Properties

Label 810.4.e.c.271.1
Level $810$
Weight $4$
Character 810.271
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.271
Dual form 810.4.e.c.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(2.00000 + 3.46410i) q^{7} +8.00000 q^{8} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(2.00000 + 3.46410i) q^{7} +8.00000 q^{8} +10.0000 q^{10} +(-6.00000 - 10.3923i) q^{11} +(29.0000 - 50.2295i) q^{13} +(4.00000 - 6.92820i) q^{14} +(-8.00000 - 13.8564i) q^{16} +66.0000 q^{17} -100.000 q^{19} +(-10.0000 - 17.3205i) q^{20} +(-12.0000 + 20.7846i) q^{22} +(-66.0000 + 114.315i) q^{23} +(-12.5000 - 21.6506i) q^{25} -116.000 q^{26} -16.0000 q^{28} +(45.0000 + 77.9423i) q^{29} +(-76.0000 + 131.636i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(-66.0000 - 114.315i) q^{34} -20.0000 q^{35} -34.0000 q^{37} +(100.000 + 173.205i) q^{38} +(-20.0000 + 34.6410i) q^{40} +(219.000 - 379.319i) q^{41} +(-16.0000 - 27.7128i) q^{43} +48.0000 q^{44} +264.000 q^{46} +(102.000 + 176.669i) q^{47} +(163.500 - 283.190i) q^{49} +(-25.0000 + 43.3013i) q^{50} +(116.000 + 200.918i) q^{52} +222.000 q^{53} +60.0000 q^{55} +(16.0000 + 27.7128i) q^{56} +(90.0000 - 155.885i) q^{58} +(-210.000 + 363.731i) q^{59} +(-451.000 - 781.155i) q^{61} +304.000 q^{62} +64.0000 q^{64} +(145.000 + 251.147i) q^{65} +(512.000 - 886.810i) q^{67} +(-132.000 + 228.631i) q^{68} +(20.0000 + 34.6410i) q^{70} +432.000 q^{71} +362.000 q^{73} +(34.0000 + 58.8897i) q^{74} +(200.000 - 346.410i) q^{76} +(24.0000 - 41.5692i) q^{77} +(80.0000 + 138.564i) q^{79} +80.0000 q^{80} -876.000 q^{82} +(-36.0000 - 62.3538i) q^{83} +(-165.000 + 285.788i) q^{85} +(-32.0000 + 55.4256i) q^{86} +(-48.0000 - 83.1384i) q^{88} +810.000 q^{89} +232.000 q^{91} +(-264.000 - 457.261i) q^{92} +(204.000 - 353.338i) q^{94} +(250.000 - 433.013i) q^{95} +(-553.000 - 957.824i) q^{97} -654.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} - 5 q^{5} + 4 q^{7} + 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 4 q^{4} - 5 q^{5} + 4 q^{7} + 16 q^{8} + 20 q^{10} - 12 q^{11} + 58 q^{13} + 8 q^{14} - 16 q^{16} + 132 q^{17} - 200 q^{19} - 20 q^{20} - 24 q^{22} - 132 q^{23} - 25 q^{25} - 232 q^{26} - 32 q^{28} + 90 q^{29} - 152 q^{31} - 32 q^{32} - 132 q^{34} - 40 q^{35} - 68 q^{37} + 200 q^{38} - 40 q^{40} + 438 q^{41} - 32 q^{43} + 96 q^{44} + 528 q^{46} + 204 q^{47} + 327 q^{49} - 50 q^{50} + 232 q^{52} + 444 q^{53} + 120 q^{55} + 32 q^{56} + 180 q^{58} - 420 q^{59} - 902 q^{61} + 608 q^{62} + 128 q^{64} + 290 q^{65} + 1024 q^{67} - 264 q^{68} + 40 q^{70} + 864 q^{71} + 724 q^{73} + 68 q^{74} + 400 q^{76} + 48 q^{77} + 160 q^{79} + 160 q^{80} - 1752 q^{82} - 72 q^{83} - 330 q^{85} - 64 q^{86} - 96 q^{88} + 1620 q^{89} + 464 q^{91} - 528 q^{92} + 408 q^{94} + 500 q^{95} - 1106 q^{97} - 1308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.107990 + 0.187044i 0.914956 0.403554i \(-0.132225\pi\)
−0.806966 + 0.590598i \(0.798892\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) −6.00000 10.3923i −0.164461 0.284854i 0.772003 0.635619i \(-0.219255\pi\)
