Properties

Label 810.4.e.e.271.1
Level $810$
Weight $4$
Character 810.271
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.271
Dual form 810.4.e.e.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(2.50000 - 4.33013i) q^{5} +(-16.0000 - 27.7128i) q^{7} +8.00000 q^{8} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(2.50000 - 4.33013i) q^{5} +(-16.0000 - 27.7128i) q^{7} +8.00000 q^{8} -10.0000 q^{10} +(-30.0000 - 51.9615i) q^{11} +(17.0000 - 29.4449i) q^{13} +(-32.0000 + 55.4256i) q^{14} +(-8.00000 - 13.8564i) q^{16} -42.0000 q^{17} -76.0000 q^{19} +(10.0000 + 17.3205i) q^{20} +(-60.0000 + 103.923i) q^{22} +(-12.5000 - 21.6506i) q^{25} -68.0000 q^{26} +128.000 q^{28} +(3.00000 + 5.19615i) q^{29} +(116.000 - 200.918i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(42.0000 + 72.7461i) q^{34} -160.000 q^{35} +134.000 q^{37} +(76.0000 + 131.636i) q^{38} +(20.0000 - 34.6410i) q^{40} +(117.000 - 202.650i) q^{41} +(206.000 + 356.802i) q^{43} +240.000 q^{44} +(-180.000 - 311.769i) q^{47} +(-340.500 + 589.763i) q^{49} +(-25.0000 + 43.3013i) q^{50} +(68.0000 + 117.779i) q^{52} -222.000 q^{53} -300.000 q^{55} +(-128.000 - 221.703i) q^{56} +(6.00000 - 10.3923i) q^{58} +(330.000 - 571.577i) q^{59} +(245.000 + 424.352i) q^{61} -464.000 q^{62} +64.0000 q^{64} +(-85.0000 - 147.224i) q^{65} +(-406.000 + 703.213i) q^{67} +(84.0000 - 145.492i) q^{68} +(160.000 + 277.128i) q^{70} -120.000 q^{71} +746.000 q^{73} +(-134.000 - 232.095i) q^{74} +(152.000 - 263.272i) q^{76} +(-960.000 + 1662.77i) q^{77} +(-76.0000 - 131.636i) q^{79} -80.0000 q^{80} -468.000 q^{82} +(-402.000 - 696.284i) q^{83} +(-105.000 + 181.865i) q^{85} +(412.000 - 713.605i) q^{86} +(-240.000 - 415.692i) q^{88} +678.000 q^{89} -1088.00 q^{91} +(-360.000 + 623.538i) q^{94} +(-190.000 + 329.090i) q^{95} +(-97.0000 - 168.009i) q^{97} +1362.00 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 5 q^{5} - 32 q^{7} + 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 4 q^{4} + 5 q^{5} - 32 q^{7} + 16 q^{8} - 20 q^{10} - 60 q^{11} + 34 q^{13} - 64 q^{14} - 16 q^{16} - 84 q^{17} - 152 q^{19} + 20 q^{20} - 120 q^{22} - 25 q^{25} - 136 q^{26} + 256 q^{28} + 6 q^{29} + 232 q^{31} - 32 q^{32} + 84 q^{34} - 320 q^{35} + 268 q^{37} + 152 q^{38} + 40 q^{40} + 234 q^{41} + 412 q^{43} + 480 q^{44} - 360 q^{47} - 681 q^{49} - 50 q^{50} + 136 q^{52} - 444 q^{53} - 600 q^{55} - 256 q^{56} + 12 q^{58} + 660 q^{59} + 490 q^{61} - 928 q^{62} + 128 q^{64} - 170 q^{65} - 812 q^{67} + 168 q^{68} + 320 q^{70} - 240 q^{71} + 1492 q^{73} - 268 q^{74} + 304 q^{76} - 1920 q^{77} - 152 q^{79} - 160 q^{80} - 936 q^{82} - 804 q^{83} - 210 q^{85} + 824 q^{86} - 480 q^{88} + 1356 q^{89} - 2176 q^{91} - 720 q^{94} - 380 q^{95} - 194 q^{97} + 2724 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) −16.0000 27.7128i −0.863919 1.49635i −0.868117 0.496360i \(-0.834670\pi\)
0.00419795 0.999991i \(-0.498664\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −30.0000 51.9615i −0.822304 1.42427i −0.903963 0.427611i \(-0.859355\pi\)
0.0816590 0.996660i \(-0.473978\pi\)
\(12\) 0 0
\(13\) 17.0000 29.4449i 0.362689 0.628195i −0.625714 0.780053i \(-0.715192\pi\)
0.988402 + 0.151858i \(0.0485255\pi\)
\(14\) −32.0000 + 55.4256i −0.610883 + 1.05808i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 0 0
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 10.0000 + 17.3205i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) −60.0000 + 103.923i −0.581456 + 1.00711i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −68.0000 −0.512919
\(27\) 0 0
\(28\) 128.000 0.863919
\(29\) 3.00000 + 5.19615i 0.0192099 + 0.0332725i 0.875471 0.483272i \(-0.160552\pi\)
−0.856261 + 0.516544i \(0.827218\pi\)
\(30\) 0 0
\(31\) 116.000 200.918i 0.672071 1.16406i −0.305244 0.952274i \(-0.598738\pi\)
0.977316 0.211788i \(-0.0679286\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 42.0000 + 72.7461i 0.211851 + 0.366937i
\(35\) −160.000 −0.772712
\(36\) 0 0
\(37\) 134.000 0.595391 0.297695 0.954661i \(-0.403782\pi\)
0.297695 + 0.954661i \(0.403782\pi\)
\(38\) 76.0000 + 131.636i 0.324443 + 0.561951i
\(39\) 0 0
\(40\) 20.0000 34.6410i 0.0790569 0.136931i
\(41\) 117.000 202.650i 0.445667 0.771917i −0.552432 0.833558i \(-0.686300\pi\)
0.998098 + 0.0616409i \(0.0196334\pi\)
\(42\) 0 0
\(43\) 206.000 + 356.802i 0.730575 + 1.26539i 0.956638 + 0.291280i \(0.0940810\pi\)
