Properties

Label 810.4.e.e.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.e.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-16.0000 + 27.7128i) q^{7} +8.00000 q^{8} -10.0000 q^{10} +(-30.0000 + 51.9615i) q^{11} +(17.0000 + 29.4449i) q^{13} +(-32.0000 - 55.4256i) q^{14} +(-8.00000 + 13.8564i) q^{16} -42.0000 q^{17} -76.0000 q^{19} +(10.0000 - 17.3205i) q^{20} +(-60.0000 - 103.923i) q^{22} +(-12.5000 + 21.6506i) q^{25} -68.0000 q^{26} +128.000 q^{28} +(3.00000 - 5.19615i) q^{29} +(116.000 + 200.918i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(42.0000 - 72.7461i) q^{34} -160.000 q^{35} +134.000 q^{37} +(76.0000 - 131.636i) q^{38} +(20.0000 + 34.6410i) q^{40} +(117.000 + 202.650i) q^{41} +(206.000 - 356.802i) q^{43} +240.000 q^{44} +(-180.000 + 311.769i) q^{47} +(-340.500 - 589.763i) q^{49} +(-25.0000 - 43.3013i) q^{50} +(68.0000 - 117.779i) q^{52} -222.000 q^{53} -300.000 q^{55} +(-128.000 + 221.703i) q^{56} +(6.00000 + 10.3923i) q^{58} +(330.000 + 571.577i) q^{59} +(245.000 - 424.352i) q^{61} -464.000 q^{62} +64.0000 q^{64} +(-85.0000 + 147.224i) q^{65} +(-406.000 - 703.213i) q^{67} +(84.0000 + 145.492i) q^{68} +(160.000 - 277.128i) q^{70} -120.000 q^{71} +746.000 q^{73} +(-134.000 + 232.095i) q^{74} +(152.000 + 263.272i) q^{76} +(-960.000 - 1662.77i) q^{77} +(-76.0000 + 131.636i) q^{79} -80.0000 q^{80} -468.000 q^{82} +(-402.000 + 696.284i) q^{83} +(-105.000 - 181.865i) q^{85} +(412.000 + 713.605i) q^{86} +(-240.000 + 415.692i) q^{88} +678.000 q^{89} -1088.00 q^{91} +(-360.000 - 623.538i) q^{94} +(-190.000 - 329.090i) q^{95} +(-97.0000 + 168.009i) q^{97} +1362.00 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 5 q^{5} - 32 q^{7} + 16 q^{8} - 20 q^{10} - 60 q^{11} + 34 q^{13} - 64 q^{14} - 16 q^{16} - 84 q^{17} - 152 q^{19} + 20 q^{20} - 120 q^{22} - 25 q^{25} - 136 q^{26} + 256 q^{28}+ \cdots + 2724 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −16.0000 + 27.7128i −0.863919 + 1.49635i 0.00419795 + 0.999991i \(0.498664\pi\)
−0.868117 + 0.496360i \(0.834670\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −30.0000 + 51.9615i −0.822304 + 1.42427i 0.0816590 + 0.996660i \(0.473978\pi\)
−0.903963 + 0.427611i \(0.859355\pi\)
\(12\) 0 0
\(13\) 17.0000 + 29.4449i 0.362689 + 0.628195i 0.988402 0.151858i \(-0.0485255\pi\)
−0.625714 + 0.780053i \(0.715192\pi\)
\(14\) −32.0000 55.4256i −0.610883 1.05808i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 0 0
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 10.0000 17.3205i 0.111803 0.193649i
\(21\) 0 0
\(22\) −60.0000 103.923i −0.581456 1.00711i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) −68.0000 −0.512919
\(27\) 0 0
\(28\) 128.000 0.863919
\(29\) 3.00000 5.19615i 0.0192099 0.0332725i −0.856261 0.516544i \(-0.827218\pi\)
0.875471 + 0.483272i \(0.160552\pi\)
\(30\) 0 0
\(31\) 116.000 + 200.918i 0.672071 + 1.16406i 0.977316 + 0.211788i \(0.0679286\pi\)
−0.305244 + 0.952274i \(0.598738\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 42.0000 72.7461i 0.211851 0.366937i
\(35\) −160.000 −0.772712
\(36\) 0 0
\(37\) 134.000 0.595391 0.297695 0.954661i \(-0.403782\pi\)
0.297695 + 0.954661i \(0.403782\pi\)
\(38\) 76.0000 131.636i 0.324443 0.561951i
\(39\) 0 0
\(40\) 20.0000 + 34.6410i 0.0790569 + 0.136931i
\(41\) 117.000 + 202.650i 0.445667 + 0.771917i 0.998098 0.0616409i \(-0.0196334\pi\)
−0.552432 + 0.833558i \(0.686300\pi\)
\(42\) 0 0
\(43\) 206.000 356.802i 0.730575 1.26539i −0.226063 0.974113i \(-0.572586\pi\)
0.956638 0.291280i \(-0.0940810\pi\)
\(44\) 240.000 0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) −180.000 + 311.769i −0.558632 + 0.967579i 0.438979 + 0.898497i \(0.355340\pi\)
−0.997611 + 0.0690815i \(0.977993\pi\)
\(48\) 0 0
\(49\) −340.500 589.763i −0.992711 1.71943i
\(50\) −25.0000 43.3013i −0.0707107 0.122474i
\(51\) 0 0
\(52\) 68.0000 117.779i 0.181344 0.314098i
\(53\) −222.000 −0.575359 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) −128.000 + 221.703i −0.305441 + 0.529040i
\(57\) 0 0
\(58\) 6.00000 + 10.3923i 0.0135834 + 0.0235272i
\(59\) 330.000 + 571.577i 0.728175 + 1.26124i 0.957654 + 0.287923i \(0.0929647\pi\)
−0.229478 + 0.973314i \(0.573702\pi\)
\(60\) 0 0
\(61\) 245.000 424.352i 0.514246 0.890701i −0.485617 0.874172i \(-0.661405\pi\)
