Properties

Label 810.4.e.d.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-4,-5,0,34,16,0,20,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.d.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(17.0000 - 29.4449i) q^{7} +8.00000 q^{8} +10.0000 q^{10} +(24.0000 - 41.5692i) q^{11} +(35.0000 + 60.6218i) q^{13} +(34.0000 + 58.8897i) q^{14} +(-8.00000 + 13.8564i) q^{16} -27.0000 q^{17} +119.000 q^{19} +(-10.0000 + 17.3205i) q^{20} +(48.0000 + 83.1384i) q^{22} +(25.5000 + 44.1673i) q^{23} +(-12.5000 + 21.6506i) q^{25} -140.000 q^{26} -136.000 q^{28} +(15.0000 - 25.9808i) q^{29} +(66.5000 + 115.181i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(27.0000 - 46.7654i) q^{34} -170.000 q^{35} +218.000 q^{37} +(-119.000 + 206.114i) q^{38} +(-20.0000 - 34.6410i) q^{40} +(-78.0000 - 135.100i) q^{41} +(44.0000 - 76.2102i) q^{43} -192.000 q^{44} -102.000 q^{46} +(258.000 - 446.869i) q^{47} +(-406.500 - 704.079i) q^{49} +(-25.0000 - 43.3013i) q^{50} +(140.000 - 242.487i) q^{52} -639.000 q^{53} -240.000 q^{55} +(136.000 - 235.559i) q^{56} +(30.0000 + 51.9615i) q^{58} +(327.000 + 566.381i) q^{59} +(-230.500 + 399.238i) q^{61} -266.000 q^{62} +64.0000 q^{64} +(175.000 - 303.109i) q^{65} +(-91.0000 - 157.617i) q^{67} +(54.0000 + 93.5307i) q^{68} +(170.000 - 294.449i) q^{70} +900.000 q^{71} +704.000 q^{73} +(-218.000 + 377.587i) q^{74} +(-238.000 - 412.228i) q^{76} +(-816.000 - 1413.35i) q^{77} +(687.500 - 1190.78i) q^{79} +80.0000 q^{80} +312.000 q^{82} +(-457.500 + 792.413i) q^{83} +(67.5000 + 116.913i) q^{85} +(88.0000 + 152.420i) q^{86} +(192.000 - 332.554i) q^{88} -1116.00 q^{89} +2380.00 q^{91} +(102.000 - 176.669i) q^{92} +(516.000 + 893.738i) q^{94} +(-297.500 - 515.285i) q^{95} +(8.00000 - 13.8564i) q^{97} +1626.00 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} - 5 q^{5} + 34 q^{7} + 16 q^{8} + 20 q^{10} + 48 q^{11} + 70 q^{13} + 68 q^{14} - 16 q^{16} - 54 q^{17} + 238 q^{19} - 20 q^{20} + 96 q^{22} + 51 q^{23} - 25 q^{25} - 280 q^{26}+ \cdots + 3252 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 17.0000 29.4449i 0.917914 1.58987i 0.115335 0.993327i \(-0.463206\pi\)
0.802578 0.596547i \(-0.203461\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) 24.0000 41.5692i 0.657843 1.13942i −0.323330 0.946286i \(-0.604802\pi\)
0.981173 0.193131i \(-0.0618643\pi\)
\(12\) 0 0
\(13\) 35.0000 + 60.6218i 0.746712 + 1.29334i 0.949391 + 0.314098i \(0.101702\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(14\) 34.0000 + 58.8897i 0.649063 + 1.12421i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −27.0000 −0.385204 −0.192602 0.981277i \(-0.561693\pi\)
−0.192602 + 0.981277i \(0.561693\pi\)
\(18\) 0 0
\(19\) 119.000 1.43687 0.718433 0.695596i \(-0.244859\pi\)
0.718433 + 0.695596i \(0.244859\pi\)
\(20\) −10.0000 + 17.3205i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) 48.0000 + 83.1384i 0.465165 + 0.805690i
\(23\) 25.5000 + 44.1673i 0.231179 + 0.400414i 0.958155 0.286249i \(-0.0924084\pi\)
−0.726976 + 0.686663i \(0.759075\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) −140.000 −1.05601
\(27\) 0 0
\(28\) −136.000 −0.917914
\(29\) 15.0000 25.9808i 0.0960493 0.166362i −0.813997 0.580869i \(-0.802713\pi\)
0.910046 + 0.414507i \(0.136046\pi\)
\(30\) 0 0
\(31\) 66.5000 + 115.181i 0.385282 + 0.667329i 0.991808 0.127735i \(-0.0407707\pi\)
−0.606526 + 0.795064i \(0.707437\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 27.0000 46.7654i 0.136190 0.235888i
\(35\) −170.000 −0.821007
\(36\) 0 0
\(37\) 218.000 0.968621 0.484311 0.874896i \(-0.339070\pi\)
0.484311 + 0.874896i \(0.339070\pi\)
\(38\) −119.000 + 206.114i −0.508009 + 0.879898i
\(39\) 0 0
\(40\) −20.0000 34.6410i −0.0790569 0.136931i
\(41\) −78.0000 135.100i −0.297111 0.514611i 0.678363 0.734727i \(-0.262690\pi\)
−0.975474 + 0.220116i \(0.929356\pi\)
\(42\) 0 0
\(43\) 44.0000 76.2102i 0.156045 0.270278i −0.777394 0.629014i \(-0.783459\pi\)
0.933439 + 0.358736i \(0.116792\pi\)
\(44\) −192.000 −0.657843
\(45\) 0 0
\(46\) −102.000 −0.326937
\(47\) 258.000 446.869i 0.800706 1.38686i −0.118447 0.992960i \(-0.537791\pi\)
0.919152 0.393903i \(-0.128875\pi\)
\(48\) 0 0
\(49\) −406.500 704.079i −1.18513 2.05271i
\(50\) −25.0000 43.3013i −0.0707107 0.122474i
\(51\) 0 0
\(52\) 140.000 242.487i 0.373356 0.646671i
\(53\) −639.000 −1.65610 −0.828051 0.560653i \(-0.810550\pi\)
−0.828051 + 0.560653i \(0.810550\pi\)
\(54\) 0 0
\(55\) −240.000 −0.588393
\(56\) 136.000 235.559i 0.324532 0.562105i
\(57\) 0 0
\(58\) 30.0000 + 51.9615i 0.0679171 + 0.117636i
\(59\) 327.000 + 566.381i 0.721555 + 1.24977i 0.960376 + 0.278707i \(0.0899059\pi\)
−0.238821 + 0.971064i \(0.576761\pi\)
\(60\) 0 0
\(61\) −230.500 + 399.238i −0.483811 + 0.837986i −0.999827 0.0185931i \(-0.994081\pi\)
0.516016 + 0.856579i \(0.327415\pi\)
\(62\) −266.000 −0.544872
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 175.000 303.109i 0.333940 0.578400i
\(66\) 0 0
\(67\) −91.0000 157.617i −0.165932 0.287402i 0.771054 0.636770i \(-0.219730\pi\)
−0.936986 + 0.349368i \(0.886396\pi\)
\(68\) 54.0000 + 93.5307i 0.0963009 + 0.166798i
\(69\) 0 0
\(70\) 170.000 294.449i 0.290270 0.502762i
\(71\) 900.000 1.50437 0.752186 0.658951i \(-0.229000\pi\)
0.752186 + 0.658951i \(0.229000\pi\)
\(72\) 0 0
\(73\) 704.000 1.12873 0.564363 0.825527i \(-0.309122\pi\)
0.564363 + 0.825527i \(0.309122\pi\)
\(74\) −218.000 + 377.587i −0.342459 + 0.593157i
\(75\) 0 0
\(76\) −238.000 412.228i −0.359217 0.622182i
\(77\) −816.000 1413.35i −1.20769 2.09177i
\(78\) 0 0
\(79\) 687.500 1190.78i 0.979111 1.69587i 0.313471 0.949598i \(-0.398508\pi\)
0.665640 0.746273i \(-0.268159\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) 312.000 0.420178
