 + 11907.8i 0.831166 + 1.43962i 0.897114 + 0.441799i \(0.145659\pi\)
−0.0659483 + 0.997823i \(0.521007\pi\)
\(410\) −990.000 1714.73i −0.119250 0.206548i
\(411\) 0 0
\(412\) −2104.00 + 3644.23i −0.251594 + 0.435773i
\(413\) −960.000 −0.114379
\(414\) 0 0
\(415\) 1740.00 0.205815
\(416\) −32.0000 + 55.4256i −0.00377146 + 0.00653237i
\(417\) 0 0
\(418\) 6720.00 + 11639.4i 0.786330 + 1.36196i
\(419\) 6240.00 + 10808.0i 0.727551 + 1.26016i 0.957915 + 0.287051i \(0.0926750\pi\)
−0.230364 + 0.973105i \(0.573992\pi\)
\(420\) 0 0
\(421\) −3631.00 + 6289.08i −0.420342 + 0.728054i −0.995973 0.0896557i \(-0.971423\pi\)
0.575631 + 0.817710i \(0.304757\pi\)
\(422\) −7736.00 −0.892376
\(423\) 0 0
\(424\) −624.000 −0.0714720
\(425\) 1425.00 2468.17i 0.162642 0.281703i
\(426\) 0 0
\(427\) 604.000 + 1046.16i 0.0684534 + 0.118565i
\(428\) 1128.00 + 1953.75i 0.127392 + 0.220650i
\(429\) 0 0
\(430\) −1340.00 + 2320.95i −0.150280 + 0.260293i
\(431\) 9792.00 1.09435 0.547174 0.837019i \(-0.315704\pi\)
0.547174 + 0.837019i \(0.315704\pi\)
\(432\) 0 0
\(433\) 1802.00 0.199997 0.0999984 0.994988i \(-0.468116\pi\)
0.0999984 + 0.994988i \(0.468116\pi\)
\(434\) 1088.00 1884.47i 0.120336 0.208427i
\(435\) 0 0
\(436\) 1220.00 + 2113.10i 0.134008 + 0.232108i
\(437\) −5040.00 8729.54i −0.551707 0.955584i
\(438\) 0 0
\(439\) 1160.00 2009.18i 0.126113 0.218435i −0.796054 0.605225i \(-0.793083\pi\)
0.922168 + 0.386791i \(0.126416\pi\)
\(440\) 1920.00 0.208028
\(441\) 0 0
\(442\) −456.000 −0.0490717
\(443\) −5586.00 + 9675.24i −0.599095 + 1.03766i 0.393861 + 0.919170i \(0.371139\pi\)
−0.992955 + 0.118492i \(0.962194\pi\)
\(444\) 0 0
\(445\) 525.000 + 909.327i 0.0559267 + 0.0968679i
\(446\) 3148.00 + 5452.50i 0.334220 + 0.578886i
\(447\) 0 0
\(448\) 128.000 221.703i 0.0134987 0.0233805i
\(449\) 6810.00 0.715777 0.357888 0.933764i \(-0.383497\pi\)
0.357888 + 0.933764i \(0.383497\pi\)
\(450\) 0 0
\(451\) 9504.00 0.992297
\(452\) −2604.00 + 4510.26i −0.270978 + 0.469347i
\(453\) 0 0
\(454\) −2556.00 4427.12i −0.264227 0.457654i
\(455\) −20.0000 34.6410i −0.00206069 0.00356922i
\(456\) 0 0
\(457\) −8533.00 + 14779.6i −0.873429 + 1.51282i −0.0150014 + 0.999887i \(0.504775\pi\)
−0.858427 + 0.512935i \(0.828558\pi\)
\(458\) −1220.00 −0.124469
\(459\) 0 0
\(460\) −1440.00 −0.145957
\(461\) 9459.00 16383.5i 0.955639 1.65522i 0.222740 0.974878i \(-0.428500\pi\)
0.732899 0.680337i \(-0.238167\pi\)
\(462\) 0 0
\(463\) −526.000 911.059i −0.0527976 0.0914481i 0.838419 0.545027i \(-0.183480\pi\)
−0.891216 + 0.453579i \(0.850147\pi\)
\(464\) −1680.00 2909.85i −0.168086 0.291134i
\(465\) 0 0
\(466\) 2058.00 3564.56i 0.204582 0.354346i