−0.226063 + 0.974113i \(0.572586\pi\)
\(44\) 240.000 0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) −180.000 311.769i −0.558632 0.967579i −0.997611 0.0690815i \(-0.977993\pi\)
0.438979 0.898497i \(-0.355340\pi\)
\(48\) 0 0
\(49\) −340.500 + 589.763i −0.992711 + 1.71943i
\(50\) −25.0000 + 43.3013i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 68.0000 + 117.779i 0.181344 + 0.314098i
\(53\) −222.000 −0.575359 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) −128.000 221.703i −0.305441 0.529040i
\(57\) 0 0
\(58\) 6.00000 10.3923i 0.0135834 0.0235272i
\(59\) 330.000 571.577i 0.728175 1.26124i −0.229478 0.973314i \(-0.573702\pi\)
0.957654 0.287923i \(-0.0929647\pi\)
\(60\) 0 0
\(61\) 245.000 + 424.352i 0.514246 + 0.890701i 0.999863 + 0.0165293i \(0.00526168\pi\)
−0.485617 + 0.874172i \(0.661405\pi\)
\(62\) −464.000 −0.950453
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −85.0000 147.224i −0.162199 0.280937i
\(66\) 0 0
\(67\) −406.000 + 703.213i −0.740310 + 1.28226i 0.212044 + 0.977260i \(0.431988\pi\)
−0.952354 + 0.304995i \(0.901345\pi\)
\(68\) 84.0000 145.492i 0.149801 0.259464i
\(69\) 0 0
\(70\) 160.000 + 277.128i 0.273195 + 0.473188i
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) 746.000 1.19606 0.598032 0.801472i \(-0.295949\pi\)
0.598032 + 0.801472i \(0.295949\pi\)
\(74\) −134.000 232.095i −0.210502 0.364601i
\(75\) 0 0
\(76\) 152.000 263.272i 0.229416 0.397360i
\(77\) −960.000 + 1662.77i −1.42081 + 2.46091i
\(78\) 0 0
\(79\) −76.0000 131.636i −0.108236 0.187471i 0.806820 0.590798i \(-0.201187\pi\)
−0.915056 + 0.403327i \(0.867854\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −468.000 −0.630268
\(83\) −402.000 696.284i −0.531629 0.920809i −0.999318 0.0369159i \(-0.988247\pi\)
0.467689 0.883893i \(-0.345087\pi\)
\(84\) 0 0
\(85\) −105.000 + 181.865i −0.133986 + 0.232071i
\(86\) 412.000 713.605i 0.516594 0.894767i
\(87\) 0 0
\(88\) −240.000 415.692i −0.290728 0.503556i
\(89\) 678.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 0 0
\(94\) −360.000 + 623.538i −0.395012 + 0.684182i
\(95\) −190.000 + 329.090i −0.205196 + 0.355409i
\(96\) 0 0
\(97\) −97.0000 168.009i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 1362.00 1.40391
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 399.000 + 691.088i 0.393089 + 0.680850i 0.992855 0.119325i \(-0.0380731\pi\)
−0.599766 + 0.800175i \(0.704740\pi\)
\(102\) 0 0
\(103\) −544.000 + 942.236i −0.520407 + 0.901371i 0.479312 + 0.877645i \(0.340886\pi\)
−0.999718 + 0.0237264i \(0.992447\pi\)
\(104\) 136.000 235.559i 0.128230 0.222100i
\(105\) 0 0
\(106\) 222.000 + 384.515i 0.203420 + 0.352334i
\(107\) −1716.00 −1.55039 −0.775196 0.631721i \(-0.782349\pi\)
−0.775196 + 0.631721i \(0.782349\pi\)
\(108\) 0 0
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) 300.000 + 519.615i 0.260035 + 0.450394i
\(111\) 0 0
\(112\) −256.000 + 443.405i −0.215980 + 0.374088i
\(113\) 213.000 368.927i 0.177322 0.307130i −0.763641 0.645642i \(-0.776590\pi\)
0.940962 + 0.338511i \(0.109923\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −24.0000 −0.0192099
\(117\) 0 0
\(118\) −1320.00 −1.02980
\(119\) 672.000 + 1163.94i 0.517665 + 0.896622i
\(120\) 0 0
\(121\) −1134.50 + 1965.01i −0.852367 + 1.47634i
\(122\) 490.000 848.705i 0.363627 0.629821i
\(123\) 0 0
\(124\) 464.000 + 803.672i 0.336036 + 0.582031i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 200.000 0.139741 0.0698706 0.997556i \(-0.477741\pi\)
0.0698706 + 0.997556i \(0.477741\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −170.000 + 294.449i −0.114692 + 0.198653i
\(131\) 30.0000 51.9615i 0.0200085 0.0346557i −0.855848 0.517228i \(-0.826964\pi\)
0.875856 + 0.482572i \(0.160297\pi\)
\(132\) 0 0
\(133\) 1216.00 + 2106.17i 0.792786 + 1.37315i
\(134\) 1624.00 1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 321.000 + 555.988i 0.200182 + 0.346725i 0.948587 0.316517i \(-0.102513\pi\)
−0.748405 + 0.663242i \(0.769180\pi\)
\(138\) 0 0
\(139\) 1418.00 2456.05i 0.865275 1.49870i −0.00149936 0.999999i \(-0.500477\pi\)
0.866774 0.498701i \(-0.166189\pi\)
\(140\) 320.000 554.256i 0.193178 0.334594i
\(141\) 0 0
\(142\) 120.000 + 207.846i 0.0709167 + 0.122831i
\(143\) −2040.00 −1.19296
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) −746.000 1292.11i −0.422873 0.732437i
\(147\) 0 0
\(148\) −268.000 + 464.190i −0.148848 + 0.257812i