\(83\) −457.500 + 792.413i −0.605026 + 1.04794i 0.387022 + 0.922071i \(0.373504\pi\)
−0.992047 + 0.125865i \(0.959829\pi\)
\(84\) 0 0
\(85\) 67.5000 + 116.913i 0.0861342 + 0.149189i
\(86\) 88.0000 + 152.420i 0.110341 + 0.191115i
\(87\) 0 0
\(88\) 192.000 332.554i 0.232583 0.402845i
\(89\) −1116.00 −1.32917 −0.664583 0.747215i \(-0.731391\pi\)
−0.664583 + 0.747215i \(0.731391\pi\)
\(90\) 0 0
\(91\) 2380.00 2.74167
\(92\) 102.000 176.669i 0.115590 0.200207i
\(93\) 0 0
\(94\) 516.000 + 893.738i 0.566184 + 0.980660i
\(95\) −297.500 515.285i −0.321293 0.556496i
\(96\) 0 0
\(97\) 8.00000 13.8564i 0.00837399 0.0145042i −0.861808 0.507235i \(-0.830668\pi\)
0.870182 + 0.492730i \(0.164001\pi\)
\(98\) 1626.00 1.67603
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −174.000 + 301.377i −0.171422 + 0.296912i −0.938917 0.344143i \(-0.888170\pi\)
0.767495 + 0.641055i \(0.221503\pi\)
\(102\) 0 0
\(103\) 206.000 + 356.802i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 280.000 + 484.974i 0.264002 + 0.457266i
\(105\) 0 0
\(106\) 639.000 1106.78i 0.585520 1.01415i
\(107\) −900.000 −0.813143 −0.406571 0.913619i \(-0.633276\pi\)
−0.406571 + 0.913619i \(0.633276\pi\)
\(108\) 0 0
\(109\) −115.000 −0.101055 −0.0505275 0.998723i \(-0.516090\pi\)
−0.0505275 + 0.998723i \(0.516090\pi\)
\(110\) 240.000 415.692i 0.208028 0.360315i
\(111\) 0 0
\(112\) 272.000 + 471.118i 0.229478 + 0.397468i
\(113\) −483.000 836.581i −0.402096 0.696450i 0.591883 0.806024i \(-0.298385\pi\)
−0.993979 + 0.109574i \(0.965051\pi\)
\(114\) 0 0
\(115\) 127.500 220.836i 0.103386 0.179071i
\(116\) −120.000 −0.0960493
\(117\) 0 0
\(118\) −1308.00 −1.02043
\(119\) −459.000 + 795.011i −0.353584 + 0.612425i
\(120\) 0 0
\(121\) −486.500 842.643i −0.365515 0.633090i
\(122\) −461.000 798.475i −0.342106 0.592546i
\(123\) 0 0
\(124\) 266.000 460.726i 0.192641 0.333664i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1406.00 0.982381 0.491190 0.871052i \(-0.336562\pi\)
0.491190 + 0.871052i \(0.336562\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 350.000 + 606.218i 0.236131 + 0.408991i
\(131\) −123.000 213.042i −0.0820348 0.142088i 0.822089 0.569359i \(-0.192809\pi\)
−0.904124 + 0.427271i \(0.859475\pi\)
\(132\) 0 0
\(133\) 2023.00 3503.94i 1.31892 2.28444i
\(134\) 364.000 0.234663
\(135\) 0 0
\(136\) −216.000 −0.136190
\(137\) −259.500 + 449.467i −0.161829 + 0.280296i −0.935525 0.353261i \(-0.885073\pi\)
0.773696 + 0.633557i \(0.218406\pi\)
\(138\) 0 0
\(139\) −658.000 1139.69i −0.401517 0.695447i 0.592392 0.805650i \(-0.298184\pi\)
−0.993909 + 0.110202i \(0.964850\pi\)
\(140\) 340.000 + 588.897i 0.205252 + 0.355506i
\(141\) 0 0
\(142\) −900.000 + 1558.85i −0.531876 + 0.921235i
\(143\) 3360.00 1.96488
\(144\) 0 0
\(145\) −150.000 −0.0859091
\(146\) −704.000 + 1219.36i −0.399065 + 0.691200i
\(147\) 0 0
\(148\) −436.000 755.174i −0.242155 0.419425i
\(149\) −186.000 322.161i −0.102267 0.177131i 0.810352 0.585944i \(-0.199276\pi\)
−0.912618 + 0.408813i \(0.865943\pi\)
\(150\) 0 0
\(151\) 728.000 1260.93i 0.392343 0.679558i −0.600415 0.799689i \(-0.704998\pi\)
0.992758 + 0.120130i \(0.0383313\pi\)
\(152\) 952.000 0.508009
\(153\) 0 0
\(154\) 3264.00 1.70793
\(155\) 332.500 575.907i 0.172304 0.298438i
\(156\) 0 0
\(157\) −478.000 827.920i −0.242984 0.420861i 0.718579 0.695446i \(-0.244793\pi\)
−0.961563 + 0.274584i \(0.911460\pi\)
\(158\) 1375.00 + 2381.57i 0.692336 + 1.19916i
\(159\) 0 0
\(160\) −80.0000 + 138.564i −0.0395285 + 0.0684653i
\(161\) 1734.00 0.848810
\(162\) 0 0
\(163\) −2446.00 −1.17537 −0.587686 0.809089i \(-0.699961\pi\)
−0.587686 + 0.809089i \(0.699961\pi\)
\(164\) −312.000 + 540.400i −0.148556 + 0.257306i
\(165\) 0 0
\(166\) −915.000 1584.83i −0.427818 0.741002i
\(167\) 1555.50 + 2694.21i 0.720768 + 1.24841i 0.960692 + 0.277615i \(0.0895439\pi\)
−0.239925 + 0.970791i \(0.577123\pi\)
\(168\) 0 0
\(169\) −1351.50 + 2340.87i −0.615157 + 1.06548i
\(170\) −270.000 −0.121812
\(171\) 0 0
\(172\) −352.000 −0.156045
\(173\) 1198.50 2075.86i 0.526707 0.912283i −0.472809 0.881165i \(-0.656760\pi\)
0.999516 0.0311179i \(-0.00990673\pi\)
\(174\) 0 0
\(175\) 425.000 + 736.122i 0.183583 + 0.317975i
\(176\) 384.000 + 665.108i 0.164461 + 0.284854i
\(177\) 0 0
\(178\) 1116.00 1932.97i 0.469931 0.813945i
\(179\) −540.000 −0.225483 −0.112742 0.993624i \(-0.535963\pi\)
−0.112742 + 0.993624i \(0.535963\pi\)
\(180\) 0 0
\(181\) 2333.00 0.958069 0.479035 0.877796i \(-0.340987\pi\)
0.479035 + 0.877796i \(0.340987\pi\)
\(182\) −2380.00 + 4122.28i −0.969326 + 1.67892i
\(183\) 0 0
\(184\) 204.000 + 353.338i 0.0817341 + 0.141568i
\(185\) −545.000 943.968i −0.216590 0.375145i
\(186\) 0 0
\(187\) −648.000 + 1122.37i −0.253403 + 0.438908i
\(188\) −2064.00 −0.800706
\(189\) 0 0
\(190\) 1190.00 0.454377
\(191\) 1365.00 2364.25i 0.517110 0.895660i −0.482693 0.875790i \(-0.660341\pi\)
0.999803 0.0198705i \(-0.00632538\pi\)
\(192\) 0 0
\(193\) 2285.00 + 3957.74i 0.852217 + 1.47608i 0.879203 + 0.476447i \(0.158076\pi\)
−0.0269858 + 0.999636i \(0.508591\pi\)
\(194\) 16.0000 + 27.7128i 0.00592130 + 0.0102560i
\(195\) 0 0
\(196\) −1626.00 + 2816.31i −0.592566 + 1.02635i
\(197\) 675.000 0.244121 0.122060 0.992523i \(-0.461050\pi\)
0.122060 + 0.992523i \(0.461050\pi\)
\(198\) 0 0
\(199\) −3112.00 −1.10856 −0.554281 0.832330i \(-0.687007\pi\)
−0.554281 + 0.832330i \(0.687007\pi\)
\(200\) −100.000 + 173.205i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −348.000 602.754i −0.121214 0.209949i
\(203\) −510.000 883.346i −0.176330 0.305412i
\(204\) 0 0
\(205\) −390.000 + 675.500i −0.132872 + 0.230141i
\(206\) −824.000 −0.278693
\(207\) 0 0
\(208\) −1120.00 −0.373356
\(209\) 2856.00 4946.74i 0.945233 1.63719i
\(210\) 0 0
\(211\) −1220.50 2113.97i −0.398212 0.689723i 0.595294 0.803508i \(-0.297036\pi\)