0.999863 0.0165293i \(-0.00526168\pi\)
\(62\) −464.000 −0.950453
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −85.0000 + 147.224i −0.162199 + 0.280937i
\(66\) 0 0
\(67\) −406.000 703.213i −0.740310 1.28226i −0.952354 0.304995i \(-0.901345\pi\)
0.212044 0.977260i \(-0.431988\pi\)
\(68\) 84.0000 + 145.492i 0.149801 + 0.259464i
\(69\) 0 0
\(70\) 160.000 277.128i 0.273195 0.473188i
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) 746.000 1.19606 0.598032 0.801472i \(-0.295949\pi\)
0.598032 + 0.801472i \(0.295949\pi\)
\(74\) −134.000 + 232.095i −0.210502 + 0.364601i
\(75\) 0 0
\(76\) 152.000 + 263.272i 0.229416 + 0.397360i
\(77\) −960.000 1662.77i −1.42081 2.46091i
\(78\) 0 0
\(79\) −76.0000 + 131.636i −0.108236 + 0.187471i −0.915056 0.403327i \(-0.867854\pi\)
0.806820 + 0.590798i \(0.201187\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −468.000 −0.630268
\(83\) −402.000 + 696.284i −0.531629 + 0.920809i 0.467689 + 0.883893i \(0.345087\pi\)
−0.999318 + 0.0369159i \(0.988247\pi\)
\(84\) 0 0
\(85\) −105.000 181.865i −0.133986 0.232071i
\(86\) 412.000 + 713.605i 0.516594 + 0.894767i
\(87\) 0 0
\(88\) −240.000 + 415.692i −0.290728 + 0.503556i
\(89\) 678.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 0 0
\(94\) −360.000 623.538i −0.395012 0.684182i
\(95\) −190.000 329.090i −0.205196 0.355409i
\(96\) 0 0
\(97\) −97.0000 + 168.009i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 1362.00 1.40391
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 399.000 691.088i 0.393089 0.680850i −0.599766 0.800175i \(-0.704740\pi\)
0.992855 + 0.119325i \(0.0380731\pi\)
\(102\) 0 0
\(103\) −544.000 942.236i −0.520407 0.901371i −0.999718 0.0237264i \(-0.992447\pi\)
0.479312 0.877645i \(-0.340886\pi\)
\(104\) 136.000 + 235.559i 0.128230 + 0.222100i
\(105\) 0 0
\(106\) 222.000 384.515i 0.203420 0.352334i
\(107\) −1716.00 −1.55039 −0.775196 0.631721i \(-0.782349\pi\)
−0.775196 + 0.631721i \(0.782349\pi\)
\(108\) 0 0
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) 300.000 519.615i 0.260035 0.450394i
\(111\) 0 0
\(112\) −256.000 443.405i −0.215980 0.374088i
\(113\) 213.000 + 368.927i 0.177322 + 0.307130i 0.940962 0.338511i \(-0.109923\pi\)
−0.763641 + 0.645642i \(0.776590\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −24.0000 −0.0192099
\(117\) 0 0
\(118\) −1320.00 −1.02980
\(119\) 672.000 1163.94i 0.517665 0.896622i
\(120\) 0 0
\(121\) −1134.50 1965.01i −0.852367 1.47634i
\(122\) 490.000 + 848.705i 0.363627 + 0.629821i
\(123\) 0 0
\(124\) 464.000 803.672i 0.336036 0.582031i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 200.000 0.139741 0.0698706 0.997556i \(-0.477741\pi\)
0.0698706 + 0.997556i \(0.477741\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −170.000 294.449i −0.114692 0.198653i
\(131\) 30.0000 + 51.9615i 0.0200085 + 0.0346557i 0.875856 0.482572i \(-0.160297\pi\)
−0.855848 + 0.517228i \(0.826964\pi\)
\(132\) 0 0
\(133\) 1216.00 2106.17i 0.792786 1.37315i
\(134\) 1624.00 1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 321.000 555.988i 0.200182 0.346725i −0.748405 0.663242i \(-0.769180\pi\)
0.948587 + 0.316517i \(0.102513\pi\)
\(138\) 0 0
\(139\) 1418.00 + 2456.05i 0.865275 + 1.49870i 0.866774 + 0.498701i \(0.166189\pi\)
−0.00149936 + 0.999999i \(0.500477\pi\)
\(140\) 320.000 + 554.256i 0.193178 + 0.334594i
\(141\) 0 0
\(142\) 120.000 207.846i 0.0709167 0.122831i
\(143\) −2040.00 −1.19296
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) −746.000 + 1292.11i −0.422873 + 0.732437i
\(147\) 0 0
\(148\) −268.000 464.190i −0.148848 0.257812i
\(149\) −777.000 1345.80i −0.427210 0.739950i 0.569414 0.822051i \(-0.307170\pi\)
−0.996624 + 0.0821013i \(0.973837\pi\)
\(150\) 0 0
\(151\) 1136.00 1967.61i 0.612228 1.06041i −0.378637 0.925545i \(-0.623607\pi\)
0.990864 0.134864i \(-0.0430597\pi\)
\(152\) −608.000 −0.324443
\(153\) 0 0
\(154\) 3840.00 2.00932
\(155\) −580.000 + 1004.59i −0.300559 + 0.520584i
\(156\) 0 0
\(157\) −847.000 1467.05i −0.430560 0.745752i 0.566361 0.824157i \(-0.308351\pi\)
−0.996922 + 0.0784048i \(0.975017\pi\)
\(158\) −152.000 263.272i −0.0765346 0.132562i
\(159\) 0 0
\(160\) 80.0000 138.564i 0.0395285 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) −52.0000 −0.0249874 −0.0124937 0.999922i \(-0.503977\pi\)