−0.936464 + 0.350765i \(0.885922\pi\)
\(12\) 0 0
\(13\) 29.0000 50.2295i 0.618704 1.07163i −0.371018 0.928626i \(-0.620991\pi\)
0.989722 0.143001i \(-0.0456753\pi\)
\(14\) 4.00000 6.92820i 0.0763604 0.132260i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) −100.000 −1.20745 −0.603726 0.797192i \(-0.706318\pi\)
−0.603726 + 0.797192i \(0.706318\pi\)
\(20\) −10.0000 17.3205i −0.111803 0.193649i
\(21\) 0 0
\(22\) −12.0000 + 20.7846i −0.116291 + 0.201422i
\(23\) −66.0000 + 114.315i −0.598346 + 1.03637i 0.394720 + 0.918802i \(0.370842\pi\)
−0.993065 + 0.117564i \(0.962492\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −116.000 −0.874980
\(27\) 0 0
\(28\) −16.0000 −0.107990
\(29\) 45.0000 + 77.9423i 0.288148 + 0.499087i 0.973368 0.229250i \(-0.0736272\pi\)
−0.685220 + 0.728336i \(0.740294\pi\)
\(30\) 0 0
\(31\) −76.0000 + 131.636i −0.440323 + 0.762661i −0.997713 0.0675892i \(-0.978469\pi\)
0.557391 + 0.830250i \(0.311803\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −66.0000 114.315i −0.332909 0.576615i
\(35\) −20.0000 −0.0965891
\(36\) 0 0
\(37\) −34.0000 −0.151069 −0.0755347 0.997143i \(-0.524066\pi\)
−0.0755347 + 0.997143i \(0.524066\pi\)
\(38\) 100.000 + 173.205i 0.426898 + 0.739410i
\(39\) 0 0
\(40\) −20.0000 + 34.6410i −0.0790569 + 0.136931i
\(41\) 219.000 379.319i 0.834196 1.44487i −0.0604866 0.998169i \(-0.519265\pi\)
0.894683 0.446702i \(-0.147401\pi\)
\(42\) 0 0
\(43\) −16.0000 27.7128i −0.0567437 0.0982829i 0.836258 0.548336i \(-0.184738\pi\)
−0.893002 + 0.450053i \(0.851405\pi\)
\(44\) 48.0000 0.164461
\(45\) 0 0
\(46\) 264.000 0.846189
\(47\) 102.000 + 176.669i 0.316558 + 0.548295i 0.979767 0.200139i \(-0.0641395\pi\)
−0.663209 + 0.748434i \(0.730806\pi\)
\(48\) 0 0
\(49\) 163.500 283.190i 0.476676 0.825628i
\(50\) −25.0000 + 43.3013i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 116.000 + 200.918i 0.309352 + 0.535813i
\(53\) 222.000 0.575359 0.287680 0.957727i \(-0.407116\pi\)
0.287680 + 0.957727i \(0.407116\pi\)
\(54\) 0 0
\(55\) 60.0000 0.147098
\(56\) 16.0000 + 27.7128i 0.0381802 + 0.0661300i
\(57\) 0 0
\(58\) 90.0000 155.885i 0.203751 0.352908i
\(59\) −210.000 + 363.731i −0.463384 + 0.802605i −0.999127 0.0417762i \(-0.986698\pi\)
0.535743 + 0.844381i \(0.320032\pi\)
\(60\) 0 0
\(61\) −451.000 781.155i −0.946633 1.63962i −0.752447 0.658652i \(-0.771127\pi\)
−0.194186 0.980965i \(-0.562206\pi\)
\(62\) 304.000 0.622710
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 145.000 + 251.147i 0.276693 + 0.479246i
\(66\) 0 0
\(67\) 512.000 886.810i 0.933593 1.61703i 0.156470 0.987683i \(-0.449989\pi\)
0.777123 0.629348i \(-0.216678\pi\)
\(68\) −132.000 + 228.631i −0.235402 + 0.407729i
\(69\) 0 0
\(70\) 20.0000 + 34.6410i 0.0341494 + 0.0591485i
\(71\) 432.000 0.722098 0.361049 0.932547i \(-0.382419\pi\)
0.361049 + 0.932547i \(0.382419\pi\)
\(72\) 0 0
\(73\) 362.000 0.580396 0.290198 0.956967i \(-0.406279\pi\)
0.290198 + 0.956967i \(0.406279\pi\)
\(74\) 34.0000 + 58.8897i 0.0534111 + 0.0925107i
\(75\) 0 0