−0.993505 + 0.113785i \(0.963702\pi\)
\(212\) 1278.00 + 2213.56i 0.414025 + 0.717113i
\(213\) 0 0
\(214\) 900.000 1558.85i 0.287489 0.497946i
\(215\) −440.000 −0.139571
\(216\) 0 0
\(217\) 4522.00 1.41462
\(218\) 115.000 199.186i 0.0357284 0.0618833i
\(219\) 0 0
\(220\) 480.000 + 831.384i 0.147098 + 0.254781i
\(221\) −945.000 1636.79i −0.287636 0.498200i
\(222\) 0 0
\(223\) 1709.00 2960.07i 0.513198 0.888885i −0.486685 0.873578i \(-0.661794\pi\)
0.999883 0.0153071i \(-0.00487260\pi\)
\(224\) −1088.00 −0.324532
\(225\) 0 0
\(226\) 1932.00 0.568649
\(227\) 2188.50 3790.59i 0.639894 1.10833i −0.345562 0.938396i \(-0.612312\pi\)
0.985456 0.169932i \(-0.0543549\pi\)
\(228\) 0 0
\(229\) −2093.50 3626.05i −0.604115 1.04636i −0.992191 0.124731i \(-0.960193\pi\)
0.388075 0.921628i \(-0.373140\pi\)
\(230\) 255.000 + 441.673i 0.0731052 + 0.126622i
\(231\) 0 0
\(232\) 120.000 207.846i 0.0339586 0.0588180i
\(233\) −1098.00 −0.308723 −0.154361 0.988014i \(-0.549332\pi\)
−0.154361 + 0.988014i \(0.549332\pi\)
\(234\) 0 0
\(235\) −2580.00 −0.716173
\(236\) 1308.00 2265.52i 0.360778 0.624885i
\(237\) 0 0
\(238\) −918.000 1590.02i −0.250021 0.433050i
\(239\) −3237.00 5606.65i −0.876084 1.51742i −0.855603 0.517632i \(-0.826814\pi\)
−0.0204809 0.999790i \(-0.506520\pi\)
\(240\) 0 0
\(241\) −1625.50 + 2815.45i −0.434472 + 0.752527i −0.997252 0.0740793i \(-0.976398\pi\)
0.562781 + 0.826606i \(0.309732\pi\)
\(242\) 1946.00 0.516916
\(243\) 0 0
\(244\) 1844.00 0.483811
\(245\) −2032.50 + 3520.39i −0.530007 + 0.917999i
\(246\) 0 0
\(247\) 4165.00 + 7213.99i 1.07293 + 1.85836i
\(248\) 532.000 + 921.451i 0.136218 + 0.235936i
\(249\) 0 0
\(250\) −125.000 + 216.506i −0.0316228 + 0.0547723i
\(251\) 1728.00 0.434543 0.217272 0.976111i \(-0.430284\pi\)
0.217272 + 0.976111i \(0.430284\pi\)
\(252\) 0 0
\(253\) 2448.00 0.608318
\(254\) −1406.00 + 2435.26i −0.347324 + 0.601583i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2734.50 + 4736.29i 0.663710 + 1.14958i 0.979633 + 0.200794i \(0.0643523\pi\)
−0.315924 + 0.948785i \(0.602314\pi\)
\(258\) 0 0
\(259\) 3706.00 6418.98i 0.889111 1.53998i
\(260\) −1400.00 −0.333940
\(261\) 0 0
\(262\) 492.000 0.116015
\(263\) 1608.00 2785.14i 0.377010 0.653000i −0.613616 0.789605i \(-0.710286\pi\)
0.990626 + 0.136605i \(0.0436190\pi\)
\(264\) 0 0
\(265\) 1597.50 + 2766.95i 0.370316 + 0.641406i
\(266\) 4046.00 + 7007.88i 0.932617 + 1.61534i
\(267\) 0 0
\(268\) −364.000 + 630.466i −0.0829658 + 0.143701i
\(269\) −8010.00 −1.81553 −0.907766 0.419476i \(-0.862214\pi\)
−0.907766 + 0.419476i \(0.862214\pi\)
\(270\) 0 0
\(271\) −3805.00 −0.852905 −0.426453 0.904510i \(-0.640237\pi\)
−0.426453 + 0.904510i \(0.640237\pi\)
\(272\) 216.000 374.123i 0.0481505 0.0833990i
\(273\) 0 0
\(274\) −519.000 898.934i −0.114430 0.198199i
\(275\) 600.000 + 1039.23i 0.131569 + 0.227883i
\(276\) 0 0
\(277\) −1612.00 + 2792.07i −0.349660 + 0.605628i −0.986189 0.165624i \(-0.947036\pi\)
0.636529 + 0.771252i \(0.280369\pi\)
\(278\) 2632.00 0.567830
\(279\) 0 0
\(280\) −1360.00 −0.290270
\(281\) 2265.00 3923.10i 0.480849 0.832855i −0.518910 0.854829i \(-0.673662\pi\)
0.999759 + 0.0219742i \(0.00699518\pi\)
\(282\) 0 0
\(283\) 1646.00 + 2850.96i 0.345740 + 0.598840i 0.985488 0.169745i \(-0.0542944\pi\)
−0.639748 + 0.768585i \(0.720961\pi\)
\(284\) −1800.00 3117.69i −0.376093 0.651412i
\(285\) 0 0
\(286\) −3360.00 + 5819.69i −0.694689 + 1.20324i
\(287\) −5304.00 −1.09089
\(288\) 0 0
\(289\) −4184.00 −0.851618
\(290\) 150.000 259.808i 0.0303735 0.0526084i
\(291\) 0 0
\(292\) −1408.00 2438.73i −0.282181 0.488753i
\(293\) 3976.50 + 6887.50i 0.792866 + 1.37328i 0.924186 + 0.381943i \(0.124745\pi\)
−0.131320 + 0.991340i \(0.541922\pi\)
\(294\) 0 0
\(295\) 1635.00 2831.90i 0.322689 0.558914i
\(296\) 1744.00 0.342459
\(297\) 0 0
\(298\) 744.000 0.144627
\(299\) −1785.00 + 3091.71i −0.345248 + 0.597987i
\(300\) 0 0
\(301\) −1496.00 2591.15i −0.286472 0.496184i
\(302\) 1456.00 + 2521.87i 0.277428 + 0.480520i
\(303\) 0 0
\(304\) −952.000 + 1648.91i −0.179608 + 0.311091i
\(305\) 2305.00 0.432734
\(306\) 0 0
\(307\) −5290.00 −0.983441 −0.491720 0.870753i \(-0.663632\pi\)
−0.491720 + 0.870753i \(0.663632\pi\)
\(308\) −3264.00 + 5653.41i −0.603843 + 1.04589i
\(309\) 0 0
\(310\) 665.000 + 1151.81i 0.121837 + 0.211028i
\(311\) −2679.00 4640.16i −0.488464 0.846044i 0.511448 0.859314i \(-0.329109\pi\)
−0.999912 + 0.0132703i \(0.995776\pi\)
\(312\) 0 0
\(313\) −2800.00 + 4849.74i −0.505640 + 0.875794i 0.494339 + 0.869269i \(0.335410\pi\)
−0.999979 + 0.00652494i \(0.997923\pi\)
\(314\) 1912.00 0.343632
\(315\) 0 0
\(316\) −5500.00 −0.979111
\(317\) −3670.50 + 6357.49i −0.650334 + 1.12641i 0.332708 + 0.943030i \(0.392038\pi\)
−0.983042 + 0.183381i \(0.941296\pi\)
\(318\) 0 0
\(319\) −720.000 1247.08i −0.126371 0.218881i
\(320\) −160.000 277.128i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) −1734.00 + 3003.38i −0.300100 + 0.519788i
\(323\) −3213.00 −0.553486
\(324\) 0 0
\(325\) −1750.00 −0.298685
\(326\) 2446.00 4236.60i 0.415556 0.719765i
\(327\) 0 0
\(328\) −624.000 1080.80i −0.105045 0.181943i
\(329\) −8772.00 15193.5i −1.46996 2.54604i
\(330\) 0 0
\(331\) −190.000 + 329.090i −0.0315509 + 0.0546477i −0.881370 0.472427i \(-0.843378\pi\)
0.849819 + 0.527075i \(0.176711\pi\)
\(332\) 3660.00 0.605026
\(333\) 0 0
\(334\) −6222.00 −1.01932
\(335\) −455.000 + 788.083i −0.0742069 + 0.128530i
\(336\) 0 0
\(337\) −217.000 375.855i −0.0350764 0.0607541i 0.847954 0.530069i \(-0.177834\pi\)
−0.883031 + 0.469315i \(0.844501\pi\)
\(338\) −2703.00 4681.73i −0.434982 0.753410i
\(339\) 0 0
\(340\) 270.000 467.654i 0.0430671 0.0745944i
\(341\) 6384.00 1.01382
\(342\) 0 0
\(343\) −15980.0 −2.51557
\(344\) 352.000 609.682i 0.0551703 0.0955577i