\(467\) 11076.0 1.09751 0.548754 0.835984i \(-0.315102\pi\)
0.548754 + 0.835984i \(0.315102\pi\)
\(468\) 0 0
\(469\) −2384.00 −0.234718
\(470\) 1080.00 1870.61i 0.105993 0.183585i
\(471\) 0 0
\(472\) −960.000 1662.77i −0.0936178 0.162151i
\(473\) −6432.00 11140.6i −0.625251 1.08297i
\(474\) 0 0
\(475\) −1750.00 + 3031.09i −0.169043 + 0.292791i
\(476\) 1824.00 0.175636
\(477\) 0 0
\(478\) 9840.00 0.941571
\(479\) 4500.00 7794.23i 0.429249 0.743481i −0.567558 0.823334i \(-0.692112\pi\)
0.996807 + 0.0798526i \(0.0254450\pi\)
\(480\) 0 0
\(481\) 334.000 + 578.505i 0.0316613 + 0.0548390i
\(482\) 1438.00 + 2490.69i 0.135890 + 0.235369i
\(483\) 0 0
\(484\) −1946.00 + 3370.57i −0.182757 + 0.316545i
\(485\) 7670.00 0.718096
\(486\) 0 0
\(487\) −8764.00 −0.815472 −0.407736 0.913100i \(-0.633682\pi\)
−0.407736 + 0.913100i \(0.633682\pi\)
\(488\) −1208.00 + 2092.32i −0.112057 + 0.194088i
\(489\) 0 0
\(490\) −1635.00 2831.90i −0.150738 0.261086i
\(491\) −2796.00 4842.81i −0.256989 0.445118i 0.708445 0.705766i \(-0.249397\pi\)
−0.965434 + 0.260648i \(0.916064\pi\)
\(492\) 0 0
\(493\) 11970.0 20732.6i 1.09351 1.89402i
\(494\) 560.000 0.0510032
\(495\) 0 0
\(496\) 4352.00 0.393973
\(497\) −1536.00 + 2660.43i −0.138630 + 0.240114i
\(498\) 0 0
\(499\) −2350.00 4070.32i −0.210823 0.365155i 0.741150 0.671340i \(-0.234281\pi\)
−0.951972 + 0.306184i \(0.900948\pi\)
\(500\) 250.000 + 433.013i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −792.000 + 1371.78i −0.0704157 + 0.121964i
\(503\) −11808.0 −1.04671 −0.523353 0.852116i \(-0.675319\pi\)
−0.523353 + 0.852116i \(0.675319\pi\)
\(504\) 0 0
\(505\) −8610.00 −0.758693
\(506\) 3456.00 5985.97i 0.303632 0.525907i
\(507\) 0 0
\(508\) 248.000 + 429.549i 0.0216599 + 0.0375160i
\(509\) −585.000 1013.25i −0.0509424 0.0882348i 0.839430 0.543468i \(-0.182889\pi\)
−0.890372 + 0.455233i \(0.849556\pi\)
\(510\) 0 0
\(511\) −956.000 + 1655.84i −0.0827612 + 0.143347i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 4332.00 0.371744
\(515\) 2630.00 4555.29i 0.225032 0.389767i
\(516\) 0 0
\(517\) 5184.00 + 8978.95i 0.440990 + 0.763818i
\(518\) −1336.00 2314.02i −0.113321 0.196278i
\(519\) 0 0
\(520\) 40.0000 69.2820i 0.00337330 0.00584273i
\(521\) −16638.0 −1.39909 −0.699543 0.714590i \(-0.746613\pi\)
−0.699543 + 0.714590i \(0.746613\pi\)
\(522\) 0 0
\(523\) 15692.0 1.31198 0.655988 0.754771i \(-0.272252\pi\)
0.655988 + 0.754771i \(0.272252\pi\)
\(524\) −384.000 + 665.108i −0.0320136 + 0.0554492i
\(525\) 0 0
\(526\) −3192.00 5528.71i −0.264597 0.458295i
\(527\) 15504.0 + 26853.7i 1.28153 + 2.21967i
\(528\) 0 0
\(529\) 3491.50 6047.46i 0.286965 0.497038i