\(149\) −777.000 + 1345.80i −0.427210 + 0.739950i −0.996624 0.0821013i \(-0.973837\pi\)
0.569414 + 0.822051i \(0.307170\pi\)
\(150\) 0 0
\(151\) 1136.00 + 1967.61i 0.612228 + 1.06041i 0.990864 + 0.134864i \(0.0430597\pi\)
−0.378637 + 0.925545i \(0.623607\pi\)
\(152\) −608.000 −0.324443
\(153\) 0 0
\(154\) 3840.00 2.00932
\(155\) −580.000 1004.59i −0.300559 0.520584i
\(156\) 0 0
\(157\) −847.000 + 1467.05i −0.430560 + 0.745752i −0.996922 0.0784048i \(-0.975017\pi\)
0.566361 + 0.824157i \(0.308351\pi\)
\(158\) −152.000 + 263.272i −0.0765346 + 0.132562i
\(159\) 0 0
\(160\) 80.0000 + 138.564i 0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) −52.0000 −0.0249874 −0.0124937 0.999922i \(-0.503977\pi\)
−0.0124937 + 0.999922i \(0.503977\pi\)
\(164\) 468.000 + 810.600i 0.222833 + 0.385959i
\(165\) 0 0
\(166\) −804.000 + 1392.57i −0.375919 + 0.651110i
\(167\) −600.000 + 1039.23i −0.278020 + 0.481545i −0.970893 0.239515i \(-0.923012\pi\)
0.692872 + 0.721060i \(0.256345\pi\)
\(168\) 0 0
\(169\) 520.500 + 901.532i 0.236914 + 0.410347i
\(170\) 420.000 0.189485
\(171\) 0 0
\(172\) −1648.00 −0.730575
\(173\) 27.0000 + 46.7654i 0.0118657 + 0.0205521i 0.871897 0.489689i \(-0.162890\pi\)
−0.860032 + 0.510241i \(0.829556\pi\)
\(174\) 0 0
\(175\) −400.000 + 692.820i −0.172784 + 0.299270i
\(176\) −480.000 + 831.384i −0.205576 + 0.356068i
\(177\) 0 0
\(178\) −678.000 1174.33i −0.285496 0.494493i
\(179\) −876.000 −0.365784 −0.182892 0.983133i \(-0.558546\pi\)
−0.182892 + 0.983133i \(0.558546\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) 1088.00 + 1884.47i 0.443120 + 0.767507i
\(183\) 0 0
\(184\) 0 0
\(185\) 335.000 580.237i 0.133133 0.230594i
\(186\) 0 0
\(187\) 1260.00 + 2182.38i 0.492729 + 0.853432i
\(188\) 1440.00 0.558632
\(189\) 0 0
\(190\) 760.000 0.290191
\(191\) −1392.00 2411.01i −0.527338 0.913376i −0.999492 0.0318605i \(-0.989857\pi\)
0.472154 0.881516i \(-0.343477\pi\)
\(192\) 0 0
\(193\) −457.000 + 791.547i −0.170443 + 0.295217i −0.938575 0.345075i \(-0.887853\pi\)
0.768132 + 0.640292i \(0.221187\pi\)
\(194\) −194.000 + 336.018i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) −1362.00 2359.05i −0.496356 0.859713i
\(197\) 5202.00 1.88136 0.940678 0.339300i \(-0.110190\pi\)
0.940678 + 0.339300i \(0.110190\pi\)
\(198\) 0 0
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) −100.000 173.205i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 798.000 1382.18i 0.277956 0.481434i
\(203\) 96.0000 166.277i 0.0331915 0.0574894i
\(204\) 0 0
\(205\) −585.000 1013.25i −0.199308 0.345212i
\(206\) 2176.00 0.735967
\(207\) 0 0
\(208\) −544.000 −0.181344
\(209\) 2280.00 + 3949.08i 0.754598 + 1.30700i
\(210\) 0 0
\(211\) −370.000 + 640.859i −0.120720 + 0.209093i −0.920052 0.391797i \(-0.871854\pi\)
0.799332 + 0.600890i \(0.205187\pi\)
\(212\) 444.000 769.031i 0.143840 0.249138i
\(213\) 0 0
\(214\) 1716.00 + 2972.20i 0.548146 + 0.949418i
\(215\) 2060.00 0.653446
\(216\) 0 0
\(217\) −7424.00 −2.32246
\(218\) 970.000 + 1680.09i 0.301361 + 0.521972i
\(219\) 0 0
\(220\) 600.000 1039.23i 0.183873 0.318477i
\(221\) −714.000 + 1236.68i −0.217325 + 0.376418i
\(222\) 0 0
\(223\) 260.000 + 450.333i 0.0780757 + 0.135231i 0.902420 0.430858i \(-0.141789\pi\)
−0.824344 + 0.566089i \(0.808456\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) 198.000 + 342.946i 0.0578930 + 0.100274i 0.893519 0.449025i \(-0.148228\pi\)
−0.835626 + 0.549298i \(0.814895\pi\)
\(228\) 0 0
\(229\) 665.000 1151.81i 0.191897 0.332376i −0.753982 0.656895i \(-0.771869\pi\)
0.945879 + 0.324520i \(0.105203\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 24.0000 + 41.5692i 0.00679171 + 0.0117636i
\(233\) −4866.00 −1.36816 −0.684082 0.729405i \(-0.739797\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(234\) 0 0
\(235\) −1800.00 −0.499656
\(236\) 1320.00 + 2286.31i 0.364088 + 0.630618i
\(237\) 0 0
\(238\) 1344.00 2327.88i 0.366044 0.634008i
\(239\) −912.000 + 1579.63i −0.246830 + 0.427522i −0.962645 0.270768i \(-0.912722\pi\)
0.715815 + 0.698290i \(0.246056\pi\)
\(240\) 0 0
\(241\) −3241.00 5613.58i −0.866270 1.50042i −0.865780 0.500424i \(-0.833177\pi\)
−0.000490169 1.00000i \(-0.500156\pi\)
\(242\) 4538.00 1.20543
\(243\) 0 0
\(244\) −1960.00 −0.514246
\(245\) 1702.50 + 2948.82i 0.443954 + 0.768951i
\(246\) 0 0
\(247\) −1292.00 + 2237.81i −0.332826 + 0.576471i
\(248\) 928.000 1607.34i 0.237613 0.411558i
\(249\) 0 0