\(345\) 0 0
\(346\) 2397.00 + 4151.73i 0.372438 + 0.645081i
\(347\) −4002.00 6931.67i −0.619131 1.07237i −0.989645 0.143540i \(-0.954151\pi\)
0.370513 0.928827i \(-0.379182\pi\)
\(348\) 0 0
\(349\) −554.500 + 960.422i −0.0850479 + 0.147307i −0.905412 0.424535i \(-0.860438\pi\)
0.820364 + 0.571842i \(0.193771\pi\)
\(350\) −1700.00 −0.259625
\(351\) 0 0
\(352\) −1536.00 −0.232583
\(353\) 3831.00 6635.49i 0.577630 1.00049i −0.418120 0.908392i \(-0.637311\pi\)
0.995750 0.0920935i \(-0.0293559\pi\)
\(354\) 0 0
\(355\) −2250.00 3897.11i −0.336388 0.582640i
\(356\) 2232.00 + 3865.94i 0.332291 + 0.575546i
\(357\) 0 0
\(358\) 540.000 935.307i 0.0797204 0.138080i
\(359\) −8478.00 −1.24638 −0.623192 0.782069i \(-0.714164\pi\)
−0.623192 + 0.782069i \(0.714164\pi\)
\(360\) 0 0
\(361\) 7302.00 1.06459
\(362\) −2333.00 + 4040.87i −0.338729 + 0.586695i
\(363\) 0 0
\(364\) −4760.00 8244.56i −0.685417 1.18718i
\(365\) −1760.00 3048.41i −0.252391 0.437154i
\(366\) 0 0
\(367\) −6643.00 + 11506.0i −0.944855 + 1.63654i −0.188814 + 0.982013i \(0.560464\pi\)
−0.756041 + 0.654524i \(0.772869\pi\)
\(368\) −816.000 −0.115590
\(369\) 0 0
\(370\) 2180.00 0.306305
\(371\) −10863.0 + 18815.3i −1.52016 + 2.63299i
\(372\) 0 0
\(373\) −1540.00 2667.36i −0.213775 0.370270i 0.739118 0.673576i \(-0.235243\pi\)
−0.952893 + 0.303307i \(0.901909\pi\)
\(374\) −1296.00 2244.74i −0.179183 0.310355i
\(375\) 0 0
\(376\) 2064.00 3574.95i 0.283092 0.490330i
\(377\) 2100.00 0.286885
\(378\) 0 0
\(379\) 10109.0 1.37009 0.685045 0.728500i \(-0.259782\pi\)
0.685045 + 0.728500i \(0.259782\pi\)
\(380\) −1190.00 + 2061.14i −0.160647 + 0.278248i
\(381\) 0 0
\(382\) 2730.00 + 4728.50i 0.365652 + 0.633327i
\(383\) 4363.50 + 7557.80i 0.582153 + 1.00832i 0.995224 + 0.0976191i \(0.0311227\pi\)
−0.413071 + 0.910699i \(0.635544\pi\)
\(384\) 0 0
\(385\) −4080.00 + 7066.77i −0.540094 + 0.935470i
\(386\) −9140.00 −1.20522
\(387\) 0 0
\(388\) −64.0000 −0.00837399
\(389\) 1356.00 2348.66i 0.176740 0.306123i −0.764022 0.645190i \(-0.776778\pi\)
0.940762 + 0.339067i \(0.110111\pi\)
\(390\) 0 0
\(391\) −688.500 1192.52i −0.0890510 0.154241i
\(392\) −3252.00 5632.63i −0.419007 0.725742i
\(393\) 0 0
\(394\) −675.000 + 1169.13i −0.0863097 + 0.149493i
\(395\) −6875.00 −0.875744
\(396\) 0 0
\(397\) −8818.00 −1.11477 −0.557384 0.830255i \(-0.688195\pi\)
−0.557384 + 0.830255i \(0.688195\pi\)
\(398\) 3112.00 5390.14i 0.391936 0.678853i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) −1653.00 2863.08i −0.205853 0.356547i 0.744551 0.667565i \(-0.232663\pi\)
−0.950404 + 0.311018i \(0.899330\pi\)
\(402\) 0 0
\(403\) −4655.00 + 8062.70i −0.575390 + 0.996604i
\(404\) 1392.00 0.171422
\(405\) 0 0
\(406\) 2040.00 0.249368
\(407\) 5232.00 9062.09i 0.637201 1.10366i
\(408\) 0 0
\(409\) −3200.50 5543.43i −0.386930 0.670183i 0.605105 0.796146i \(-0.293131\pi\)
−0.992035 + 0.125963i \(0.959798\pi\)
\(410\) −780.000 1351.00i −0.0939548 0.162734i
\(411\) 0 0
\(412\) 824.000 1427.21i 0.0985329 0.170664i
\(413\) 22236.0 2.64930
\(414\) 0 0
\(415\) 4575.00 0.541152
\(416\) 1120.00 1939.90i 0.132001 0.228633i
\(417\) 0 0
\(418\) 5712.00 + 9893.47i 0.668381 + 1.15767i
\(419\) 1128.00 + 1953.75i 0.131519 + 0.227797i 0.924262 0.381758i \(-0.124681\pi\)
−0.792743 + 0.609556i \(0.791348\pi\)
\(420\) 0 0
\(421\) −905.500 + 1568.37i −0.104825 + 0.181562i −0.913667 0.406464i \(-0.866762\pi\)
0.808842 + 0.588027i \(0.200095\pi\)
\(422\) 4882.00 0.563156
\(423\) 0 0
\(424\) −5112.00 −0.585520
\(425\) 337.500 584.567i 0.0385204 0.0667192i
\(426\) 0 0
\(427\) 7837.00 + 13574.1i 0.888194 + 1.53840i
\(428\) 1800.00 + 3117.69i 0.203286 + 0.352101i
\(429\) 0 0
\(430\) 440.000 762.102i 0.0493458 0.0854694i
\(431\) −5454.00 −0.609536 −0.304768 0.952427i \(-0.598579\pi\)
−0.304768 + 0.952427i \(0.598579\pi\)
\(432\) 0 0
\(433\) 2990.00 0.331848 0.165924 0.986139i \(-0.446939\pi\)
0.165924 + 0.986139i \(0.446939\pi\)
\(434\) −4522.00 + 7832.33i −0.500145 + 0.866277i
\(435\) 0 0
\(436\) 230.000 + 398.372i 0.0252638 + 0.0437581i
\(437\) 3034.50 + 5255.91i 0.332174 + 0.575341i
\(438\) 0 0
\(439\) −4685.50 + 8115.52i −0.509400 + 0.882307i 0.490540 + 0.871418i \(0.336799\pi\)
−0.999941 + 0.0108887i \(0.996534\pi\)
\(440\) −1920.00 −0.208028
\(441\) 0 0
\(442\) 3780.00 0.406779
\(443\) −3085.50 + 5344.24i −0.330918 + 0.573166i −0.982692 0.185247i \(-0.940692\pi\)
0.651774 + 0.758413i \(0.274025\pi\)
\(444\) 0 0
\(445\) 2790.00 + 4832.42i 0.297211 + 0.514784i
\(446\) 3418.00 + 5920.15i 0.362886 + 0.628536i
\(447\) 0 0
\(448\) 1088.00 1884.47i 0.114739 0.198734i
\(449\) 4122.00 0.433250 0.216625 0.976255i \(-0.430495\pi\)
0.216625 + 0.976255i \(0.430495\pi\)
\(450\) 0 0
\(451\) −7488.00 −0.781810
\(452\) −1932.00 + 3346.32i −0.201048 + 0.348225i
\(453\) 0 0
\(454\) 4377.00 + 7581.19i 0.452473 + 0.783706i
\(455\) −5950.00 10305.7i −0.613056 1.06184i
\(456\) 0 0
\(457\) −3538.00 + 6128.00i −0.362146 + 0.627255i −0.988314 0.152433i \(-0.951289\pi\)
0.626168 + 0.779688i \(0.284622\pi\)
\(458\) 8374.00 0.854348
\(459\) 0 0
\(460\) −1020.00 −0.103386
\(461\) −381.000 + 659.911i −0.0384923 + 0.0666706i −0.884630 0.466294i \(-0.845589\pi\)
0.846137 + 0.532965i \(0.178922\pi\)
\(462\) 0 0
\(463\) −4411.00 7640.08i −0.442757 0.766878i 0.555136 0.831760i \(-0.312666\pi\)
−0.997893 + 0.0648819i \(0.979333\pi\)
\(464\) 240.000 + 415.692i 0.0240123 + 0.0415906i
\(465\) 0 0
\(466\) 1098.00 1901.79i 0.109150 0.189053i
\(467\) −4977.00 −0.493165 −0.246583 0.969122i \(-0.579308\pi\)
−0.246583 + 0.969122i \(0.579308\pi\)
\(468\) 0 0
\(469\) −6188.00 −0.609244
\(470\) 2580.00 4468.69i 0.253205 0.438565i
\(471\) 0 0
\(472\) 2616.00 + 4531.04i 0.255108 + 0.441861i
\(473\) −2112.00 3658.09i −0.205306 0.355601i
\(474\) 0 0