−0.0124937 + 0.999922i \(0.503977\pi\)
\(164\) 468.000 810.600i 0.222833 0.385959i
\(165\) 0 0
\(166\) −804.000 1392.57i −0.375919 0.651110i
\(167\) −600.000 1039.23i −0.278020 0.481545i 0.692872 0.721060i \(-0.256345\pi\)
−0.970893 + 0.239515i \(0.923012\pi\)
\(168\) 0 0
\(169\) 520.500 901.532i 0.236914 0.410347i
\(170\) 420.000 0.189485
\(171\) 0 0
\(172\) −1648.00 −0.730575
\(173\) 27.0000 46.7654i 0.0118657 0.0205521i −0.860032 0.510241i \(-0.829556\pi\)
0.871897 + 0.489689i \(0.162890\pi\)
\(174\) 0 0
\(175\) −400.000 692.820i −0.172784 0.299270i
\(176\) −480.000 831.384i −0.205576 0.356068i
\(177\) 0 0
\(178\) −678.000 + 1174.33i −0.285496 + 0.494493i
\(179\) −876.000 −0.365784 −0.182892 0.983133i \(-0.558546\pi\)
−0.182892 + 0.983133i \(0.558546\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) 1088.00 1884.47i 0.443120 0.767507i
\(183\) 0 0
\(184\) 0 0
\(185\) 335.000 + 580.237i 0.133133 + 0.230594i
\(186\) 0 0
\(187\) 1260.00 2182.38i 0.492729 0.853432i
\(188\) 1440.00 0.558632
\(189\) 0 0
\(190\) 760.000 0.290191
\(191\) −1392.00 + 2411.01i −0.527338 + 0.913376i 0.472154 + 0.881516i \(0.343477\pi\)
−0.999492 + 0.0318605i \(0.989857\pi\)
\(192\) 0 0
\(193\) −457.000 791.547i −0.170443 0.295217i 0.768132 0.640292i \(-0.221187\pi\)
−0.938575 + 0.345075i \(0.887853\pi\)
\(194\) −194.000 336.018i −0.0717958 0.124354i
\(195\) 0 0
\(196\) −1362.00 + 2359.05i −0.496356 + 0.859713i
\(197\) 5202.00 1.88136 0.940678 0.339300i \(-0.110190\pi\)
0.940678 + 0.339300i \(0.110190\pi\)
\(198\) 0 0
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) −100.000 + 173.205i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 798.000 + 1382.18i 0.277956 + 0.481434i
\(203\) 96.0000 + 166.277i 0.0331915 + 0.0574894i
\(204\) 0 0
\(205\) −585.000 + 1013.25i −0.199308 + 0.345212i
\(206\) 2176.00 0.735967
\(207\) 0 0
\(208\) −544.000 −0.181344
\(209\) 2280.00 3949.08i 0.754598 1.30700i
\(210\) 0 0
\(211\) −370.000 640.859i −0.120720 0.209093i 0.799332 0.600890i \(-0.205187\pi\)
−0.920052 + 0.391797i \(0.871854\pi\)
\(212\) 444.000 + 769.031i 0.143840 + 0.249138i
\(213\) 0 0
\(214\) 1716.00 2972.20i 0.548146 0.949418i
\(215\) 2060.00 0.653446
\(216\) 0 0
\(217\) −7424.00 −2.32246
\(218\) 970.000 1680.09i 0.301361 0.521972i
\(219\) 0 0
\(220\) 600.000 + 1039.23i 0.183873 + 0.318477i
\(221\) −714.000 1236.68i −0.217325 0.376418i
\(222\) 0 0
\(223\) 260.000 450.333i 0.0780757 0.135231i −0.824344 0.566089i \(-0.808456\pi\)
0.902420 + 0.430858i \(0.141789\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) 198.000 342.946i 0.0578930 0.100274i −0.835626 0.549298i \(-0.814895\pi\)
0.893519 + 0.449025i \(0.148228\pi\)
\(228\) 0 0
\(229\) 665.000 + 1151.81i 0.191897 + 0.332376i 0.945879 0.324520i \(-0.105203\pi\)
−0.753982 + 0.656895i \(0.771869\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 24.0000 41.5692i 0.00679171 0.0117636i
\(233\) −4866.00 −1.36816 −0.684082 0.729405i \(-0.739797\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(234\) 0 0
\(235\) −1800.00 −0.499656
\(236\) 1320.00 2286.31i 0.364088 0.630618i
\(237\) 0 0
\(238\) 1344.00 + 2327.88i 0.366044 + 0.634008i
\(239\) −912.000 1579.63i −0.246830 0.427522i 0.715815 0.698290i \(-0.246056\pi\)
−0.962645 + 0.270768i \(0.912722\pi\)
\(240\) 0 0
\(241\) −3241.00 + 5613.58i −0.866270 + 1.50042i −0.000490169 1.00000i \(0.500156\pi\)
−0.865780 + 0.500424i \(0.833177\pi\)
\(242\) 4538.00 1.20543
\(243\) 0 0
\(244\) −1960.00 −0.514246
\(245\) 1702.50 2948.82i 0.443954 0.768951i
\(246\) 0 0
\(247\) −1292.00 2237.81i −0.332826 0.576471i
\(248\) 928.000 + 1607.34i 0.237613 + 0.411558i
\(249\) 0 0
\(250\) 125.000 216.506i 0.0316228 0.0547723i
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −200.000 + 346.410i −0.0494060 + 0.0855736i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2157.00 + 3736.03i 0.523541 + 0.906799i 0.999625 + 0.0273992i \(0.00872254\pi\)
−0.476084 + 0.879400i \(0.657944\pi\)
\(258\) 0 0
\(259\) −2144.00 + 3713.52i −0.514369 + 0.890914i
\(260\) 680.000 0.162199
\(261\) 0 0
\(262\) −120.000 −0.0282963
\(263\) −2640.00 + 4572.61i −0.618971 + 1.07209i 0.370703 + 0.928752i \(0.379117\pi\)
−0.989674 + 0.143338i \(0.954216\pi\)
\(264\) 0 0
\(265\) −555.000 961.288i −0.128654 0.222836i