\(250\) 125.000 + 216.506i 0.0316228 + 0.0547723i
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −200.000 346.410i −0.0494060 0.0855736i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 2157.00 3736.03i 0.523541 0.906799i −0.476084 0.879400i \(-0.657944\pi\)
0.999625 0.0273992i \(-0.00872254\pi\)
\(258\) 0 0
\(259\) −2144.00 3713.52i −0.514369 0.890914i
\(260\) 680.000 0.162199
\(261\) 0 0
\(262\) −120.000 −0.0282963
\(263\) −2640.00 4572.61i −0.618971 1.07209i −0.989674 0.143338i \(-0.954216\pi\)
0.370703 0.928752i \(-0.379117\pi\)
\(264\) 0 0
\(265\) −555.000 + 961.288i −0.128654 + 0.222836i
\(266\) 2432.00 4212.35i 0.560585 0.970961i
\(267\) 0 0
\(268\) −1624.00 2812.85i −0.370155 0.641128i
\(269\) −5526.00 −1.25251 −0.626257 0.779617i \(-0.715414\pi\)
−0.626257 + 0.779617i \(0.715414\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) 336.000 + 581.969i 0.0749007 + 0.129732i
\(273\) 0 0
\(274\) 642.000 1111.98i 0.141550 0.245171i
\(275\) −750.000 + 1299.04i −0.164461 + 0.284854i
\(276\) 0 0
\(277\) −1027.00 1778.82i −0.222767 0.385844i 0.732880 0.680358i \(-0.238176\pi\)
−0.955647 + 0.294514i \(0.904842\pi\)
\(278\) −5672.00 −1.22368
\(279\) 0 0
\(280\) −1280.00 −0.273195
\(281\) −3651.00 6323.72i −0.775090 1.34250i −0.934744 0.355323i \(-0.884371\pi\)
0.159653 0.987173i \(-0.448962\pi\)
\(282\) 0 0
\(283\) 1862.00 3225.08i 0.391111 0.677424i −0.601485 0.798884i \(-0.705424\pi\)
0.992596 + 0.121460i \(0.0387575\pi\)
\(284\) 240.000 415.692i 0.0501457 0.0868549i
\(285\) 0 0
\(286\) 2040.00 + 3533.38i 0.421775 + 0.730536i
\(287\) −7488.00 −1.54008
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) −30.0000 51.9615i −0.00607469 0.0105217i
\(291\) 0 0
\(292\) −1492.00 + 2584.22i −0.299016 + 0.517911i
\(293\) −3609.00 + 6250.97i −0.719591 + 1.24637i 0.241572 + 0.970383i \(0.422337\pi\)
−0.961162 + 0.275984i \(0.910996\pi\)
\(294\) 0 0
\(295\) −1650.00 2857.88i −0.325650 0.564042i
\(296\) 1072.00 0.210502
\(297\) 0 0
\(298\) 3108.00 0.604166
\(299\) 0 0
\(300\) 0 0
\(301\) 6592.00 11417.7i 1.26231 2.18639i
\(302\) 2272.00 3935.22i 0.432910 0.749823i
\(303\) 0 0
\(304\) 608.000 + 1053.09i 0.114708 + 0.198680i
\(305\) 2450.00 0.459956
\(306\) 0 0
\(307\) 2540.00 0.472200 0.236100 0.971729i \(-0.424131\pi\)
0.236100 + 0.971729i \(0.424131\pi\)
\(308\) −3840.00 6651.08i −0.710404 1.23046i
\(309\) 0 0
\(310\) −1160.00 + 2009.18i −0.212528 + 0.368109i
\(311\) 780.000 1351.00i 0.142218 0.246328i −0.786114 0.618082i \(-0.787910\pi\)
0.928332 + 0.371753i \(0.121243\pi\)
\(312\) 0 0
\(313\) 467.000 + 808.868i 0.0843335 + 0.146070i 0.905107 0.425184i \(-0.139791\pi\)
−0.820773 + 0.571254i \(0.806457\pi\)
\(314\) 3388.00 0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) −837.000 1449.73i −0.148298 0.256860i 0.782300 0.622902i \(-0.214046\pi\)
−0.930599 + 0.366041i \(0.880713\pi\)
\(318\) 0 0
\(319\) 180.000 311.769i 0.0315927 0.0547201i
\(320\) 160.000 277.128i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 3192.00 0.549869
\(324\) 0 0
\(325\) −850.000 −0.145075
\(326\) 52.0000 + 90.0666i 0.00883440 + 0.0153016i
\(327\) 0 0
\(328\) 936.000 1621.20i 0.157567 0.272914i
\(329\) −5760.00 + 9976.61i −0.965225 + 1.67182i
\(330\) 0 0
\(331\) 1994.00 + 3453.71i 0.331118 + 0.573514i 0.982731 0.185038i \(-0.0592408\pi\)
−0.651613 + 0.758551i \(0.725907\pi\)
\(332\) 3216.00 0.531629
\(333\) 0 0
\(334\) 2400.00 0.393180
\(335\) 2030.00 + 3516.06i 0.331077 + 0.573442i
\(336\) 0 0
\(337\) −1.00000 + 1.73205i −0.000161642 + 0.000279973i −0.866106 0.499860i \(-0.833385\pi\)
0.865945 + 0.500140i \(0.166718\pi\)
\(338\) 1041.00 1803.06i 0.167523 0.290159i
\(339\) 0 0
\(340\) −420.000 727.461i −0.0669932 0.116036i
\(341\) −13920.0 −2.21059
\(342\) 0 0
\(343\) 10816.0 1.70265
\(344\) 1648.00 + 2854.42i 0.258297 + 0.447384i
\(345\) 0 0
\(346\) 54.0000 93.5307i 0.00839034 0.0145325i
\(347\) 882.000 1527.67i 0.136450 0.236339i −0.789700 0.613493i \(-0.789764\pi\)
0.926151 + 0.377154i \(0.123097\pi\)
\(348\) 0 0
\(349\) −2155.00 3732.57i −0.330529 0.572492i 0.652087 0.758144i \(-0.273894\pi\)
−0.982616 + 0.185652i \(0.940560\pi\)
\(350\) 1600.00 0.244353
\(351\) 0 0
\(352\) 1920.00 0.290728
\(353\) 69.0000 + 119.512i 0.0104037 + 0.0180197i 0.871180 0.490963i \(-0.163355\pi\)
−0.860777 + 0.508983i \(0.830022\pi\)
\(354\) 0 0
\(355\) −300.000 + 519.615i −0.0448517 + 0.0776854i
\(356\) −1356.00 + 2348.66i −0.201876 + 0.349659i