\(530\) 780.000 0.0639265
\(531\) 0 0
\(532\) −2240.00 −0.182549
\(533\) 198.000 342.946i 0.0160907 0.0278699i
\(534\) 0 0
\(535\) −1410.00 2442.19i −0.113943 0.197355i
\(536\) −2384.00 4129.21i −0.192114 0.332751i
\(537\) 0 0
\(538\) −5490.00 + 9508.96i −0.439946 + 0.762008i
\(539\) 15696.0 1.25431
\(540\) 0 0
\(541\) −22018.0 −1.74977 −0.874887 0.484327i \(-0.839064\pi\)
−0.874887 + 0.484327i \(0.839064\pi\)
\(542\) 6328.00 10960.4i 0.501496 0.868617i
\(543\) 0 0
\(544\) 1824.00 + 3159.26i 0.143756 + 0.248993i
\(545\) −1525.00 2641.38i −0.119860 0.207604i
\(546\) 0 0
\(547\) 2282.00 3952.54i 0.178375 0.308955i −0.762949 0.646459i \(-0.776249\pi\)
0.941324 + 0.337504i \(0.109583\pi\)
\(548\) −10056.0 −0.783889
\(549\) 0 0
\(550\) −2400.00 −0.186066
\(551\) −14700.0 + 25461.1i −1.13655 + 1.96857i
\(552\) 0 0
\(553\) −1280.00 2217.03i −0.0984288 0.170484i
\(554\) 574.000 + 994.197i 0.0440197 + 0.0762444i
\(555\) 0 0
\(556\) −2680.00 + 4641.90i −0.204420 + 0.354065i
\(557\) −7734.00 −0.588331 −0.294165 0.955755i \(-0.595042\pi\)
−0.294165 + 0.955755i \(0.595042\pi\)
\(558\) 0 0
\(559\) −536.000 −0.0405552
\(560\) −160.000 + 277.128i −0.0120736 + 0.0209121i
\(561\) 0 0
\(562\) −4242.00 7347.36i −0.318395 0.551476i
\(563\) 10074.0 + 17448.7i 0.754118 + 1.30617i 0.945812 + 0.324716i \(0.105269\pi\)
−0.191693 + 0.981455i \(0.561398\pi\)
\(564\) 0 0
\(565\) 3255.00 5637.83i 0.242370 0.419797i
\(566\) −1256.00 −0.0932749
\(567\) 0 0
\(568\) −6144.00 −0.453867
\(569\) 12015.0 20810.6i 0.885228 1.53326i 0.0397769 0.999209i \(-0.487335\pi\)
0.845452 0.534052i \(-0.179331\pi\)
\(570\) 0 0
\(571\) −1186.00 2054.21i −0.0869222 0.150554i 0.819287 0.573384i \(-0.194370\pi\)
−0.906209 + 0.422831i \(0.861036\pi\)
\(572\) 192.000 + 332.554i 0.0140348 + 0.0243090i
\(573\) 0 0
\(574\) −792.000 + 1371.78i −0.0575914 + 0.0997512i
\(575\) 1800.00 0.130548
\(576\) 0 0
\(577\) 8546.00 0.616594 0.308297 0.951290i \(-0.400241\pi\)
0.308297 + 0.951290i \(0.400241\pi\)
\(578\) −8083.00 + 14000.2i −0.581676 + 1.00749i
\(579\) 0 0
\(580\) 2100.00 + 3637.31i 0.150341 + 0.260398i
\(581\) −696.000 1205.51i −0.0496987 0.0860807i
\(582\) 0 0
\(583\) −1872.00 + 3242.40i −0.132985 + 0.230337i
\(584\) −3824.00 −0.270956
\(585\) 0 0
\(586\) −1116.00 −0.0786716
\(587\) 7722.00 13374.9i 0.542966 0.940445i −0.455766 0.890100i \(-0.650635\pi\)
0.998732 0.0503450i \(-0.0160321\pi\)
\(588\) 0 0
\(589\) −19040.0 32978.2i −1.33197 2.30704i
\(590\) 1200.00 + 2078.46i 0.0837343 + 0.145032i
\(591\) 0 0
\(592\) 2672.00 4628.04i 0.185504 0.321303i
\(593\) 18342.0 1.27018 0.635089 0.772439i \(-0.280963\pi\)
0.635089 + 0.772439i \(0.280963\pi\)