\(475\) −1487.50 + 2576.43i −0.143687 + 0.248873i
\(476\) 3672.00 0.353584
\(477\) 0 0
\(478\) 12948.0 1.23897
\(479\) −5052.00 + 8750.32i −0.481903 + 0.834681i −0.999784 0.0207715i \(-0.993388\pi\)
0.517881 + 0.855453i \(0.326721\pi\)
\(480\) 0 0
\(481\) 7630.00 + 13215.5i 0.723281 + 1.25276i
\(482\) −3251.00 5630.90i −0.307218 0.532117i
\(483\) 0 0
\(484\) −1946.00 + 3370.57i −0.182757 + 0.316545i
\(485\) −80.0000 −0.00748992
\(486\) 0 0
\(487\) 14924.0 1.38865 0.694323 0.719663i \(-0.255704\pi\)
0.694323 + 0.719663i \(0.255704\pi\)
\(488\) −1844.00 + 3193.90i −0.171053 + 0.296273i
\(489\) 0 0
\(490\) −4065.00 7040.79i −0.374771 0.649123i
\(491\) −573.000 992.465i −0.0526662 0.0912206i 0.838490 0.544916i \(-0.183439\pi\)
−0.891157 + 0.453696i \(0.850105\pi\)
\(492\) 0 0
\(493\) −405.000 + 701.481i −0.0369985 + 0.0640834i
\(494\) −16660.0 −1.51735
\(495\) 0 0
\(496\) −2128.00 −0.192641
\(497\) 15300.0 26500.4i 1.38088 2.39176i
\(498\) 0 0
\(499\) 7482.50 + 12960.1i 0.671268 + 1.16267i 0.977545 + 0.210728i \(0.0675833\pi\)
−0.306277 + 0.951942i \(0.599083\pi\)
\(500\) −250.000 433.013i −0.0223607 0.0387298i
\(501\) 0 0
\(502\) −1728.00 + 2992.98i −0.153634 + 0.266102i
\(503\) 15525.0 1.37619 0.688097 0.725619i \(-0.258446\pi\)
0.688097 + 0.725619i \(0.258446\pi\)
\(504\) 0 0
\(505\) 1740.00 0.153325
\(506\) −2448.00 + 4240.06i −0.215073 + 0.372517i
\(507\) 0 0
\(508\) −2812.00 4870.53i −0.245595 0.425383i
\(509\) 4098.00 + 7097.94i 0.356858 + 0.618096i 0.987434 0.158031i \(-0.0505147\pi\)
−0.630576 + 0.776127i \(0.717181\pi\)
\(510\) 0 0
\(511\) 11968.0 20729.2i 1.03607 1.79453i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −10938.0 −0.938627
\(515\) 1030.00 1784.01i 0.0881305 0.152647i
\(516\) 0 0
\(517\) −12384.0 21449.7i −1.05348 1.82468i
\(518\) 7412.00 + 12838.0i 0.628696 + 1.08893i
\(519\) 0 0
\(520\) 1400.00 2424.87i 0.118066 0.204495i
\(521\) 4932.00 0.414731 0.207365 0.978264i \(-0.433511\pi\)
0.207365 + 0.978264i \(0.433511\pi\)
\(522\) 0 0
\(523\) −5938.00 −0.496464 −0.248232 0.968701i \(-0.579850\pi\)
−0.248232 + 0.968701i \(0.579850\pi\)
\(524\) −492.000 + 852.169i −0.0410174 + 0.0710442i
\(525\) 0 0
\(526\) 3216.00 + 5570.28i 0.266586 + 0.461741i
\(527\) −1795.50 3109.90i −0.148412 0.257057i
\(528\) 0 0
\(529\) 4783.00 8284.40i 0.393113 0.680891i
\(530\) −6390.00 −0.523705
\(531\) 0 0
\(532\) −16184.0 −1.31892
\(533\) 5460.00 9457.00i 0.443713 0.768533i
\(534\) 0 0
\(535\) 2250.00 + 3897.11i 0.181824 + 0.314929i
\(536\) −728.000 1260.93i −0.0586657 0.101612i
\(537\) 0 0
\(538\) 8010.00 13873.7i 0.641888 1.11178i
\(539\) −39024.0 −3.11852
\(540\) 0 0
\(541\) −6730.00 −0.534834 −0.267417 0.963581i \(-0.586170\pi\)
−0.267417 + 0.963581i \(0.586170\pi\)
\(542\) 3805.00 6590.45i 0.301547 0.522296i
\(543\) 0 0
\(544\) 432.000 + 748.246i 0.0340475 + 0.0589720i
\(545\) 287.500 + 497.965i 0.0225966 + 0.0391385i
\(546\) 0 0
\(547\) 8828.00 15290.5i 0.690051 1.19520i −0.281769 0.959482i \(-0.590921\pi\)
0.971821 0.235722i \(-0.0757454\pi\)
\(548\) 2076.00 0.161829
\(549\) 0 0
\(550\) −2400.00 −0.186066
\(551\) 1785.00 3091.71i 0.138010 0.239040i
\(552\) 0 0
\(553\) −23375.0 40486.7i −1.79748 3.11333i
\(554\) −3224.00 5584.13i −0.247247 0.428244i
\(555\) 0 0
\(556\) −2632.00 + 4558.76i −0.200758 + 0.347724i
\(557\) 7974.00 0.606587 0.303294 0.952897i \(-0.401914\pi\)
0.303294 + 0.952897i \(0.401914\pi\)
\(558\) 0 0
\(559\) 6160.00 0.466083
\(560\) 1360.00 2355.59i 0.102626 0.177753i
\(561\) 0 0
\(562\) 4530.00 + 7846.19i 0.340012 + 0.588917i
\(563\) 12666.0 + 21938.2i 0.948150 + 1.64224i 0.749319 + 0.662210i \(0.230381\pi\)
0.198831 + 0.980034i \(0.436286\pi\)
\(564\) 0 0
\(565\) −2415.00 + 4182.90i −0.179823 + 0.311462i
\(566\) −6584.00 −0.488951
\(567\) 0 0
\(568\) 7200.00 0.531876
\(569\) 519.000 898.934i 0.0382383 0.0662307i −0.846273 0.532750i \(-0.821159\pi\)
0.884511 + 0.466519i \(0.154492\pi\)
\(570\) 0 0
\(571\) −7835.50 13571.5i −0.574265 0.994657i −0.996121 0.0879937i \(-0.971954\pi\)
0.421856 0.906663i \(-0.361379\pi\)
\(572\) −6720.00 11639.4i −0.491219 0.850816i
\(573\) 0 0
\(574\) 5304.00 9186.80i 0.385688 0.668031i
\(575\) −1275.00 −0.0924716
\(576\) 0 0
\(577\) −916.000 −0.0660894 −0.0330447 0.999454i \(-0.510520\pi\)
−0.0330447 + 0.999454i \(0.510520\pi\)
\(578\) 4184.00 7246.90i 0.301092 0.521507i
\(579\) 0 0
\(580\) 300.000 + 519.615i 0.0214773 + 0.0371997i
\(581\) 15555.0 + 26942.1i 1.11072 + 1.92383i
\(582\) 0 0
\(583\) −15336.0 + 26562.7i −1.08945 + 1.88699i
\(584\) 5632.00 0.399065
\(585\) 0 0
\(586\) −15906.0 −1.12128
\(587\) −4570.50 + 7916.34i −0.321371 + 0.556631i −0.980771 0.195161i \(-0.937477\pi\)
0.659400 + 0.751792i \(0.270810\pi\)
\(588\) 0 0
\(589\) 7913.50 + 13706.6i 0.553599 + 0.958862i
\(590\) 3270.00 + 5663.81i 0.228176 + 0.395212i
\(591\) 0 0
\(592\) −1744.00 + 3020.70i −0.121078 + 0.209713i
\(593\) 5247.00 0.363353 0.181677 0.983358i \(-0.441848\pi\)
0.181677 + 0.983358i \(0.441848\pi\)
\(594\) 0 0
\(595\) 4590.00 0.316255
\(596\) −744.000 + 1288.65i −0.0511333 + 0.0885654i
\(597\) 0 0
\(598\) −3570.00 6183.42i −0.244127 0.422841i
\(599\) 12081.0 + 20924.9i 0.824067 + 1.42733i 0.902630 + 0.430417i \(0.141634\pi\)
−0.0785628 + 0.996909i \(0.525033\pi\)
\(600\) 0 0
\(601\) −7178.50 + 12433.5i −0.487217 + 0.843884i −0.999892 0.0146987i \(-0.995321\pi\)
0.512675 + 0.858582i \(0.328654\pi\)
\(602\) 5984.00 0.405132
\(603\) 0 0
\(604\) −5824.00 −0.392343
\(605\) −2432.50 + 4213.21i −0.163463 + 0.283126i
\(606\) 0 0
\(607\) −1576.00 2729.71i −0.105384 0.182530i 0.808511 0.588481i \(-0.200274\pi\)
−0.913895 + 0.405951i \(0.866940\pi\)
\(608\) −1904.00 3297.82i −0.127002 0.219974i
\(609\) 0 0
\(610\) −2305.00 + 3992.38i −0.152995 + 0.264994i