\(357\) 0 0
\(358\) 876.000 + 1517.28i 0.129324 + 0.223996i
\(359\) 11976.0 1.76064 0.880319 0.474382i \(-0.157328\pi\)
0.880319 + 0.474382i \(0.157328\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) −3854.00 6675.32i −0.559563 0.969191i
\(363\) 0 0
\(364\) 2176.00 3768.94i 0.313333 0.542710i
\(365\) 1865.00 3230.27i 0.267448 0.463234i
\(366\) 0 0
\(367\) −4852.00 8403.91i −0.690115 1.19531i −0.971800 0.235808i \(-0.924226\pi\)
0.281684 0.959507i \(-0.409107\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1340.00 −0.188279
\(371\) 3552.00 + 6152.24i 0.497064 + 0.860940i
\(372\) 0 0
\(373\) 4061.00 7033.86i 0.563728 0.976406i −0.433439 0.901183i \(-0.642700\pi\)
0.997167 0.0752227i \(-0.0239668\pi\)
\(374\) 2520.00 4364.77i 0.348412 0.603467i
\(375\) 0 0
\(376\) −1440.00 2494.15i −0.197506 0.342091i
\(377\) 204.000 0.0278688
\(378\) 0 0
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) −760.000 1316.36i −0.102598 0.177705i
\(381\) 0 0
\(382\) −2784.00 + 4822.03i −0.372884 + 0.645855i
\(383\) −1260.00 + 2182.38i −0.168102 + 0.291161i −0.937752 0.347304i \(-0.887097\pi\)
0.769651 + 0.638465i \(0.220430\pi\)
\(384\) 0 0
\(385\) 4800.00 + 8313.84i 0.635404 + 1.10055i
\(386\) 1828.00 0.241043
\(387\) 0 0
\(388\) 776.000 0.101535
\(389\) 783.000 + 1356.20i 0.102056 + 0.176766i 0.912531 0.409006i \(-0.134125\pi\)
−0.810476 + 0.585772i \(0.800791\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2724.00 + 4718.11i −0.350976 + 0.607909i
\(393\) 0 0
\(394\) −5202.00 9010.13i −0.665160 1.15209i
\(395\) −760.000 −0.0968095
\(396\) 0 0
\(397\) −4354.00 −0.550431 −0.275215 0.961383i \(-0.588749\pi\)
−0.275215 + 0.961383i \(0.588749\pi\)
\(398\) −3152.00 5459.42i −0.396974 0.687578i
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.0250000 + 0.0433013i
\(401\) −4023.00 + 6968.04i −0.500995 + 0.867749i 0.499004 + 0.866600i \(0.333699\pi\)
−0.999999 + 0.00114942i \(0.999634\pi\)
\(402\) 0 0
\(403\) −3944.00 6831.21i −0.487505 0.844384i
\(404\) −3192.00 −0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) −4020.00 6962.84i −0.489592 0.847998i
\(408\) 0 0
\(409\) 1403.00 2430.07i 0.169618 0.293788i −0.768667 0.639649i \(-0.779080\pi\)
0.938286 + 0.345861i \(0.112413\pi\)
\(410\) −1170.00 + 2026.50i −0.140932 + 0.244102i
\(411\) 0 0
\(412\) −2176.00 3768.94i −0.260203 0.450686i
\(413\) −21120.0 −2.51634
\(414\) 0 0
\(415\) −4020.00 −0.475504
\(416\) 544.000 + 942.236i 0.0641149 + 0.111050i
\(417\) 0 0
\(418\) 4560.00 7898.15i 0.533581 0.924190i
\(419\) 5790.00 10028.6i 0.675084 1.16928i −0.301361 0.953510i \(-0.597441\pi\)
0.976444 0.215769i \(-0.0692258\pi\)
\(420\) 0 0
\(421\) 185.000 + 320.429i 0.0214165 + 0.0370945i 0.876535 0.481338i \(-0.159849\pi\)
−0.855119 + 0.518433i \(0.826516\pi\)
\(422\) 1480.00 0.170723
\(423\) 0 0
\(424\) −1776.00 −0.203420
\(425\) 525.000 + 909.327i 0.0599206 + 0.103785i
\(426\) 0 0
\(427\) 7840.00 13579.3i 0.888534 1.53899i
\(428\) 3432.00 5944.40i 0.387598 0.671340i
\(429\) 0 0
\(430\) −2060.00 3568.02i −0.231028 0.400152i
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) −3742.00 −0.415310 −0.207655 0.978202i \(-0.566583\pi\)
−0.207655 + 0.978202i \(0.566583\pi\)
\(434\) 7424.00 + 12858.7i 0.821114 + 1.42221i
\(435\) 0 0
\(436\) 1940.00 3360.18i 0.213094 0.369090i
\(437\) 0 0
\(438\) 0 0
\(439\) 3104.00 + 5376.29i 0.337462 + 0.584501i 0.983955 0.178419i \(-0.0570982\pi\)
−0.646493 + 0.762920i \(0.723765\pi\)
\(440\) −2400.00 −0.260035
\(441\) 0 0
\(442\) 2856.00 0.307344
\(443\) −7782.00 13478.8i −0.834614 1.44559i −0.894344 0.447379i \(-0.852357\pi\)
0.0597304 0.998215i \(-0.480976\pi\)
\(444\) 0 0
\(445\) 1695.00 2935.83i 0.180563 0.312745i
\(446\) 520.000 900.666i 0.0552079 0.0956228i
\(447\) 0 0
\(448\) −1024.00 1773.62i −0.107990 0.187044i
\(449\) 15774.0 1.65795 0.828977 0.559283i \(-0.188924\pi\)
0.828977 + 0.559283i \(0.188924\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) 852.000 + 1475.71i 0.0886609 + 0.153565i
\(453\) 0 0
\(454\) 396.000 685.892i 0.0409366 0.0709042i
\(455\) −2720.00 + 4711.18i −0.280254 + 0.485414i
\(456\) 0 0
\(457\) −4861.00 8419.50i −0.497567 0.861811i 0.502429 0.864618i \(-0.332440\pi\)
−0.999996 + 0.00280744i \(0.999106\pi\)
\(458\) −2660.00 −0.271383
\(459\) 0 0
\(460\) 0 0
\(461\) −5445.00 9431.02i −0.550106 0.952812i −0.998266 0.0588585i \(-0.981254\pi\)
0.448160 0.893953i \(-0.352079\pi\)