\(594\) 0 0
\(595\) −2280.00 −0.157094
\(596\) −2820.00 + 4884.38i −0.193812 + 0.335692i
\(597\) 0 0
\(598\) −144.000 249.415i −0.00984715 0.0170558i
\(599\) −12300.0 21304.2i −0.839006 1.45320i −0.890727 0.454539i \(-0.849804\pi\)
0.0517213 0.998662i \(-0.483529\pi\)
\(600\) 0 0
\(601\) 4499.00 7792.50i 0.305354 0.528889i −0.671986 0.740564i \(-0.734558\pi\)
0.977340 + 0.211675i \(0.0678917\pi\)
\(602\) 2144.00 0.145154
\(603\) 0 0
\(604\) −8512.00 −0.573424
\(605\) 2432.50 4213.21i 0.163463 0.283126i
\(606\) 0 0
\(607\) −2038.00 3529.92i −0.136277 0.236038i 0.789808 0.613354i \(-0.210180\pi\)
−0.926084 + 0.377316i \(0.876847\pi\)
\(608\) −2240.00 3879.79i −0.149414 0.258793i
\(609\) 0 0
\(610\) 1510.00 2615.40i 0.100226 0.173597i
\(611\) 432.000 0.0286037
\(612\) 0 0
\(613\) −4078.00 −0.268693 −0.134347 0.990934i \(-0.542894\pi\)
−0.134347 + 0.990934i \(0.542894\pi\)
\(614\) 6964.00 12062.0i 0.457727 0.792806i
\(615\) 0 0
\(616\) −768.000 1330.22i −0.0502331 0.0870063i
\(617\) −5043.00 8734.73i −0.329049 0.569930i 0.653274 0.757122i \(-0.273395\pi\)
−0.982324 + 0.187191i \(0.940062\pi\)
\(618\) 0 0
\(619\) −4390.00 + 7603.70i −0.285055 + 0.493730i −0.972622 0.232391i \(-0.925345\pi\)
0.687568 + 0.726120i \(0.258679\pi\)
\(620\) −5440.00 −0.352380
\(621\) 0 0
\(622\) 5664.00 0.365122
\(623\) 420.000 727.461i 0.0270095 0.0467819i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −8642.00 14968.4i −0.551763 0.955682i
\(627\) 0 0
\(628\) −6052.00 + 10482.4i −0.384556 + 0.666070i
\(629\) 38076.0 2.41366
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) 2560.00 4434.05i 0.161126 0.279078i
\(633\) 0 0
\(634\) 2214.00 + 3834.76i 0.138690 + 0.240217i
\(635\) −310.000 536.936i −0.0193732 0.0335553i
\(636\) 0 0
\(637\) 327.000 566.381i 0.0203394 0.0352289i
\(638\) −20160.0 −1.25101
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −3801.00 + 6583.53i −0.234213 + 0.405669i −0.959044 0.283258i \(-0.908585\pi\)
0.724831 + 0.688927i \(0.241918\pi\)
\(642\) 0 0
\(643\) −12106.0 20968.2i −0.742479 1.28601i −0.951363 0.308071i \(-0.900317\pi\)
0.208884 0.977940i \(-0.433017\pi\)
\(644\) 576.000 + 997.661i 0.0352447 + 0.0610456i
\(645\) 0 0
\(646\) 15960.0 27643.5i 0.972040 1.68362i
\(647\) 9456.00 0.574581 0.287290 0.957844i \(-0.407246\pi\)
0.287290 + 0.957844i \(0.407246\pi\)
\(648\) 0 0
\(649\) −11520.0 −0.696764
\(650\) −50.0000 + 86.6025i −0.00301717 + 0.00522589i
\(651\) 0 0
\(652\) −5224.00 9048.23i −0.313785 0.543491i
\(653\) 4779.00 + 8277.47i 0.286396 + 0.496053i 0.972947 0.231029i \(-0.0742093\pi\)
−0.686551 + 0.727082i \(0.740876\pi\)
\(654\) 0 0
\(655\) 480.000 831.384i 0.0286338 0.0495952i