\(266\) 2432.00 + 4212.35i 0.560585 + 0.970961i
\(267\) 0 0
\(268\) −1624.00 + 2812.85i −0.370155 + 0.641128i
\(269\) −5526.00 −1.25251 −0.626257 0.779617i \(-0.715414\pi\)
−0.626257 + 0.779617i \(0.715414\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) 336.000 581.969i 0.0749007 0.129732i
\(273\) 0 0
\(274\) 642.000 + 1111.98i 0.141550 + 0.245171i
\(275\) −750.000 1299.04i −0.164461 0.284854i
\(276\) 0 0
\(277\) −1027.00 + 1778.82i −0.222767 + 0.385844i −0.955647 0.294514i \(-0.904842\pi\)
0.732880 + 0.680358i \(0.238176\pi\)
\(278\) −5672.00 −1.22368
\(279\) 0 0
\(280\) −1280.00 −0.273195
\(281\) −3651.00 + 6323.72i −0.775090 + 1.34250i 0.159653 + 0.987173i \(0.448962\pi\)
−0.934744 + 0.355323i \(0.884371\pi\)
\(282\) 0 0
\(283\) 1862.00 + 3225.08i 0.391111 + 0.677424i 0.992596 0.121460i \(-0.0387575\pi\)
−0.601485 + 0.798884i \(0.705424\pi\)
\(284\) 240.000 + 415.692i 0.0501457 + 0.0868549i
\(285\) 0 0
\(286\) 2040.00 3533.38i 0.421775 0.730536i
\(287\) −7488.00 −1.54008
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) −30.0000 + 51.9615i −0.00607469 + 0.0105217i
\(291\) 0 0
\(292\) −1492.00 2584.22i −0.299016 0.517911i
\(293\) −3609.00 6250.97i −0.719591 1.24637i −0.961162 0.275984i \(-0.910996\pi\)
0.241572 0.970383i \(-0.422337\pi\)
\(294\) 0 0
\(295\) −1650.00 + 2857.88i −0.325650 + 0.564042i
\(296\) 1072.00 0.210502
\(297\) 0 0
\(298\) 3108.00 0.604166
\(299\) 0 0
\(300\) 0 0
\(301\) 6592.00 + 11417.7i 1.26231 + 2.18639i
\(302\) 2272.00 + 3935.22i 0.432910 + 0.749823i
\(303\) 0 0
\(304\) 608.000 1053.09i 0.114708 0.198680i
\(305\) 2450.00 0.459956
\(306\) 0 0
\(307\) 2540.00 0.472200 0.236100 0.971729i \(-0.424131\pi\)
0.236100 + 0.971729i \(0.424131\pi\)
\(308\) −3840.00 + 6651.08i −0.710404 + 1.23046i
\(309\) 0 0
\(310\) −1160.00 2009.18i −0.212528 0.368109i
\(311\) 780.000 + 1351.00i 0.142218 + 0.246328i 0.928332 0.371753i \(-0.121243\pi\)
−0.786114 + 0.618082i \(0.787910\pi\)
\(312\) 0 0
\(313\) 467.000 808.868i 0.0843335 0.146070i −0.820773 0.571254i \(-0.806457\pi\)
0.905107 + 0.425184i \(0.139791\pi\)
\(314\) 3388.00 0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) −837.000 + 1449.73i −0.148298 + 0.256860i −0.930599 0.366041i \(-0.880713\pi\)
0.782300 + 0.622902i \(0.214046\pi\)
\(318\) 0 0
\(319\) 180.000 + 311.769i 0.0315927 + 0.0547201i
\(320\) 160.000 + 277.128i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 3192.00 0.549869
\(324\) 0 0
\(325\) −850.000 −0.145075
\(326\) 52.0000 90.0666i 0.00883440 0.0153016i
\(327\) 0 0
\(328\) 936.000 + 1621.20i 0.157567 + 0.272914i
\(329\) −5760.00 9976.61i −0.965225 1.67182i
\(330\) 0 0
\(331\) 1994.00 3453.71i 0.331118 0.573514i −0.651613 0.758551i \(-0.725907\pi\)
0.982731 + 0.185038i \(0.0592408\pi\)
\(332\) 3216.00 0.531629
\(333\) 0 0
\(334\) 2400.00 0.393180
\(335\) 2030.00 3516.06i 0.331077 0.573442i
\(336\) 0 0
\(337\) −1.00000 1.73205i −0.000161642 0.000279973i 0.865945 0.500140i \(-0.166718\pi\)
−0.866106 + 0.499860i \(0.833385\pi\)
\(338\) 1041.00 + 1803.06i 0.167523 + 0.290159i
\(339\) 0 0
\(340\) −420.000 + 727.461i −0.0669932 + 0.116036i
\(341\) −13920.0 −2.21059
\(342\) 0 0
\(343\) 10816.0 1.70265
\(344\) 1648.00 2854.42i 0.258297 0.447384i
\(345\) 0 0
\(346\) 54.0000 + 93.5307i 0.00839034 + 0.0145325i
\(347\) 882.000 + 1527.67i 0.136450 + 0.236339i 0.926151 0.377154i \(-0.123097\pi\)
−0.789700 + 0.613493i \(0.789764\pi\)
\(348\) 0 0
\(349\) −2155.00 + 3732.57i −0.330529 + 0.572492i −0.982616 0.185652i \(-0.940560\pi\)
0.652087 + 0.758144i \(0.273894\pi\)
\(350\) 1600.00 0.244353
\(351\) 0 0
\(352\) 1920.00 0.290728
\(353\) 69.0000 119.512i 0.0104037 0.0180197i −0.860777 0.508983i \(-0.830022\pi\)
0.871180 + 0.490963i \(0.163355\pi\)
\(354\) 0 0
\(355\) −300.000 519.615i −0.0448517 0.0776854i
\(356\) −1356.00 2348.66i −0.201876 0.349659i
\(357\) 0 0
\(358\) 876.000 1517.28i 0.129324 0.223996i
\(359\) 11976.0 1.76064 0.880319 0.474382i \(-0.157328\pi\)
0.880319 + 0.474382i \(0.157328\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) −3854.00 + 6675.32i −0.559563 + 0.969191i
\(363\) 0 0
\(364\) 2176.00 + 3768.94i 0.313333 + 0.542710i
\(365\) 1865.00 + 3230.27i 0.267448 + 0.463234i
\(366\) 0 0
\(367\) −4852.00 + 8403.91i −0.690115 + 1.19531i 0.281684 + 0.959507i \(0.409107\pi\)