\(462\) 0 0
\(463\) −7564.00 + 13101.2i −0.759242 + 1.31505i 0.183996 + 0.982927i \(0.441097\pi\)
−0.943238 + 0.332118i \(0.892237\pi\)
\(464\) 48.0000 83.1384i 0.00480247 0.00831811i
\(465\) 0 0
\(466\) 4866.00 + 8428.16i 0.483719 + 0.837826i
\(467\) −10668.0 −1.05708 −0.528540 0.848909i \(-0.677260\pi\)
−0.528540 + 0.848909i \(0.677260\pi\)
\(468\) 0 0
\(469\) 25984.0 2.55827
\(470\) 1800.00 + 3117.69i 0.176655 + 0.305975i
\(471\) 0 0
\(472\) 2640.00 4572.61i 0.257449 0.445914i
\(473\) 12360.0 21408.1i 1.20151 2.08107i
\(474\) 0 0
\(475\) 950.000 + 1645.45i 0.0917663 + 0.158944i
\(476\) −5376.00 −0.517665
\(477\) 0 0
\(478\) 3648.00 0.349070
\(479\) 7632.00 + 13219.0i 0.728006 + 1.26094i 0.957725 + 0.287687i \(0.0928862\pi\)
−0.229718 + 0.973257i \(0.573781\pi\)
\(480\) 0 0
\(481\) 2278.00 3945.61i 0.215941 0.374022i
\(482\) −6482.00 + 11227.2i −0.612546 + 1.06096i
\(483\) 0 0
\(484\) −4538.00 7860.05i −0.426183 0.738171i
\(485\) −970.000 −0.0908153
\(486\) 0 0
\(487\) −5776.00 −0.537445 −0.268722 0.963218i \(-0.586601\pi\)
−0.268722 + 0.963218i \(0.586601\pi\)
\(488\) 1960.00 + 3394.82i 0.181814 + 0.314910i
\(489\) 0 0
\(490\) 3405.00 5897.63i 0.313923 0.543730i
\(491\) 7122.00 12335.7i 0.654606 1.13381i −0.327387 0.944890i \(-0.606168\pi\)
0.981993 0.188920i \(-0.0604986\pi\)
\(492\) 0 0
\(493\) −126.000 218.238i −0.0115107 0.0199370i
\(494\) 5168.00 0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) 1920.00 + 3325.54i 0.173287 + 0.300142i
\(498\) 0 0
\(499\) 8558.00 14822.9i 0.767753 1.32979i −0.171026 0.985267i \(-0.554708\pi\)
0.938779 0.344520i \(-0.111958\pi\)
\(500\) 250.000 433.013i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) 1476.00 + 2556.51i 0.131229 + 0.227296i
\(503\) 16848.0 1.49347 0.746735 0.665122i \(-0.231620\pi\)
0.746735 + 0.665122i \(0.231620\pi\)
\(504\) 0 0
\(505\) 3990.00 0.351589
\(506\) 0 0
\(507\) 0 0
\(508\) −400.000 + 692.820i −0.0349353 + 0.0605097i
\(509\) −1917.00 + 3320.34i −0.166934 + 0.289139i −0.937340 0.348415i \(-0.886720\pi\)
0.770406 + 0.637553i \(0.220053\pi\)
\(510\) 0 0
\(511\) −11936.0 20673.8i −1.03330 1.78973i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −8628.00 −0.740398
\(515\) 2720.00 + 4711.18i 0.232733 + 0.403105i
\(516\) 0 0
\(517\) −10800.0 + 18706.1i −0.918730 + 1.59129i
\(518\) −4288.00 + 7427.03i −0.363714 + 0.629971i
\(519\) 0 0
\(520\) −680.000 1177.79i −0.0573461 0.0993264i
\(521\) 18822.0 1.58274 0.791369 0.611338i \(-0.209369\pi\)
0.791369 + 0.611338i \(0.209369\pi\)
\(522\) 0 0
\(523\) −15340.0 −1.28255 −0.641273 0.767313i \(-0.721593\pi\)
−0.641273 + 0.767313i \(0.721593\pi\)
\(524\) 120.000 + 207.846i 0.0100042 + 0.0173279i
\(525\) 0 0
\(526\) −5280.00 + 9145.23i −0.437679 + 0.758082i
\(527\) −4872.00 + 8438.55i −0.402709 + 0.697512i
\(528\) 0 0
\(529\) 6083.50 + 10536.9i 0.500000 + 0.866025i
\(530\) 2220.00 0.181945
\(531\) 0 0
\(532\) −9728.00 −0.792786
\(533\) −3978.00 6890.10i −0.323276 0.559931i
\(534\) 0 0
\(535\) −4290.00 + 7430.50i −0.346678 + 0.600464i
\(536\) −3248.00 + 5625.70i −0.261739 + 0.453346i
\(537\) 0 0
\(538\) 5526.00 + 9571.31i 0.442830 + 0.767005i
\(539\) 40860.0 3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) −2024.00 3505.67i −0.160403 0.277826i
\(543\) 0 0
\(544\) 672.000 1163.94i 0.0529628 0.0917343i
\(545\) −2425.00 + 4200.22i −0.190597 + 0.330124i
\(546\) 0 0
\(547\) 5018.00 + 8691.43i 0.392238 + 0.679376i 0.992744 0.120244i \(-0.0383676\pi\)
−0.600506 + 0.799620i \(0.705034\pi\)
\(548\) −2568.00 −0.200182
\(549\) 0 0
\(550\) 3000.00 0.232583
\(551\) −228.000 394.908i −0.0176282 0.0305329i
\(552\) 0 0
\(553\) −2432.00 + 4212.35i −0.187015 + 0.323919i
\(554\) −2054.00 + 3557.63i −0.157520 + 0.272833i
\(555\) 0 0
\(556\) 5672.00 + 9824.19i 0.432637 + 0.749350i
\(557\) −10326.0 −0.785506 −0.392753 0.919644i \(-0.628477\pi\)
−0.392753 + 0.919644i \(0.628477\pi\)
\(558\) 0 0
\(559\) 14008.0 1.05988
\(560\) 1280.00 + 2217.03i 0.0965891 + 0.167297i
\(561\) 0 0
\(562\) −7302.00 + 12647.4i −0.548072 + 0.949288i
\(563\) 2262.00 3917.90i 0.169328 0.293286i −0.768855 0.639423i \(-0.779173\pi\)
0.938184 + 0.346137i \(0.112507\pi\)
\(564\) 0 0
\(565\) −1065.00 1844.63i −0.0793007 0.137353i
\(566\) −7448.00 −0.553114
\(567\) 0 0
\(568\) −960.000 −0.0709167
\(569\) 8181.00 + 14169.9i 0.602751 + 1.04400i 0.992403 + 0.123033i \(0.0392621\pi\)
−0.389651 + 0.920962i \(0.627405\pi\)