\(611\) 36120.0 2.39159
\(612\) 0 0
\(613\) 4592.00 0.302560 0.151280 0.988491i \(-0.451661\pi\)
0.151280 + 0.988491i \(0.451661\pi\)
\(614\) 5290.00 9162.55i 0.347699 0.602232i
\(615\) 0 0
\(616\) −6528.00 11306.8i −0.426982 0.739554i
\(617\) 3679.50 + 6373.08i 0.240083 + 0.415836i 0.960738 0.277458i \(-0.0894921\pi\)
−0.720655 + 0.693294i \(0.756159\pi\)
\(618\) 0 0
\(619\) 7856.00 13607.0i 0.510112 0.883540i −0.489819 0.871824i \(-0.662937\pi\)
0.999931 0.0117159i \(-0.00372937\pi\)
\(620\) −2660.00 −0.172304
\(621\) 0 0
\(622\) 10716.0 0.690792
\(623\) −18972.0 + 32860.5i −1.22006 + 2.11321i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −5600.00 9699.48i −0.357542 0.619280i
\(627\) 0 0
\(628\) −1912.00 + 3311.68i −0.121492 + 0.210431i
\(629\) −5886.00 −0.373116
\(630\) 0 0
\(631\) −3175.00 −0.200309 −0.100154 0.994972i \(-0.531934\pi\)
−0.100154 + 0.994972i \(0.531934\pi\)
\(632\) 5500.00 9526.28i 0.346168 0.599581i
\(633\) 0 0
\(634\) −7341.00 12715.0i −0.459855 0.796493i
\(635\) −3515.00 6088.16i −0.219667 0.380474i
\(636\) 0 0
\(637\) 28455.0 49285.5i 1.76990 3.06556i
\(638\) 2880.00 0.178715
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) −48.0000 + 83.1384i −0.00295770 + 0.00512289i −0.867500 0.497436i \(-0.834275\pi\)
0.864543 + 0.502559i \(0.167608\pi\)
\(642\) 0 0
\(643\) 9035.00 + 15649.1i 0.554130 + 0.959781i 0.997971 + 0.0636756i \(0.0202823\pi\)
−0.443841 + 0.896106i \(0.646384\pi\)
\(644\) −3468.00 6006.75i −0.212202 0.367545i
\(645\) 0 0
\(646\) 3213.00 5565.08i 0.195687 0.338940i
\(647\) 1341.00 0.0814840 0.0407420 0.999170i \(-0.487028\pi\)
0.0407420 + 0.999170i \(0.487028\pi\)
\(648\) 0 0
\(649\) 31392.0 1.89868
\(650\) 1750.00 3031.09i 0.105601 0.182906i
\(651\) 0 0
\(652\) 4892.00 + 8473.19i 0.293843 + 0.508951i
\(653\) 12247.5 + 21213.3i 0.733969 + 1.27127i 0.955174 + 0.296044i \(0.0956676\pi\)
−0.221205 + 0.975227i \(0.570999\pi\)
\(654\) 0 0
\(655\) −615.000 + 1065.21i −0.0366871 + 0.0635439i
\(656\) 2496.00 0.148556
\(657\) 0 0
\(658\) 35088.0 2.07883
\(659\) 6189.00 10719.7i 0.365841 0.633655i −0.623070 0.782166i \(-0.714115\pi\)
0.988911 + 0.148511i \(0.0474481\pi\)
\(660\) 0 0
\(661\) 12221.0 + 21167.4i 0.719125 + 1.24556i 0.961347 + 0.275341i \(0.0887906\pi\)
−0.242221 + 0.970221i \(0.577876\pi\)
\(662\) −380.000 658.179i −0.0223098 0.0386418i
\(663\) 0 0
\(664\) −3660.00 + 6339.31i −0.213909 + 0.370501i
\(665\) −20230.0 −1.17968
\(666\) 0 0
\(667\) 1530.00 0.0888183
\(668\) 6222.00 10776.8i 0.360384 0.624203i
\(669\) 0 0
\(670\) −910.000 1576.17i −0.0524722 0.0908845i
\(671\) 11064.0 + 19163.4i 0.636544 + 1.10253i
\(672\) 0 0
\(673\) −1189.00 + 2059.41i −0.0681019 + 0.117956i −0.898066 0.439861i \(-0.855028\pi\)
0.829964 + 0.557817i \(0.188361\pi\)
\(674\) 868.000 0.0496055
\(675\) 0 0
\(676\) 10812.0 0.615157
\(677\) −2739.00 + 4744.09i −0.155492 + 0.269321i −0.933238 0.359258i \(-0.883030\pi\)
0.777746 + 0.628579i \(0.216363\pi\)
\(678\) 0 0
\(679\) −272.000 471.118i −0.0153732 0.0266272i
\(680\) 540.000 + 935.307i 0.0304530 + 0.0527462i
\(681\) 0 0
\(682\) −6384.00 + 11057.4i −0.358440 + 0.620836i
\(683\) 8595.00 0.481521 0.240760 0.970585i \(-0.422603\pi\)
0.240760 + 0.970585i \(0.422603\pi\)
\(684\) 0 0
\(685\) 2595.00 0.144744
\(686\) 15980.0 27678.2i 0.889387 1.54046i
\(687\) 0 0
\(688\) 704.000 + 1219.36i 0.0390113 + 0.0675695i
\(689\) −22365.0 38737.3i −1.23663 2.14191i
\(690\) 0 0
\(691\) 15807.5 27379.4i 0.870254 1.50732i 0.00852043 0.999964i \(-0.497288\pi\)
0.861734 0.507361i \(-0.169379\pi\)
\(692\) −9588.00 −0.526707
\(693\) 0 0
\(694\) 16008.0 0.875584
\(695\) −3290.00 + 5698.45i −0.179564 + 0.311014i
\(696\) 0 0
\(697\) 2106.00 + 3647.70i 0.114448 + 0.198230i
\(698\) −1109.00 1920.84i −0.0601379 0.104162i
\(699\) 0 0
\(700\) 1700.00 2944.49i 0.0917914 0.158987i
\(701\) 29790.0 1.60507 0.802534 0.596606i \(-0.203485\pi\)
0.802534 + 0.596606i \(0.203485\pi\)
\(702\) 0 0
\(703\) 25942.0 1.39178
\(704\) 1536.00 2660.43i 0.0822304 0.142427i
\(705\) 0 0
\(706\) 7662.00 + 13271.0i 0.408446 + 0.707450i
\(707\) 5916.00 + 10246.8i 0.314702 + 0.545079i
\(708\) 0 0
\(709\) −1909.00 + 3306.48i −0.101120 + 0.175145i −0.912146 0.409865i \(-0.865576\pi\)
0.811026 + 0.585010i \(0.198909\pi\)
\(710\) 9000.00 0.475724
\(711\) 0 0
\(712\) −8928.00 −0.469931
\(713\) −3391.50 + 5874.25i −0.178138 + 0.308545i
\(714\) 0 0
\(715\) −8400.00 14549.2i −0.439360 0.760993i
\(716\) 1080.00 + 1870.61i 0.0563708 + 0.0976371i
\(717\) 0 0
\(718\) 8478.00 14684.3i 0.440663 0.763251i
\(719\) −28314.0 −1.46861 −0.734307 0.678817i \(-0.762493\pi\)
−0.734307 + 0.678817i \(0.762493\pi\)
\(720\) 0 0
\(721\) 14008.0 0.723558
\(722\) −7302.00 + 12647.4i −0.376388 + 0.651924i
\(723\) 0 0
\(724\) −4666.00 8081.75i −0.239517 0.414856i
\(725\) 375.000 + 649.519i 0.0192099 + 0.0332725i
\(726\) 0 0
\(727\) −28.0000 + 48.4974i −0.00142842 + 0.00247410i −0.866739 0.498762i \(-0.833788\pi\)
0.865310 + 0.501237i \(0.167121\pi\)
\(728\) 19040.0 0.969326
\(729\) 0 0
\(730\) 7040.00 0.356934
\(731\) −1188.00 + 2057.68i −0.0601091 + 0.104112i
\(732\) 0 0
\(733\) 17216.0 + 29819.0i 0.867514 + 1.50258i 0.864529 + 0.502582i \(0.167617\pi\)
0.00298410 + 0.999996i \(0.499050\pi\)
\(734\) −13286.0 23012.0i −0.668113 1.15721i
\(735\) 0 0
\(736\) 816.000 1413.35i 0.0408671 0.0707838i
\(737\) −8736.00 −0.436628
\(738\) 0 0
\(739\) −1051.00 −0.0523162 −0.0261581 0.999658i \(-0.508327\pi\)
−0.0261581 + 0.999658i \(0.508327\pi\)
\(740\) −2180.00 + 3775.87i −0.108295 + 0.187573i
\(741\) 0 0
\(742\) −21726.0 37630.5i −1.07491 1.86181i
\(743\) −19572.0 33899.7i −0.966389 1.67383i −0.705836 0.708375i \(-0.749428\pi\)
−0.260553 0.965460i \(-0.583905\pi\)
\(744\) 0 0
\(745\) −930.000 + 1610.81i −0.0457350 + 0.0792153i