−0.971800 + 0.235808i \(0.924226\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1340.00 −0.188279
\(371\) 3552.00 6152.24i 0.497064 0.860940i
\(372\) 0 0
\(373\) 4061.00 + 7033.86i 0.563728 + 0.976406i 0.997167 + 0.0752227i \(0.0239668\pi\)
−0.433439 + 0.901183i \(0.642700\pi\)
\(374\) 2520.00 + 4364.77i 0.348412 + 0.603467i
\(375\) 0 0
\(376\) −1440.00 + 2494.15i −0.197506 + 0.342091i
\(377\) 204.000 0.0278688
\(378\) 0 0
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) −760.000 + 1316.36i −0.102598 + 0.177705i
\(381\) 0 0
\(382\) −2784.00 4822.03i −0.372884 0.645855i
\(383\) −1260.00 2182.38i −0.168102 0.291161i 0.769651 0.638465i \(-0.220430\pi\)
−0.937752 + 0.347304i \(0.887097\pi\)
\(384\) 0 0
\(385\) 4800.00 8313.84i 0.635404 1.10055i
\(386\) 1828.00 0.241043
\(387\) 0 0
\(388\) 776.000 0.101535
\(389\) 783.000 1356.20i 0.102056 0.176766i −0.810476 0.585772i \(-0.800791\pi\)
0.912531 + 0.409006i \(0.134125\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2724.00 4718.11i −0.350976 0.607909i
\(393\) 0 0
\(394\) −5202.00 + 9010.13i −0.665160 + 1.15209i
\(395\) −760.000 −0.0968095
\(396\) 0 0
\(397\) −4354.00 −0.550431 −0.275215 0.961383i \(-0.588749\pi\)
−0.275215 + 0.961383i \(0.588749\pi\)
\(398\) −3152.00 + 5459.42i −0.396974 + 0.687578i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) −4023.00 6968.04i −0.500995 0.867749i −0.999999 0.00114942i \(-0.999634\pi\)
0.499004 0.866600i \(-0.333699\pi\)
\(402\) 0 0
\(403\) −3944.00 + 6831.21i −0.487505 + 0.844384i
\(404\) −3192.00 −0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) −4020.00 + 6962.84i −0.489592 + 0.847998i
\(408\) 0 0
\(409\) 1403.00 + 2430.07i 0.169618 + 0.293788i 0.938286 0.345861i \(-0.112413\pi\)
−0.768667 + 0.639649i \(0.779080\pi\)
\(410\) −1170.00 2026.50i −0.140932 0.244102i
\(411\) 0 0
\(412\) −2176.00 + 3768.94i −0.260203 + 0.450686i
\(413\) −21120.0 −2.51634
\(414\) 0 0
\(415\) −4020.00 −0.475504
\(416\) 544.000 942.236i 0.0641149 0.111050i
\(417\) 0 0
\(418\) 4560.00 + 7898.15i 0.533581 + 0.924190i
\(419\) 5790.00 + 10028.6i 0.675084 + 1.16928i 0.976444 + 0.215769i \(0.0692258\pi\)
−0.301361 + 0.953510i \(0.597441\pi\)
\(420\) 0 0
\(421\) 185.000 320.429i 0.0214165 0.0370945i −0.855119 0.518433i \(-0.826516\pi\)
0.876535 + 0.481338i \(0.159849\pi\)
\(422\) 1480.00 0.170723
\(423\) 0 0
\(424\) −1776.00 −0.203420
\(425\) 525.000 909.327i 0.0599206 0.103785i
\(426\) 0 0
\(427\) 7840.00 + 13579.3i 0.888534 + 1.53899i
\(428\) 3432.00 + 5944.40i 0.387598 + 0.671340i
\(429\) 0 0
\(430\) −2060.00 + 3568.02i −0.231028 + 0.400152i
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) −3742.00 −0.415310 −0.207655 0.978202i \(-0.566583\pi\)
−0.207655 + 0.978202i \(0.566583\pi\)
\(434\) 7424.00 12858.7i 0.821114 1.42221i
\(435\) 0 0
\(436\) 1940.00 + 3360.18i 0.213094 + 0.369090i
\(437\) 0 0
\(438\) 0 0
\(439\) 3104.00 5376.29i 0.337462 0.584501i −0.646493 0.762920i \(-0.723765\pi\)
0.983955 + 0.178419i \(0.0570982\pi\)
\(440\) −2400.00 −0.260035
\(441\) 0 0
\(442\) 2856.00 0.307344
\(443\) −7782.00 + 13478.8i −0.834614 + 1.44559i 0.0597304 + 0.998215i \(0.480976\pi\)
−0.894344 + 0.447379i \(0.852357\pi\)
\(444\) 0 0
\(445\) 1695.00 + 2935.83i 0.180563 + 0.312745i
\(446\) 520.000 + 900.666i 0.0552079 + 0.0956228i
\(447\) 0 0
\(448\) −1024.00 + 1773.62i −0.107990 + 0.187044i
\(449\) 15774.0 1.65795 0.828977 0.559283i \(-0.188924\pi\)
0.828977 + 0.559283i \(0.188924\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) 852.000 1475.71i 0.0886609 0.153565i
\(453\) 0 0
\(454\) 396.000 + 685.892i 0.0409366 + 0.0709042i
\(455\) −2720.00 4711.18i −0.280254 0.485414i
\(456\) 0 0
\(457\) −4861.00 + 8419.50i −0.497567 + 0.861811i −0.999996 0.00280744i \(-0.999106\pi\)
0.502429 + 0.864618i \(0.332440\pi\)
\(458\) −2660.00 −0.271383
\(459\) 0 0
\(460\) 0 0
\(461\) −5445.00 + 9431.02i −0.550106 + 0.952812i 0.448160 + 0.893953i \(0.352079\pi\)
−0.998266 + 0.0588585i \(0.981254\pi\)
\(462\) 0 0
\(463\) −7564.00 13101.2i −0.759242 1.31505i −0.943238 0.332118i \(-0.892237\pi\)
0.183996 0.982927i \(-0.441097\pi\)
\(464\) 48.0000 + 83.1384i 0.00480247 + 0.00831811i
\(465\) 0 0
\(466\) 4866.00 8428.16i 0.483719 0.837826i
\(467\) −10668.0 −1.05708 −0.528540 0.848909i \(-0.677260\pi\)
−0.528540 + 0.848909i \(0.677260\pi\)