\(570\) 0 0
\(571\) −3310.00 + 5733.09i −0.242591 + 0.420179i −0.961451 0.274975i \(-0.911330\pi\)
0.718861 + 0.695154i \(0.244664\pi\)
\(572\) 4080.00 7066.77i 0.298240 0.516567i
\(573\) 0 0
\(574\) 7488.00 + 12969.6i 0.544500 + 0.943102i
\(575\) 0 0
\(576\) 0 0
\(577\) 8834.00 0.637373 0.318687 0.947860i \(-0.396758\pi\)
0.318687 + 0.947860i \(0.396758\pi\)
\(578\) 3149.00 + 5454.23i 0.226611 + 0.392502i
\(579\) 0 0
\(580\) −60.0000 + 103.923i −0.00429546 + 0.00743995i
\(581\) −12864.0 + 22281.1i −0.918569 + 1.59101i
\(582\) 0 0
\(583\) 6660.00 + 11535.5i 0.473120 + 0.819468i
\(584\) 5968.00 0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) 1818.00 + 3148.87i 0.127831 + 0.221410i 0.922836 0.385193i \(-0.125865\pi\)
−0.795005 + 0.606603i \(0.792532\pi\)
\(588\) 0 0
\(589\) −8816.00 + 15269.8i −0.616735 + 1.06822i
\(590\) −3300.00 + 5715.77i −0.230269 + 0.398838i
\(591\) 0 0
\(592\) −1072.00 1856.76i −0.0744239 0.128906i
\(593\) −6570.00 −0.454971 −0.227485 0.973782i \(-0.573050\pi\)
−0.227485 + 0.973782i \(0.573050\pi\)
\(594\) 0 0
\(595\) 6720.00 0.463014
\(596\) −3108.00 5383.21i −0.213605 0.369975i
\(597\) 0 0
\(598\) 0 0
\(599\) 8292.00 14362.2i 0.565613 0.979670i −0.431380 0.902170i \(-0.641973\pi\)
0.996992 0.0774993i \(-0.0246936\pi\)
\(600\) 0 0
\(601\) 251.000 + 434.745i 0.0170358 + 0.0295068i 0.874418 0.485174i \(-0.161244\pi\)
−0.857382 + 0.514681i \(0.827910\pi\)
\(602\) −26368.0 −1.78518
\(603\) 0 0
\(604\) −9088.00 −0.612228
\(605\) 5672.50 + 9825.06i 0.381190 + 0.660240i
\(606\) 0 0
\(607\) 9284.00 16080.4i 0.620801 1.07526i −0.368536 0.929613i \(-0.620141\pi\)
0.989337 0.145645i \(-0.0465257\pi\)
\(608\) 1216.00 2106.17i 0.0811107 0.140488i
\(609\) 0 0
\(610\) −2450.00 4243.52i −0.162619 0.281664i
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) −13114.0 −0.864061 −0.432031 0.901859i \(-0.642203\pi\)
−0.432031 + 0.901859i \(0.642203\pi\)
\(614\) −2540.00 4399.41i −0.166948 0.289162i
\(615\) 0 0
\(616\) −7680.00 + 13302.2i −0.502331 + 0.870063i
\(617\) 2625.00 4546.63i 0.171278 0.296662i −0.767589 0.640942i \(-0.778544\pi\)
0.938867 + 0.344280i \(0.111877\pi\)
\(618\) 0 0
\(619\) 5402.00 + 9356.54i 0.350767 + 0.607546i 0.986384 0.164458i \(-0.0525876\pi\)
−0.635617 + 0.772004i \(0.719254\pi\)
\(620\) 4640.00 0.300559
\(621\) 0 0
\(622\) −3120.00 −0.201126
\(623\) −10848.0 18789.3i −0.697618 1.20831i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 934.000 1617.74i 0.0596328 0.103287i
\(627\) 0 0
\(628\) −3388.00 5868.19i −0.215280 0.372876i
\(629\) −5628.00 −0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) −608.000 1053.09i −0.0382673 0.0662809i
\(633\) 0 0
\(634\) −1674.00 + 2899.45i −0.104863 + 0.181628i
\(635\) 500.000 866.025i 0.0312471 0.0541215i
\(636\) 0 0
\(637\) 11577.0 + 20052.0i 0.720090 + 1.24723i
\(638\) −720.000 −0.0446788
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 9465.00 + 16393.9i 0.583222 + 1.01017i 0.995095 + 0.0989281i \(0.0315414\pi\)
−0.411873 + 0.911241i \(0.635125\pi\)
\(642\) 0 0
\(643\) −10054.0 + 17414.0i −0.616627 + 1.06803i 0.373470 + 0.927642i \(0.378168\pi\)
−0.990097 + 0.140387i \(0.955165\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3192.00 5528.71i −0.194408 0.336725i
\(647\) 7152.00 0.434581 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(648\) 0 0
\(649\) −39600.0 −2.39512
\(650\) 850.000 + 1472.24i 0.0512919 + 0.0888402i
\(651\) 0 0
\(652\) 104.000 180.133i 0.00624686 0.0108199i
\(653\) −15813.0 + 27388.9i −0.947642 + 1.64136i −0.197270 + 0.980349i \(0.563208\pi\)
−0.750372 + 0.661016i \(0.770126\pi\)
\(654\) 0 0
\(655\) −150.000 259.808i −0.00894807 0.0154985i
\(656\) −3744.00 −0.222833
\(657\) 0 0
\(658\) 23040.0 1.36503
\(659\) 14046.0 + 24328.4i 0.830280 + 1.43809i 0.897816 + 0.440370i \(0.145153\pi\)
−0.0675363 + 0.997717i \(0.521514\pi\)
\(660\) 0 0
\(661\) 6593.00 11419.4i 0.387955 0.671957i −0.604220 0.796818i \(-0.706515\pi\)
0.992174 + 0.124861i \(0.0398484\pi\)
\(662\) 3988.00 6907.42i 0.234136 0.405535i
\(663\) 0 0
\(664\) −3216.00 5570.28i −0.187959 0.325555i
\(665\) 12160.0 0.709090
\(666\) 0 0
\(667\) 0 0
\(668\) −2400.00 4156.92i −0.139010 0.240773i
\(669\) 0 0
\(670\) 4060.00 7032.13i 0.234107 0.405485i
\(671\) 14700.0 25461.1i 0.845734 1.46485i
\(672\) 0 0
\(673\) −2569.00 4449.64i −0.147144 0.254860i 0.783027 0.621988i \(-0.213675\pi\)