\(656\) −3168.00 −0.188551
\(657\) 0 0
\(658\) −1728.00 −0.102378
\(659\) 14640.0 25357.2i 0.865392 1.49890i −0.00126511 0.999999i \(-0.500403\pi\)
0.866657 0.498904i \(-0.166264\pi\)
\(660\) 0 0
\(661\) 14549.0 + 25199.6i 0.856113 + 1.48283i 0.875609 + 0.483021i \(0.160460\pi\)
−0.0194961 + 0.999810i \(0.506206\pi\)
\(662\) −10772.0 18657.7i −0.632425 1.09539i
\(663\) 0 0
\(664\) 1392.00 2411.01i 0.0813555 0.140912i
\(665\) 2800.00 0.163277
\(666\) 0 0
\(667\) 15120.0 0.877734
\(668\) 48.0000 83.1384i 0.00278020 0.00481545i
\(669\) 0 0
\(670\) 2980.00 + 5161.51i 0.171832 + 0.297622i
\(671\) 7248.00 + 12553.9i 0.416998 + 0.722262i
\(672\) 0 0
\(673\) 5819.00 10078.8i 0.333293 0.577280i −0.649863 0.760052i \(-0.725174\pi\)
0.983155 + 0.182772i \(0.0585069\pi\)
\(674\) −3308.00 −0.189050
\(675\) 0 0
\(676\) −8772.00 −0.499090
\(677\) −1713.00 + 2967.00i −0.0972466 + 0.168436i −0.910544 0.413412i \(-0.864337\pi\)
0.813297 + 0.581848i \(0.197670\pi\)
\(678\) 0 0
\(679\) −3068.00 5313.93i −0.173401 0.300339i
\(680\) −2280.00 3949.08i −0.128579 0.222706i
\(681\) 0 0
\(682\) 13056.0 22613.7i 0.733050 1.26968i
\(683\) −20148.0 −1.12876 −0.564379 0.825516i \(-0.690884\pi\)
−0.564379 + 0.825516i \(0.690884\pi\)
\(684\) 0 0
\(685\) 12570.0 0.701131
\(686\) −2680.00 + 4641.90i −0.149159 + 0.258350i
\(687\) 0 0
\(688\) 2144.00 + 3713.52i 0.118807 + 0.205780i
\(689\) 78.0000 + 135.100i 0.00431286 + 0.00747010i
\(690\) 0 0
\(691\) 14714.0 25485.4i 0.810053 1.40305i −0.102772 0.994705i \(-0.532771\pi\)
0.912826 0.408349i \(-0.133895\pi\)
\(692\) 7848.00 0.431122
\(693\) 0 0
\(694\) 4392.00 0.240228
\(695\) 3350.00 5802.37i 0.182838 0.316686i
\(696\) 0 0
\(697\) −11286.0 19547.9i −0.613325 1.06231i
\(698\) −8270.00 14324.1i −0.448459 0.776753i
\(699\) 0 0
\(700\) 200.000 346.410i 0.0107990 0.0187044i
\(701\) 16242.0 0.875110 0.437555 0.899192i \(-0.355845\pi\)
0.437555 + 0.899192i \(0.355845\pi\)
\(702\) 0 0
\(703\) −46760.0 −2.50866
\(704\) 1536.00 2660.43i 0.0822304 0.142427i
\(705\) 0 0
\(706\) −10302.0 17843.6i −0.549180 0.951207i
\(707\) 3444.00 + 5965.18i 0.183204 + 0.317318i
\(708\) 0 0
\(709\) −1015.00 + 1758.03i −0.0537646 + 0.0931231i −0.891655 0.452715i \(-0.850455\pi\)
0.837890 + 0.545838i \(0.183789\pi\)
\(710\) 7680.00 0.405951
\(711\) 0 0
\(712\) 1680.00 0.0884279
\(713\) −9792.00 + 16960.2i −0.514324 + 0.890836i
\(714\) 0 0
\(715\) −240.000 415.692i −0.0125531 0.0217427i
\(716\) 240.000 + 415.692i 0.0125268 + 0.0216971i
\(717\) 0 0
\(718\) 2280.00 3949.08i 0.118508 0.205262i
\(719\) 6960.00 0.361007 0.180504 0.983574i \(-0.442227\pi\)
0.180504 + 0.983574i \(0.442227\pi\)