\(76\) 200.000 346.410i 0.301863 0.522842i
\(77\) 24.0000 41.5692i 0.0355202 0.0615228i
\(78\) 0 0
\(79\) 80.0000 + 138.564i 0.113933 + 0.197338i 0.917353 0.398075i \(-0.130322\pi\)
−0.803420 + 0.595413i \(0.796988\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −876.000 −1.17973
\(83\) −36.0000 62.3538i −0.0476086 0.0824605i 0.841239 0.540663i \(-0.181827\pi\)
−0.888848 + 0.458203i \(0.848493\pi\)
\(84\) 0 0
\(85\) −165.000 + 285.788i −0.210550 + 0.364684i
\(86\) −32.0000 + 55.4256i −0.0401238 + 0.0694965i
\(87\) 0 0
\(88\) −48.0000 83.1384i −0.0581456 0.100711i
\(89\) 810.000 0.964717 0.482359 0.875974i \(-0.339780\pi\)
0.482359 + 0.875974i \(0.339780\pi\)
\(90\) 0 0
\(91\) 232.000 0.267255
\(92\) −264.000 457.261i −0.299173 0.518183i
\(93\) 0 0
\(94\) 204.000 353.338i 0.223840 0.387703i
\(95\) 250.000 433.013i 0.269994 0.467644i
\(96\) 0 0
\(97\) −553.000 957.824i −0.578852 1.00260i −0.995611 0.0935842i \(-0.970168\pi\)
0.416759 0.909017i \(-0.363166\pi\)
\(98\) −654.000 −0.674122
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 129.000 + 223.435i 0.127089 + 0.220124i 0.922548 0.385883i \(-0.126103\pi\)
−0.795459 + 0.606008i \(0.792770\pi\)
\(102\) 0 0
\(103\) 494.000 855.633i 0.472575 0.818525i −0.526932 0.849907i \(-0.676658\pi\)
0.999507 + 0.0313828i \(0.00999110\pi\)
\(104\) 232.000 401.836i 0.218745 0.378877i
\(105\) 0 0
\(106\) −222.000 384.515i −0.203420 0.352334i
\(107\) −24.0000 −0.0216838 −0.0108419 0.999941i \(-0.503451\pi\)
−0.0108419 + 0.999941i \(0.503451\pi\)
\(108\) 0 0
\(109\) 950.000 0.834803 0.417401 0.908722i \(-0.362941\pi\)
0.417401 + 0.908722i \(0.362941\pi\)
\(110\) −60.0000 103.923i −0.0520071 0.0900789i
\(111\) 0 0
\(112\) 32.0000 55.4256i 0.0269975 0.0467610i
\(113\) 519.000 898.934i 0.432066 0.748360i −0.564985 0.825101i \(-0.691118\pi\)
0.997051 + 0.0767413i \(0.0244516\pi\)
\(114\) 0 0
\(115\) −330.000 571.577i −0.267588 0.463477i
\(116\) −360.000 −0.288148
\(117\) 0 0
\(118\) 840.000 0.655324
\(119\) 132.000 + 228.631i 0.101684 + 0.176122i
\(120\) 0 0
\(121\) 593.500 1027.97i 0.445905 0.772331i
\(122\) −902.000 + 1562.31i −0.669371 + 1.15938i
\(123\) 0 0
\(124\) −304.000 526.543i −0.220161 0.381331i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −124.000 −0.0866395 −0.0433198 0.999061i \(-0.513793\pi\)
−0.0433198 + 0.999061i \(0.513793\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 290.000 502.295i 0.195651 0.338878i
\(131\) −66.0000 + 114.315i −0.0440187 + 0.0762426i −0.887195 0.461394i \(-0.847349\pi\)
0.843177 + 0.537637i \(0.180683\pi\)
\(132\) 0 0
\(133\) −200.000 346.410i −0.130392 0.225846i
\(134\) −2048.00 −1.32030
\(135\) 0 0
\(136\) 528.000 0.332909
\(137\) 627.000 + 1086.00i 0.391009 + 0.677247i 0.992583 0.121570i \(-0.0387928\pi\)
−0.601574 + 0.798817i \(0.705459\pi\)
\(138\) 0 0
\(139\) 1430.00 2476.83i 0.872597 1.51138i 0.0132968 0.999912i \(-0.495767\pi\)
0.859300 0.511471i \(-0.170899\pi\)
\(140\) 40.0000 69.2820i 0.0241473 0.0418243i
\(141\) 0 0
\(142\) −432.000 748.246i −0.255300 0.442193i