−0.930171 + 0.367127i \(0.880341\pi\)
\(674\) 4.00000 0.000228597
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) 3039.00 + 5263.70i 0.172523 + 0.298819i 0.939301 0.343093i \(-0.111475\pi\)
−0.766778 + 0.641912i \(0.778141\pi\)
\(678\) 0 0
\(679\) −3104.00 + 5376.29i −0.175435 + 0.303863i
\(680\) −840.000 + 1454.92i −0.0473714 + 0.0820496i
\(681\) 0 0
\(682\) 13920.0 + 24110.1i 0.781561 + 1.35370i
\(683\) −32244.0 −1.80642 −0.903208 0.429203i \(-0.858795\pi\)
−0.903208 + 0.429203i \(0.858795\pi\)
\(684\) 0 0
\(685\) 3210.00 0.179048
\(686\) −10816.0 18733.9i −0.601978 1.04266i
\(687\) 0 0
\(688\) 3296.00 5708.84i 0.182644 0.316348i
\(689\) −3774.00 + 6536.76i −0.208676 + 0.361438i
\(690\) 0 0
\(691\) −2242.00 3883.26i −0.123429 0.213786i 0.797689 0.603070i \(-0.206056\pi\)
−0.921118 + 0.389284i \(0.872723\pi\)
\(692\) −216.000 −0.0118657
\(693\) 0 0
\(694\) −3528.00 −0.192970
\(695\) −7090.00 12280.2i −0.386963 0.670239i
\(696\) 0 0
\(697\) −4914.00 + 8511.30i −0.267046 + 0.462537i
\(698\) −4310.00 + 7465.14i −0.233719 + 0.404813i
\(699\) 0 0
\(700\) −1600.00 2771.28i −0.0863919 0.149635i
\(701\) 30426.0 1.63934 0.819668 0.572839i \(-0.194158\pi\)
0.819668 + 0.572839i \(0.194158\pi\)
\(702\) 0 0
\(703\) −10184.0 −0.546368
\(704\) −1920.00 3325.54i −0.102788 0.178034i
\(705\) 0 0
\(706\) 138.000 239.023i 0.00735651 0.0127419i
\(707\) 12768.0 22114.8i 0.679194 1.17640i
\(708\) 0 0
\(709\) −6631.00 11485.2i −0.351245 0.608374i 0.635223 0.772329i \(-0.280908\pi\)
−0.986468 + 0.163955i \(0.947575\pi\)
\(710\) 1200.00 0.0634299
\(711\) 0 0
\(712\) 5424.00 0.285496
\(713\) 0 0
\(714\) 0 0
\(715\) −5100.00 + 8833.46i −0.266754 + 0.462032i
\(716\) 1752.00 3034.55i 0.0914460 0.158389i
\(717\) 0 0
\(718\) −11976.0 20743.0i −0.622480 1.07817i
\(719\) −13920.0 −0.722014 −0.361007 0.932563i \(-0.617567\pi\)
−0.361007 + 0.932563i \(0.617567\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) 1083.00 + 1875.81i 0.0558242 + 0.0966904i
\(723\) 0 0
\(724\) −7708.00 + 13350.6i −0.395671 + 0.685322i
\(725\) 75.0000 129.904i 0.00384197 0.00665449i
\(726\) 0 0
\(727\) 4688.00 + 8119.85i 0.239159 + 0.414235i 0.960473 0.278373i \(-0.0897951\pi\)
−0.721315 + 0.692608i \(0.756462\pi\)
\(728\) −8704.00 −0.443120
\(729\) 0 0
\(730\) −7460.00 −0.378229
\(731\) −8652.00 14985.7i −0.437764 0.758230i
\(732\) 0 0
\(733\) −3007.00 + 5208.28i −0.151523 + 0.262445i −0.931787 0.363004i \(-0.881751\pi\)
0.780265 + 0.625449i \(0.215084\pi\)
\(734\) −9704.00 + 16807.8i −0.487985 + 0.845215i
\(735\) 0 0
\(736\) 0 0
\(737\) 48720.0 2.43504
\(738\) 0 0
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) 1340.00 + 2320.95i 0.0665667 + 0.115297i
\(741\) 0 0
\(742\) 7104.00 12304.5i 0.351477 0.608776i
\(743\) 15624.0 27061.6i 0.771452 1.33619i −0.165315 0.986241i \(-0.552864\pi\)
0.936767 0.349954i \(-0.113803\pi\)
\(744\) 0 0
\(745\) 3885.00 + 6729.02i 0.191054 + 0.330916i
\(746\) −16244.0 −0.797232
\(747\) 0 0
\(748\) −10080.0 −0.492729
\(749\) 27456.0 + 47555.2i 1.33941 + 2.31993i
\(750\) 0 0
\(751\) −16420.0 + 28440.3i −0.797835 + 1.38189i 0.123188 + 0.992383i \(0.460688\pi\)
−0.921023 + 0.389508i \(0.872645\pi\)
\(752\) −2880.00 + 4988.31i −0.139658 + 0.241895i
\(753\) 0 0
\(754\) −204.000 353.338i −0.00985311 0.0170661i
\(755\) 11360.0 0.547593
\(756\) 0 0
\(757\) −19066.0 −0.915410 −0.457705 0.889104i \(-0.651328\pi\)
−0.457705 + 0.889104i \(0.651328\pi\)
\(758\) −3404.00 5895.90i −0.163112 0.282518i
\(759\) 0 0
\(760\) −1520.00 + 2632.72i −0.0725476 + 0.125656i
\(761\) 3429.00 5939.20i 0.163339 0.282912i −0.772725 0.634741i \(-0.781107\pi\)
0.936064 + 0.351829i \(0.114440\pi\)
\(762\) 0 0
\(763\) 15520.0 + 26881.4i 0.736385 + 1.27546i
\(764\) 11136.0 0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) −11220.0 19433.6i −0.528202 0.914872i
\(768\) 0 0
\(769\) −11089.0 + 19206.7i −0.519999 + 0.900665i 0.479730 + 0.877416i \(0.340735\pi\)
−0.999730 + 0.0232494i \(0.992599\pi\)
\(770\) 9600.00 16627.7i 0.449299 0.778208i
\(771\) 0 0
\(772\) −1828.00 3166.19i −0.0852217 0.147608i
\(773\) −14286.0 −0.664724 −0.332362 0.943152i \(-0.607846\pi\)
−0.332362 + 0.943152i \(0.607846\pi\)
\(774\) 0 0
\(775\) −5800.00 −0.268829
\(776\) −776.000 1344.07i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) 1566.00 2712.39i 0.0721643 0.124992i
\(779\) −8892.00 + 15401.4i −0.408972 + 0.708360i
\(780\) 0 0
\(781\) 3600.00 + 6235.38<