\(468\) 0 0
\(469\) 25984.0 2.55827
\(470\) 1800.00 3117.69i 0.176655 0.305975i
\(471\) 0 0
\(472\) 2640.00 + 4572.61i 0.257449 + 0.445914i
\(473\) 12360.0 + 21408.1i 1.20151 + 2.08107i
\(474\) 0 0
\(475\) 950.000 1645.45i 0.0917663 0.158944i
\(476\) −5376.00 −0.517665
\(477\) 0 0
\(478\) 3648.00 0.349070
\(479\) 7632.00 13219.0i 0.728006 1.26094i −0.229718 0.973257i \(-0.573781\pi\)
0.957725 0.287687i \(-0.0928862\pi\)
\(480\) 0 0
\(481\) 2278.00 + 3945.61i 0.215941 + 0.374022i
\(482\) −6482.00 11227.2i −0.612546 1.06096i
\(483\) 0 0
\(484\) −4538.00 + 7860.05i −0.426183 + 0.738171i
\(485\) −970.000 −0.0908153
\(486\) 0 0
\(487\) −5776.00 −0.537445 −0.268722 0.963218i \(-0.586601\pi\)
−0.268722 + 0.963218i \(0.586601\pi\)
\(488\) 1960.00 3394.82i 0.181814 0.314910i
\(489\) 0 0
\(490\) 3405.00 + 5897.63i 0.313923 + 0.543730i
\(491\) 7122.00 + 12335.7i 0.654606 + 1.13381i 0.981993 + 0.188920i \(0.0604986\pi\)
−0.327387 + 0.944890i \(0.606168\pi\)
\(492\) 0 0
\(493\) −126.000 + 218.238i −0.0115107 + 0.0199370i
\(494\) 5168.00 0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) 1920.00 3325.54i 0.173287 0.300142i
\(498\) 0 0
\(499\) 8558.00 + 14822.9i 0.767753 + 1.32979i 0.938779 + 0.344520i \(0.111958\pi\)
−0.171026 + 0.985267i \(0.554708\pi\)
\(500\) 250.000 + 433.013i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 1476.00 2556.51i 0.131229 0.227296i
\(503\) 16848.0 1.49347 0.746735 0.665122i \(-0.231620\pi\)
0.746735 + 0.665122i \(0.231620\pi\)
\(504\) 0 0
\(505\) 3990.00 0.351589
\(506\) 0 0
\(507\) 0 0
\(508\) −400.000 692.820i −0.0349353 0.0605097i
\(509\) −1917.00 3320.34i −0.166934 0.289139i 0.770406 0.637553i \(-0.220053\pi\)
−0.937340 + 0.348415i \(0.886720\pi\)
\(510\) 0 0
\(511\) −11936.0 + 20673.8i −1.03330 + 1.78973i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −8628.00 −0.740398
\(515\) 2720.00 4711.18i 0.232733 0.403105i
\(516\) 0 0
\(517\) −10800.0 18706.1i −0.918730 1.59129i
\(518\) −4288.00 7427.03i −0.363714 0.629971i
\(519\) 0 0
\(520\) −680.000 + 1177.79i −0.0573461 + 0.0993264i
\(521\) 18822.0 1.58274 0.791369 0.611338i \(-0.209369\pi\)
0.791369 + 0.611338i \(0.209369\pi\)
\(522\) 0 0
\(523\) −15340.0 −1.28255 −0.641273 0.767313i \(-0.721593\pi\)
−0.641273 + 0.767313i \(0.721593\pi\)
\(524\) 120.000 207.846i 0.0100042 0.0173279i
\(525\) 0 0
\(526\) −5280.00 9145.23i −0.437679 0.758082i
\(527\) −4872.00 8438.55i −0.402709 0.697512i
\(528\) 0 0
\(529\) 6083.50 10536.9i 0.500000 0.866025i
\(530\) 2220.00 0.181945
\(531\) 0 0
\(532\) −9728.00 −0.792786
\(533\) −3978.00 + 6890.10i −0.323276 + 0.559931i
\(534\) 0 0
\(535\) −4290.00 7430.50i −0.346678 0.600464i
\(536\) −3248.00 5625.70i −0.261739 0.453346i
\(537\) 0 0
\(538\) 5526.00 9571.31i 0.442830 0.767005i
\(539\) 40860.0 3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) −2024.00 + 3505.67i −0.160403 + 0.277826i
\(543\) 0 0
\(544\) 672.000 + 1163.94i 0.0529628 + 0.0917343i
\(545\) −2425.00 4200.22i −0.190597 0.330124i
\(546\) 0 0
\(547\) 5018.00 8691.43i 0.392238 0.679376i −0.600506 0.799620i \(-0.705034\pi\)
0.992744 + 0.120244i \(0.0383676\pi\)
\(548\) −2568.00 −0.200182
\(549\) 0 0
\(550\) 3000.00 0.232583
\(551\) −228.000 + 394.908i −0.0176282 + 0.0305329i
\(552\) 0 0
\(553\) −2432.00 4212.35i −0.187015 0.323919i
\(554\) −2054.00 3557.63i −0.157520 0.272833i
\(555\) 0 0
\(556\) 5672.00 9824.19i 0.432637 0.749350i
\(557\) −10326.0 −0.785506 −0.392753 0.919644i \(-0.628477\pi\)
−0.392753 + 0.919644i \(0.628477\pi\)
\(558\) 0 0
\(559\) 14008.0 1.05988
\(560\) 1280.00 2217.03i 0.0965891 0.167297i
\(561\) 0 0
\(562\) −7302.00 12647.4i −0.548072 0.949288i
\(563\) 2262.00 + 3917.90i 0.169328 + 0.293286i 0.938184 0.346137i \(-0.112507\pi\)
−0.768855 + 0.639423i \(0.779173\pi\)
\(564\) 0 0
\(565\) −1065.00 + 1844.63i −0.0793007 + 0.137353i
\(566\) −7448.00 −0.553114
\(567\) 0 0
\(568\) −960.000 −0.0709167
\(569\) 8181.00 14169.9i 0.602751 1.04400i −0.389651 0.920962i \(-0.627405\pi\)
0.992403 0.123033i \(-0.0392621\pi\)
\(570\) 0 0
\(571\) −3310.00 5733.09i −0.242591 0.420179i 0.718861 0.695154i \(-0.244664\pi\)
−0.961451 + 0.274975i \(0.911330\pi\)
\(572\) 4080.00 + 7066.77i 0.298240 + 0.516567i
\(573\) 0 0
\(574\) 7488.00 12969.6i 0.544500 0.943102i
\(575\) 0 0
\(576\) 0 0
