Properties

Label 810.4.e.d
Level $810$
Weight $4$
Character orbit 810.e
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-4,-5,0,34,16,0,20,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{6} - 2) q^{2} - 4 \zeta_{6} q^{4} - 5 \zeta_{6} q^{5} + ( - 34 \zeta_{6} + 34) q^{7} + 8 q^{8} + 10 q^{10} + ( - 48 \zeta_{6} + 48) q^{11} + 70 \zeta_{6} q^{13} + 68 \zeta_{6} q^{14} + (16 \zeta_{6} - 16) q^{16} + \cdots + 1626 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} - 5 q^{5} + 34 q^{7} + 16 q^{8} + 20 q^{10} + 48 q^{11} + 70 q^{13} + 68 q^{14} - 16 q^{16} - 54 q^{17} + 238 q^{19} - 20 q^{20} + 96 q^{22} + 51 q^{23} - 25 q^{25} - 280 q^{26}+ \cdots + 3252 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 1.73205i 0 −2.00000 + 3.46410i −2.50000 + 4.33013i 0 17.0000 + 29.4449i 8.00000 0 10.0000
541.1 −1.00000 + 1.73205i 0 −2.00000 3.46410i −2.50000 4.33013i 0 17.0000 29.4449i 8.00000 0 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.e.d 2
3.b odd 2 1 810.4.e.x 2
9.c even 3 1 270.4.a.k yes 1
9.c even 3 1 inner 810.4.e.d 2
9.d odd 6 1 270.4.a.a 1
9.d odd 6 1 810.4.e.x 2
36.f odd 6 1 2160.4.a.t 1
36.h even 6 1 2160.4.a.j 1
45.h odd 6 1 1350.4.a.bb 1
45.j even 6 1 1350.4.a.n 1
45.k odd 12 2 1350.4.c.c 2
45.l even 12 2 1350.4.c.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.a 1 9.d odd 6 1
270.4.a.k yes 1 9.c even 3 1
810.4.e.d 2 1.a even 1 1 trivial
810.4.e.d 2 9.c even 3 1 inner
810.4.e.x 2 3.b odd 2 1
810.4.e.x 2 9.d odd 6 1
1350.4.a.n 1 45.j even 6 1
1350.4.a.bb 1 45.h odd 6 1
1350.4.c.c 2 45.k odd 12 2
1350.4.c.r 2 45.l even 12 2
2160.4.a.j 1 36.h even 6 1
2160.4.a.t 1 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(810, [\chi])\):

\( T_{7}^{2} - 34T_{7} + 1156 \) Copy content Toggle raw display
\( T_{11}^{2} - 48T_{11} + 2304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 34T + 1156 \) Copy content Toggle raw display
$11$ \( T^{2} - 48T + 2304 \) Copy content Toggle raw display
$13$ \( T^{2} - 70T + 4900 \) Copy content Toggle raw display
$17$ \( (T + 27)^{2} \) Copy content Toggle raw display
$19$ \( (T - 119)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 51T + 2601 \) Copy content Toggle raw display
$29$ \( T^{2} - 30T + 900 \) Copy content Toggle raw display
$31$ \( T^{2} - 133T + 17689 \) Copy content Toggle raw display
$37$ \( (T - 218)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 156T + 24336 \) Copy content Toggle raw display
$43$ \( T^{2} - 88T + 7744 \) Copy content Toggle raw display
$47$ \( T^{2} - 516T + 266256 \) Copy content Toggle raw display
$53$ \( (T + 639)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 654T + 427716 \) Copy content Toggle raw display
$61$ \( T^{2} + 461T + 212521 \) Copy content Toggle raw display
$67$ \( T^{2} + 182T + 33124 \) Copy content Toggle raw display
$71$ \( (T - 900)^{2} \) Copy content Toggle raw display
$73$ \( (T - 704)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 1375 T + 1890625 \) Copy content Toggle raw display
$83$ \( T^{2} + 915T + 837225 \) Copy content Toggle raw display
$89$ \( (T + 1116)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
show more
show less