\(746\) 6160.00 0.302324
\(747\) 0 0
\(748\) 5184.00 0.253403
\(749\) −15300.0 + 26500.4i −0.746395 + 1.29279i
\(750\) 0 0
\(751\) 867.500 + 1502.55i 0.0421512 + 0.0730080i 0.886331 0.463052i \(-0.153246\pi\)
−0.844180 + 0.536060i \(0.819912\pi\)
\(752\) 4128.00 + 7149.91i 0.200176 + 0.346716i
\(753\) 0 0
\(754\) −2100.00 + 3637.31i −0.101429 + 0.175680i
\(755\) −7280.00 −0.350922
\(756\) 0 0
\(757\) 6698.00 0.321589 0.160795 0.986988i \(-0.448594\pi\)
0.160795 + 0.986988i \(0.448594\pi\)
\(758\) −10109.0 + 17509.3i −0.484400 + 0.839006i
\(759\) 0 0
\(760\) −2380.00 4122.28i −0.113594 0.196751i
\(761\) −19383.0 33572.3i −0.923302 1.59921i −0.794269 0.607567i \(-0.792146\pi\)
−0.129034 0.991640i \(-0.541188\pi\)
\(762\) 0 0
\(763\) −1955.00 + 3386.16i −0.0927598 + 0.160665i
\(764\) −10920.0 −0.517110
\(765\) 0 0
\(766\) −17454.0 −0.823288
\(767\) −22890.0 + 39646.6i −1.07759 + 1.86644i
\(768\) 0 0
\(769\) −11750.5 20352.5i −0.551019 0.954393i −0.998201 0.0599505i \(-0.980906\pi\)
0.447182 0.894443i \(-0.352428\pi\)
\(770\) −8160.00 14133.5i −0.381904 0.661477i
\(771\) 0 0
\(772\) 9140.00 15830.9i 0.426109 0.738042i
\(773\) −3591.00 −0.167088 −0.0835442 0.996504i \(-0.526624\pi\)
−0.0835442 + 0.996504i \(0.526624\pi\)
\(774\) 0 0
\(775\) −3325.00 −0.154113
\(776\) 64.0000 110.851i 0.00296065 0.00512800i
\(777\) 0 0
\(778\) 2712.00 + 4697.32i 0.124974 + 0.216462i
\(779\) −9282.00 16076.9i −0.426909 0.739428i
\(780\) 0 0
\(781\) 21600.0 37412.3i 0.989640 1.71411i
\(782\) 2754.00 0.125937
\(783\) 0 0
\(784\) 13008.0 0.592566
\(785\) −2390.00 + 4139.60i −0.108666 + 0.188215i
\(786\) 0 0
\(787\) 10358.0 + 17940.6i 0.469152 + 0.812596i 0.999378 0.0352609i \(-0.0112262\pi\)
−0.530226 + 0.847856i \(0.677893\pi\)
\(788\) −1350.00 2338.27i −0.0610302 0.105707i
\(789\) 0 0
\(790\) 6875.00 11907.8i 0.309622 0.536281i
\(791\) −32844.0 −1.47636
\(792\) 0 0
\(793\) −32270.0 −1.44507
\(794\) 8818.00 15273.2i 0.394130 0.682653i
\(795\) 0 0
\(796\) 6224.00 + 10780.3i 0.277140 + 0.480021i
\(797\) 21490.5 + 37222.6i 0.955122 + 1.65432i 0.734088 + 0.679055i \(0.237610\pi\)
0.221035 + 0.975266i \(0.429057\pi\)
\(798\) 0 0
\(799\) −6966.00 + 12065.5i −0.308435 + 0.534225i
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) 6612.00 0.291119
\(803\) 16896.0 29264.7i 0.742524 1.28609i
\(804\) 0 0
\(805\) −4335.00 7508.44i −0.189800 0.328743i
\(806\) −9310.00 16125.4i −0.406862 0.704706i
\(807\) 0 0
\(808\) −1392.00 + 2411.01i −0.0606069 + 0.104974i
\(809\) −2268.00 −0.0985644 −0.0492822 0.998785i \(-0.515693\pi\)
−0.0492822 + 0.998785i \(0.515693\pi\)
\(810\) 0 0
\(811\) 11756.0 0.509012 0.254506 0.967071i \(-0.418087\pi\)
0.254506 + 0.967071i \(0.418087\pi\)
\(812\) −2040.00 + 3533.38i −0.0881650 + 0.152706i
\(813\) 0 0
\(814\) 10464.0 + 18124.2i 0.450569 + 0.780408i
\(815\) 6115.00 + 10591.5i 0.262821 + 0.455219i
\(816\) 0 0
\(817\) 5236.00 9069.02i 0.224216 0.388353i
\(818\) 12802.0 0.547202
\(819\) 0 0
\(820\) 3120.00 0.132872
\(821\) −4323.00 + 7487.66i −0.183768 + 0.318296i −0.943161 0.332337i \(-0.892163\pi\)
0.759393 + 0.650633i \(0.225496\pi\)
\(822\) 0 0
\(823\) −5392.00 9339.22i −0.228376 0.395559i 0.728951 0.684566i \(-0.240008\pi\)
−0.957327 + 0.289007i \(0.906675\pi\)
\(824\) 1648.00 + 2854.42i 0.0696733 + 0.120678i
\(825\) 0 0
\(826\) −22236.0 + 38513.9i −0.936670 + 1.62236i
\(827\) 42597.0 1.79110 0.895552 0.444957i \(-0.146781\pi\)
0.895552 + 0.444957i \(0.146781\pi\)
\(828\) 0 0
\(829\) −26458.0 −1.10847 −0.554237 0.832359i \(-0.686990\pi\)
−0.554237 + 0.832359i \(0.686990\pi\)
\(830\) −4575.00 + 7924.13i −0.191326 + 0.331386i
\(831\) 0 0
\(832\) 2240.00 + 3879.79i 0.0933390 + 0.161668i
\(833\) 10975.5 + 19010.1i 0.456517 + 0.790710i
\(834\) 0 0
\(835\) 7777.50 13471.0i 0.322337 0.558304i
\(836\) −22848.0 −0.945233
\(837\) 0 0
\(838\) −4512.00 −0.185996
\(839\) 5748.00 9955.83i 0.236523 0.409670i −0.723191 0.690648i \(-0.757325\pi\)
0.959714 + 0.280978i \(0.0906587\pi\)
\(840\) 0 0
\(841\) 11744.5 + 20342.1i 0.481549 + 0.834067i
\(842\) −1811.00 3136.74i −0.0741225 0.128384i
\(843\) 0 0
\(844\) −4882.00 + 8455.87i −0.199106 + 0.344862i
\(845\) 13515.0 0.550213
\(846\) 0 0
\(847\) −33082.0 −1.34204
\(848\) 5112.00 8854.24i 0.207013 0.358557i
\(849\) 0 0
\(850\) 675.000 + 1169.13i 0.0272380 + 0.0471776i
\(851\) 5559.00 + 9628.47i 0.223925 + 0.387849i
\(852\) 0 0
\(853\) −10774.0 + 18661.1i −0.432467 + 0.749056i −0.997085 0.0762970i \(-0.975690\pi\)
0.564618 + 0.825353i \(0.309024\pi\)
\(854\) −31348.0 −1.25610
\(855\) 0 0
\(856\) −7200.00 −0.287489
\(857\) −3130.50 + 5422.19i −0.124779 + 0.216124i −0.921647 0.388030i \(-0.873156\pi\)
0.796867 + 0.604154i \(0.206489\pi\)
\(858\) 0 0
\(859\) 1677.50 + 2905.52i 0.0666305 + 0.115407i 0.897416 0.441185i \(-0.145442\pi\)
−0.830786 + 0.556593i \(0.812108\pi\)
\(860\) 880.000 + 1524.20i 0.0348927 + 0.0604360i
\(861\) 0 0
\(862\) 5454.00 9446.61i 0.215503 0.373263i
\(863\) 19701.0 0.777091 0.388546 0.921429i \(-0.372978\pi\)
0.388546 + 0.921429i \(0.372978\pi\)
\(864\) 0 0
\(865\) −11985.0 −0.471101
\(866\) −2990.00 + 5178.83i −0.117326 + 0.203215i
\(867\) 0 0
\(868\) −9044.00 15664.7i −0.353656 0.612550i
\(869\) −33000.0 57157.7i −1.28820 2.23123i
\(870\) 0 0
\(871\) 6370.00 11033.2i 0.247806 0.429213i
\(872\) −920.000 −0.0357284
\(873\) 0 0
\(874\) −12138.0 −0.469764
\(875\) 2125.00 3680.61i 0.0821007 0.142203i
\(876\) 0 0
\(877\) −8146.00 14109.3i −0.313650 0.543257i 0.665500 0.746398i \(-0.268218\pi\)
−0.979150 + 0.203141i \(0.934885\pi\)
\(878\) −9371.00 16231.0i −0.360200 0.623885i
\(879\) 0 0
\(880\) 1920.00 3325.54i 0.0735491 0.127391i
\(881\) 9270.00 0.354500 0.177250 0.984166i \(-0.443280\pi\)
0.177250 + 0.984166i \(0.443280\pi\)
\(882\) 0 0