\(577\) 8834.00 0.637373 0.318687 0.947860i \(-0.396758\pi\)
0.318687 + 0.947860i \(0.396758\pi\)
\(578\) 3149.00 5454.23i 0.226611 0.392502i
\(579\) 0 0
\(580\) −60.0000 103.923i −0.00429546 0.00743995i
\(581\) −12864.0 22281.1i −0.918569 1.59101i
\(582\) 0 0
\(583\) 6660.00 11535.5i 0.473120 0.819468i
\(584\) 5968.00 0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) 1818.00 3148.87i 0.127831 0.221410i −0.795005 0.606603i \(-0.792532\pi\)
0.922836 + 0.385193i \(0.125865\pi\)
\(588\) 0 0
\(589\) −8816.00 15269.8i −0.616735 1.06822i
\(590\) −3300.00 5715.77i −0.230269 0.398838i
\(591\) 0 0
\(592\) −1072.00 + 1856.76i −0.0744239 + 0.128906i
\(593\) −6570.00 −0.454971 −0.227485 0.973782i \(-0.573050\pi\)
−0.227485 + 0.973782i \(0.573050\pi\)
\(594\) 0 0
\(595\) 6720.00 0.463014
\(596\) −3108.00 + 5383.21i −0.213605 + 0.369975i
\(597\) 0 0
\(598\) 0 0
\(599\) 8292.00 + 14362.2i 0.565613 + 0.979670i 0.996992 + 0.0774993i \(0.0246936\pi\)
−0.431380 + 0.902170i \(0.641973\pi\)
\(600\) 0 0
\(601\) 251.000 434.745i 0.0170358 0.0295068i −0.857382 0.514681i \(-0.827910\pi\)
0.874418 + 0.485174i \(0.161244\pi\)
\(602\) −26368.0 −1.78518
\(603\) 0 0
\(604\) −9088.00 −0.612228
\(605\) 5672.50 9825.06i 0.381190 0.660240i
\(606\) 0 0
\(607\) 9284.00 + 16080.4i 0.620801 + 1.07526i 0.989337 + 0.145645i \(0.0465257\pi\)
−0.368536 + 0.929613i \(0.620141\pi\)
\(608\) 1216.00 + 2106.17i 0.0811107 + 0.140488i
\(609\) 0 0
\(610\) −2450.00 + 4243.52i −0.162619 + 0.281664i
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) −13114.0 −0.864061 −0.432031 0.901859i \(-0.642203\pi\)
−0.432031 + 0.901859i \(0.642203\pi\)
\(614\) −2540.00 + 4399.41i −0.166948 + 0.289162i
\(615\) 0 0
\(616\) −7680.00 13302.2i −0.502331 0.870063i
\(617\) 2625.00 + 4546.63i 0.171278 + 0.296662i 0.938867 0.344280i \(-0.111877\pi\)
−0.767589 + 0.640942i \(0.778544\pi\)
\(618\) 0 0
\(619\) 5402.00 9356.54i 0.350767 0.607546i −0.635617 0.772004i \(-0.719254\pi\)
0.986384 + 0.164458i \(0.0525876\pi\)
\(620\) 4640.00 0.300559
\(621\) 0 0
\(622\) −3120.00 −0.201126
\(623\) −10848.0 + 18789.3i −0.697618 + 1.20831i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 934.000 + 1617.74i 0.0596328 + 0.103287i
\(627\) 0 0
\(628\) −3388.00 + 5868.19i −0.215280 + 0.372876i
\(629\) −5628.00 −0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) −608.000 + 1053.09i −0.0382673 + 0.0662809i
\(633\) 0 0
\(634\) −1674.00 2899.45i −0.104863 0.181628i
\(635\) 500.000 + 866.025i 0.0312471 + 0.0541215i
\(636\) 0 0
\(637\) 11577.0 20052.0i 0.720090 1.24723i
\(638\) −720.000 −0.0446788
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 9465.00 16393.9i 0.583222 1.01017i −0.411873 0.911241i \(-0.635125\pi\)
0.995095 0.0989281i \(-0.0315414\pi\)
\(642\) 0 0
\(643\) −10054.0 17414.0i −0.616627 1.06803i −0.990097 0.140387i \(-0.955165\pi\)
0.373470 0.927642i \(-0.378168\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3192.00 + 5528.71i −0.194408 + 0.336725i
\(647\) 7152.00 0.434581 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(648\) 0 0
\(649\) −39600.0 −2.39512
\(650\) 850.000 1472.24i 0.0512919 0.0888402i
\(651\) 0 0
\(652\) 104.000 + 180.133i 0.00624686 + 0.0108199i
\(653\) −15813.0 27388.9i −0.947642 1.64136i −0.750372 0.661016i \(-0.770126\pi\)
−0.197270 0.980349i \(-0.563208\pi\)
\(654\) 0 0
\(655\) −150.000 + 259.808i −0.00894807 + 0.0154985i
\(656\) −3744.00 −0.222833
\(657\) 0 0
\(658\) 23040.0 1.36503
\(659\) 14046.0 24328.4i 0.830280 1.43809i −0.0675363 0.997717i \(-0.521514\pi\)
0.897816 0.440370i \(-0.145153\pi\)
\(660\) 0 0
\(661\) 6593.00 + 11419.4i 0.387955 + 0.671957i 0.992174 0.124861i \(-0.0398484\pi\)
−0.604220 + 0.796818i \(0.706515\pi\)
\(662\) 3988.00 + 6907.42i 0.234136 + 0.405535i
\(663\) 0 0
\(664\) −3216.00 + 5570.28i −0.187959 + 0.325555i
\(665\) 12160.0 0.709090
\(666\) 0 0
\(667\) 0 0
\(668\) −2400.00 + 4156.92i −0.139010 + 0.240773i
\(669\) 0 0
\(670\) 4060.00 + 7032.13i 0.234107 + 0.405485i
\(671\) 14700.0 + 25461.1i 0.845734 + 1.46485i
\(672\) 0 0
\(673\) −2569.00 + 4449.64i −0.147144 + 0.254860i −0.930171 0.367127i \(-0.880341\pi\)
0.783027 + 0.621988i \(0.213675\pi\)
\(674\) 4.00000 0.000228597
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) 3039.00 5263.70i 0.172523 0.298819i −0.766778 0.641912i \(-0.778141\pi\)