\(720\) 0 0
\(721\) −4208.00 −0.217357
\(722\) −12741.0 + 22068.1i −0.656746 + 1.13752i
\(723\) 0 0
\(724\) −1804.00 3124.62i −0.0926038 0.160394i
\(725\) −2625.00 4546.63i −0.134469 0.232907i
\(726\) 0 0
\(727\) −9298.00 + 16104.6i −0.474338 + 0.821578i −0.999568 0.0293826i \(-0.990646\pi\)
0.525230 + 0.850960i \(0.323979\pi\)
\(728\) −64.0000 −0.00325824
\(729\) 0 0
\(730\) 4780.00 0.242350
\(731\) −15276.0 + 26458.8i −0.772918 + 1.33873i
\(732\) 0 0
\(733\) −10621.0 18396.1i −0.535192 0.926979i −0.999154 0.0411244i \(-0.986906\pi\)
0.463962 0.885855i \(-0.346427\pi\)
\(734\) 8764.00 + 15179.7i 0.440715 + 0.763342i
\(735\) 0 0
\(736\) −1152.00 + 1995.32i −0.0576947 + 0.0999301i
\(737\) −28608.0 −1.42984
\(738\) 0 0
\(739\) −340.000 −0.0169244 −0.00846218 0.999964i \(-0.502694\pi\)
−0.00846218 + 0.999964i \(0.502694\pi\)
\(740\) −3340.00 + 5785.05i −0.165920 + 0.287382i
\(741\) 0 0
\(742\) −312.000 540.400i −0.0154365 0.0267368i
\(743\) 10944.0 + 18955.6i 0.540372 + 0.935952i 0.998882 + 0.0472628i \(0.0150498\pi\)
−0.458510 + 0.888689i \(0.651617\pi\)
\(744\) 0 0
\(745\) 3525.00 6105.48i 0.173350 0.300252i
\(746\) −2636.00 −0.129371
\(747\) 0 0
\(748\) 21888.0 1.06993
\(749\) −1128.00 + 1953.75i −0.0550283 + 0.0953119i
\(750\) 0 0
\(751\) −8896.00 15408.3i −0.432250 0.748679i 0.564817 0.825216i \(-0.308947\pi\)
−0.997067 + 0.0765376i \(0.975613\pi\)
\(752\) −1728.00 2992.98i −0.0837948 0.145137i
\(753\) 0 0
\(754\) −420.000 + 727.461i −0.0202858 + 0.0351360i
\(755\) 10640.0 0.512886
\(756\) 0 0
\(757\) 37346.0 1.79308 0.896541 0.442960i \(-0.146072\pi\)
0.896541 + 0.442960i \(0.146072\pi\)
\(758\) −1100.00 + 1905.26i −0.0527095 + 0.0912955i
\(759\) 0 0
\(760\) 2800.00 + 4849.74i 0.133640 + 0.231472i
\(761\) 5679.00 + 9836.32i 0.270517 + 0.468550i 0.968994 0.247083i \(-0.0794720\pi\)
−0.698477 + 0.715632i \(0.746139\pi\)
\(762\) 0 0
\(763\) −1220.00 + 2113.10i −0.0578859 + 0.100261i
\(764\) −672.000 −0.0318221
\(765\) 0 0
\(766\) −7056.00 −0.332825
\(767\) −240.000 + 415.692i −0.0112984 + 0.0195695i
\(768\) 0 0
\(769\) 17135.0 + 29678.7i 0.803516 + 1.39173i 0.917288 + 0.398224i \(0.130373\pi\)
−0.113772 + 0.993507i \(0.536293\pi\)
\(770\) 960.000 + 1662.77i 0.0449299 + 0.0778208i
\(771\) 0 0
\(772\) 2636.00 4565.69i 0.122891 0.212853i
\(773\) −13278.0 −0.617822 −0.308911 0.951091i \(-0.599965\pi\)
−0.308911 + 0.951091i \(0.599965\pi\)
\(774\) 0 0
\(775\) 6800.00 0.315178
\(776\) 6136.00 10627.9i 0.283853 0.491647i
\(777\) 0 0
\(778\) 9630.00 + 16679.6i 0.443769 + 0.768630i
\(779\) 13860.0 + 24006.2i 0.637466 + 1.10412i
\(780\) 0 0
\(781\) −18432.0 + 31925.2i −0.844493 + 1.46270i
\(782\)