\(883\) 38486.0 1.46677 0.733384 0.679814i \(-0.237940\pi\)
0.733384 + 0.679814i \(0.237940\pi\)
\(884\) −3780.00 + 6547.15i −0.143818 + 0.249100i
\(885\) 0 0
\(886\) −6171.00 10688.5i −0.233994 0.405290i
\(887\) −946.500 1639.39i −0.0358290 0.0620577i 0.847555 0.530708i \(-0.178074\pi\)
−0.883384 + 0.468650i \(0.844741\pi\)
\(888\) 0 0
\(889\) 23902.0 41399.5i 0.901741 1.56186i
\(890\) −11160.0 −0.420319
\(891\) 0 0
\(892\) −13672.0 −0.513198
\(893\) 30702.0 53177.4i 1.15051 1.99274i
\(894\) 0 0
\(895\) 1350.00 + 2338.27i 0.0504196 + 0.0873293i
\(896\) 2176.00 + 3768.94i 0.0811329 + 0.140526i
\(897\) 0 0
\(898\) −4122.00 + 7139.51i −0.153177 + 0.265310i
\(899\) 3990.00 0.148024
\(900\) 0 0
\(901\) 17253.0 0.637936
\(902\) 7488.00 12969.6i 0.276411 0.478759i
\(903\) 0 0
\(904\) −3864.00 6692.64i −0.142162 0.246232i
\(905\) −5832.50 10102.2i −0.214231 0.371059i
\(906\) 0 0
\(907\) −22438.0 + 38863.8i −0.821435 + 1.42277i 0.0831786 + 0.996535i \(0.473493\pi\)
−0.904614 + 0.426233i \(0.859841\pi\)
\(908\) −17508.0 −0.639894
\(909\) 0 0
\(910\) 23800.0 0.866992
\(911\) −11901.0 + 20613.1i −0.432819 + 0.749664i −0.997115 0.0759086i \(-0.975814\pi\)
0.564296 + 0.825572i \(0.309148\pi\)
\(912\) 0 0
\(913\) 21960.0 + 38035.8i 0.796024 + 1.37875i
\(914\) −7076.00 12256.0i −0.256076 0.443536i
\(915\) 0 0
\(916\) −8374.00 + 14504.2i −0.302058 + 0.523179i
\(917\) −8364.00 −0.301204
\(918\) 0 0
\(919\) −24784.0 −0.889607 −0.444803 0.895628i \(-0.646726\pi\)
−0.444803 + 0.895628i \(0.646726\pi\)
\(920\) 1020.00 1766.69i 0.0365526 0.0633110i
\(921\) 0 0
\(922\) −762.000 1319.82i −0.0272181 0.0471432i
\(923\) 31500.0 + 54559.6i 1.12333 + 1.94567i
\(924\) 0 0
\(925\) −2725.00 + 4719.84i −0.0968621 + 0.167770i
\(926\) 17644.0 0.626153
\(927\) 0 0
\(928\) −960.000 −0.0339586
\(929\) −4530.00 + 7846.19i −0.159983 + 0.277099i −0.934862 0.355010i \(-0.884477\pi\)
0.774879 + 0.632109i \(0.217811\pi\)
\(930\) 0 0
\(931\) −48373.5 83785.4i −1.70288 2.94947i
\(932\) 2196.00 + 3803.58i 0.0771807 + 0.133681i
\(933\) 0 0
\(934\) 4977.00 8620.42i 0.174360 0.302001i
\(935\) 6480.00 0.226651
\(936\) 0 0
\(937\) 6176.00 0.215327 0.107663 0.994187i \(-0.465663\pi\)
0.107663 + 0.994187i \(0.465663\pi\)
\(938\) 6188.00 10717.9i 0.215400 0.373084i
\(939\) 0 0
\(940\) 5160.00 + 8937.38i 0.179043 + 0.310112i
\(941\) 2091.00 + 3621.72i 0.0724385 + 0.125467i 0.899970 0.435953i \(-0.143589\pi\)
−0.827531 + 0.561420i \(0.810255\pi\)
\(942\) 0 0
\(943\) 3978.00 6890.10i 0.137372 0.237935i
\(944\) −10464.0 −0.360778
\(945\) 0 0
\(946\) 8448.00 0.290347
\(947\) −22039.5 + 38173.5i −0.756270 + 1.30990i 0.188471 + 0.982079i \(0.439647\pi\)
−0.944741 + 0.327819i \(0.893686\pi\)
\(948\) 0 0
\(949\) 24640.0 + 42677.7i 0.842833 + 1.45983i
\(950\) −2975.00 5152.85i −0.101602 0.175980i
\(951\) 0 0
\(952\) −3672.00 + 6360.09i −0.125011 + 0.216525i
\(953\) 12726.0 0.432566 0.216283 0.976331i \(-0.430607\pi\)
0.216283 + 0.976331i \(0.430607\pi\)
\(954\) 0 0
\(955\) −13650.0 −0.462517
\(956\) −12948.0 + 22426.6i −0.438042 + 0.758711i
\(957\) 0 0
\(958\) −10104.0 17500.6i −0.340757 0.590209i
\(959\) 8823.00 + 15281.9i 0.297090 + 0.514575i
\(960\) 0 0
\(961\) 6051.00 10480.6i 0.203115 0.351806i
\(962\) −30520.0 −1.02287
\(963\) 0 0
\(964\) 13004.0 0.434472
\(965\) 11425.0 19788.7i 0.381123 0.660125i
\(966\) 0 0
\(967\) −22609.0 39159.9i −0.751868 1.30227i −0.946916 0.321480i \(-0.895820\pi\)
0.195048 0.980794i \(-0.437514\pi\)
\(968\) −3892.00 6741.14i −0.129229 0.223831i
\(969\) 0 0
\(970\) 80.0000 138.564i 0.00264809 0.00458662i
\(971\) −3978.00 −0.131473 −0.0657364 0.997837i \(-0.520940\pi\)
−0.0657364 + 0.997837i \(0.520940\pi\)
\(972\) 0 0
\(973\) −44744.0 −1.47423
\(974\) −14924.0 + 25849.1i −0.490961 + 0.850369i
\(975\) 0 0
\(976\) −3688.00 6387.80i −0.120953 0.209497i
\(977\) −11733.0 20322.2i −0.384209 0.665469i 0.607450 0.794358i \(-0.292192\pi\)
−0.991659 + 0.128889i \(0.958859\pi\)
\(978\) 0 0
\(979\) −26784.0 + 46391.2i −0.874382 + 1.51447i
\(980\) 16260.0 0.530007
\(981\) 0 0
\(982\) 2292.00 0.0744813
\(983\) −23956.5 + 41493.9i −0.777308 + 1.34634i 0.156180 + 0.987729i \(0.450082\pi\)
−0.933488 + 0.358608i \(0.883251\pi\)
\(984\) 0 0
\(985\) −1687.50 2922.84i −0.0545870 0.0945475i
\(986\) −810.000 1402.96i −0.0261619 0.0453138i
\(987\) 0 0
\(988\) 16660.0 28856.0i 0.536463 0.929181i
\(989\) 4488.00 0.144297
\(990\) 0 0
\(991\) 31997.0 1.02565 0.512825 0.858493i \(-0.328599\pi\)
0.512825 + 0.858493i \(0.328599\pi\)
\(992\) 2128.00 3685.80i 0.0681089 0.117968i
\(993\) 0 0
\(994\) 30600.0 + 53000.8i 0.976432 + 1.69123i
\(995\) 7780.00 + 13475.4i 0.247882 + 0.429344i
\(996\) 0 0
\(997\) 22814.0 39515.0i 0.724701 1.25522i −0.234396 0.972141i \(-0.575311\pi\)
0.959097 0.283077i \(-0.0913553\pi\)
\(998\) −29930.0 −0.949316
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.d.541.1 2
3.2 odd 2 810.4.e.x.541.1 2
9.2 odd 6 270.4.a.a.1.1 1
9.4 even 3 inner 810.4.e.d.271.1 2
9.5 odd 6 810.4.e.x.271.1 2
9.7 even 3 270.4.a.k.1.1 yes 1
36.7 odd 6 2160.4.a.t.1.1 1
36.11 even 6 2160.4.a.j.1.1 1
45.2 even 12 1350.4.c.r.649.1 2
45.7 odd 12 1350.4.c.c.649.2 2
45.29 odd 6 1350.4.a.bb.1.1 1
45.34 even 6 1350.4.a.n.1.1 1
45.38 even 12 1350.4.c.r.649.2 2
45.43 odd 12 1350.4.c.c.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.a.a.1.1 1 9.2 odd 6
270.4.a.k.1.1 yes 1 9.7 even 3
810.4.e.d.271.1 2 9.4 even 3 inner
810.4.e.d.541.1 2 1.1 even 1 trivial
810.4.e.x.271.1 2 9.5 odd 6
810.4.e.x.541.1 2 3.2 odd 2
1350.4.a.n.1.1 1 45.34 even 6
1350.4.a.bb.1.1 1 45.29 odd 6
1350.4.c.c.649.1 2 45.43 odd 12
1350.4.c.c.649.2 2 45.7 odd 12
1350.4.c.r.649.1 2 45.2 even 12
1350.4.c.r.649.2 2 45.38 even 12
2160.4.a.j.1.1 1 36.11 even 6
2160.4.a.t.1.1 1 36.7 odd 6