0.939301 + 0.343093i \(0.111475\pi\)
\(678\) 0 0
\(679\) −3104.00 5376.29i −0.175435 0.303863i
\(680\) −840.000 1454.92i −0.0473714 0.0820496i
\(681\) 0 0
\(682\) 13920.0 24110.1i 0.781561 1.35370i
\(683\) −32244.0 −1.80642 −0.903208 0.429203i \(-0.858795\pi\)
−0.903208 + 0.429203i \(0.858795\pi\)
\(684\) 0 0
\(685\) 3210.00 0.179048
\(686\) −10816.0 + 18733.9i −0.601978 + 1.04266i
\(687\) 0 0
\(688\) 3296.00 + 5708.84i 0.182644 + 0.316348i
\(689\) −3774.00 6536.76i −0.208676 0.361438i
\(690\) 0 0
\(691\) −2242.00 + 3883.26i −0.123429 + 0.213786i −0.921118 0.389284i \(-0.872723\pi\)
0.797689 + 0.603070i \(0.206056\pi\)
\(692\) −216.000 −0.0118657
\(693\) 0 0
\(694\) −3528.00 −0.192970
\(695\) −7090.00 + 12280.2i −0.386963 + 0.670239i
\(696\) 0 0
\(697\) −4914.00 8511.30i −0.267046 0.462537i
\(698\) −4310.00 7465.14i −0.233719 0.404813i
\(699\) 0 0
\(700\) −1600.00 + 2771.28i −0.0863919 + 0.149635i
\(701\) 30426.0 1.63934 0.819668 0.572839i \(-0.194158\pi\)
0.819668 + 0.572839i \(0.194158\pi\)
\(702\) 0 0
\(703\) −10184.0 −0.546368
\(704\) −1920.00 + 3325.54i −0.102788 + 0.178034i
\(705\) 0 0
\(706\) 138.000 + 239.023i 0.00735651 + 0.0127419i
\(707\) 12768.0 + 22114.8i 0.679194 + 1.17640i
\(708\) 0 0
\(709\) −6631.00 + 11485.2i −0.351245 + 0.608374i −0.986468 0.163955i \(-0.947575\pi\)
0.635223 + 0.772329i \(0.280908\pi\)
\(710\) 1200.00 0.0634299
\(711\) 0 0
\(712\) 5424.00 0.285496
\(713\) 0 0
\(714\) 0 0
\(715\) −5100.00 8833.46i −0.266754 0.462032i
\(716\) 1752.00 + 3034.55i 0.0914460 + 0.158389i
\(717\) 0 0
\(718\) −11976.0 + 20743.0i −0.622480 + 1.07817i
\(719\) −13920.0 −0.722014 −0.361007 0.932563i \(-0.617567\pi\)
−0.361007 + 0.932563i \(0.617567\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) 1083.00 1875.81i 0.0558242 0.0966904i
\(723\) 0 0
\(724\) −7708.00 13350.6i −0.395671 0.685322i
\(725\) 75.0000 + 129.904i 0.00384197 + 0.00665449i
\(726\) 0 0
\(727\) 4688.00 8119.85i 0.239159 0.414235i −0.721315 0.692608i \(-0.756462\pi\)
0.960473 + 0.278373i \(0.0897951\pi\)
\(728\) −8704.00 −0.443120
\(729\) 0 0
\(730\) −7460.00 −0.378229
\(731\) −8652.00 + 14985.7i −0.437764 + 0.758230i
\(732\) 0 0
\(733\) −3007.00 5208.28i −0.151523 0.262445i 0.780265 0.625449i \(-0.215084\pi\)
−0.931787 + 0.363004i \(0.881751\pi\)
\(734\) −9704.00 16807.8i −0.487985 0.845215i
\(735\) 0 0
\(736\) 0 0
\(737\) 48720.0 2.43504
\(738\) 0 0
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) 1340.00 2320.95i 0.0665667 0.115297i
\(741\) 0 0
\(742\) 7104.00 + 12304.5i 0.351477 + 0.608776i
\(743\) 15624.0 + 27061.6i 0.771452 + 1.33619i 0.936767 + 0.349954i \(0.113803\pi\)
−0.165315 + 0.986241i \(0.552864\pi\)
\(744\) 0 0
\(745\) 3885.00 6729.02i 0.191054 0.330916i
\(746\) −16244.0 −0.797232
\(747\) 0 0
\(748\) −10080.0 −0.492729
\(749\) 27456.0 47555.2i 1.33941 2.31993i
\(750\) 0 0
\(751\) −16420.0 28440.3i −0.797835 1.38189i −0.921023 0.389508i \(-0.872645\pi\)
0.123188 0.992383i \(-0.460688\pi\)
\(752\) −2880.00 4988.31i −0.139658 0.241895i
\(753\) 0 0
\(754\) −204.000 + 353.338i −0.00985311 + 0.0170661i
\(755\) 11360.0 0.547593
\(756\) 0 0
\(757\) −19066.0 −0.915410 −0.457705 0.889104i \(-0.651328\pi\)
−0.457705 + 0.889104i \(0.651328\pi\)
\(758\) −3404.00 + 5895.90i −0.163112 + 0.282518i
\(759\) 0 0
\(760\) −1520.00 2632.72i −0.0725476 0.125656i
\(761\) 3429.00 + 5939.20i 0.163339 + 0.282912i 0.936064 0.351829i \(-0.114440\pi\)
−0.772725 + 0.634741i \(0.781107\pi\)
\(762\) 0 0
\(763\) 15520.0 26881.4i 0.736385 1.27546i
\(764\) 11136.0 0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) −11220.0 + 19433.6i −0.528202 + 0.914872i
\(768\) 0 0
\(769\) −11089.0 19206.7i −0.519999 0.900665i −0.999730 0.0232494i \(-0.992599\pi\)
0.479730 0.877416i \(-0.340735\pi\)
\(770\) 9600.00 + 16627.7i 0.449299 + 0.778208i
\(771\) 0 0
\(772\) −1828.00 + 3166.19i −0.0852217 + 0.147608i
\(773\) −14286.0 −0.664724 −0.332362 0.943152i \(-0.607846\pi\)
−0.332362 + 0.943152i \(0.607846\pi\)
\(774\) 0 0
\(775\) −5800.00 −0.268829
\(776\) −776.000 + 1344.07i −0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 1566.00 + 2712.39i 0.0721643 + 0.124992i
\(779\) −8892.00 15401.4i −0.408972 0.708360i
\(780\) 0 0
\(781\) 3600.00 6235.38i 0.164940 0.285684i
\(782\) 0 0
\(783\) 0