\(143\) −696.000 −0.407010
\(144\) 0 0
\(145\) −450.000 −0.257727
\(146\) −362.000 627.002i −0.205201 0.355418i
\(147\) 0 0
\(148\) 68.0000 117.779i 0.0377673 0.0654149i
\(149\) −375.000 + 649.519i −0.206183 + 0.357119i −0.950509 0.310697i \(-0.899437\pi\)
0.744326 + 0.667816i \(0.232771\pi\)
\(150\) 0 0
\(151\) 224.000 + 387.979i 0.120721 + 0.209095i 0.920052 0.391796i \(-0.128146\pi\)
−0.799331 + 0.600891i \(0.794813\pi\)
\(152\) −800.000 −0.426898
\(153\) 0 0
\(154\) −96.0000 −0.0502331
\(155\) −380.000 658.179i −0.196918 0.341072i
\(156\) 0 0
\(157\) −1123.00 + 1945.09i −0.570861 + 0.988760i 0.425617 + 0.904903i \(0.360057\pi\)
−0.996478 + 0.0838566i \(0.973276\pi\)
\(158\) 160.000 277.128i 0.0805628 0.139539i
\(159\) 0 0
\(160\) −80.0000 138.564i −0.0395285 0.0684653i
\(161\) −528.000 −0.258461
\(162\) 0 0
\(163\) −568.000 −0.272940 −0.136470 0.990644i \(-0.543576\pi\)
−0.136470 + 0.990644i \(0.543576\pi\)
\(164\) 876.000 + 1517.28i 0.417098 + 0.722435i
\(165\) 0 0
\(166\) −72.0000 + 124.708i −0.0336644 + 0.0583084i
\(167\) 762.000 1319.82i 0.353086 0.611563i −0.633703 0.773577i \(-0.718466\pi\)
0.986788 + 0.162014i \(0.0517990\pi\)
\(168\) 0 0
\(169\) −583.500 1010.65i −0.265589 0.460014i
\(170\) 660.000 0.297763
\(171\) 0 0
\(172\) 128.000 0.0567437
\(173\) −1851.00 3206.03i −0.813462 1.40896i −0.910427 0.413670i \(-0.864247\pi\)
0.0969650 0.995288i \(-0.469086\pi\)
\(174\) 0 0
\(175\) 50.0000 86.6025i 0.0215980 0.0374088i
\(176\) −96.0000 + 166.277i −0.0411152 + 0.0712136i
\(177\) 0 0
\(178\) −810.000 1402.96i −0.341079 0.590766i
\(179\) 3180.00 1.32785 0.663923 0.747801i \(-0.268890\pi\)
0.663923 + 0.747801i \(0.268890\pi\)
\(180\) 0 0
\(181\) −2098.00 −0.861564 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(182\) −232.000 401.836i −0.0944889 0.163660i
\(183\) 0 0
\(184\) −528.000 + 914.523i −0.211547 + 0.366410i
\(185\) 85.0000 147.224i 0.0337801 0.0585089i
\(186\) 0 0
\(187\) −396.000 685.892i −0.154858 0.268221i
\(188\) −816.000 −0.316558
\(189\) 0 0
\(190\) −1000.00 −0.381830
\(191\) −2196.00 3803.58i −0.831921 1.44093i −0.896513 0.443018i \(-0.853908\pi\)
0.0645912 0.997912i \(-0.479426\pi\)
\(192\) 0 0
\(193\) 1079.00 1868.88i 0.402425 0.697021i −0.591593 0.806237i \(-0.701501\pi\)
0.994018 + 0.109216i \(0.0348339\pi\)
\(194\) −1106.00 + 1915.65i −0.409310 + 0.708946i
\(195\) 0 0
\(196\) 654.000 + 1132.76i 0.238338 + 0.412814i
\(197\) −1074.00 −0.388423 −0.194212 0.980960i \(-0.562215\pi\)
−0.194212 + 0.980960i \(0.562215\pi\)
\(198\) 0 0
\(199\) 2840.00 1.01167 0.505835 0.862630i \(-0.331185\pi\)
0.505835 + 0.862630i \(0.331185\pi\)
\(200\) −100.000 173.205i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 258.000 446.869i 0.0898654 0.155651i
\(203\) −180.000 + 311.769i −0.0622341 + 0.107793i
\(204\) 0 0
\(205\) 1095.00 + 1896.60i 0.373064 + 0.646166i
\(206\) −1976.00 −0.668323
\(207\) 0 0
\(208\) −928.000 −0.309352
\(209\) 600.000 + 1039.23i 0.198578 + 0.343948i
\(210\) 0 0
\(211\) 1334.00 2310.56i 0.435243 0.753864i −0.562072 0.827088i \(-0.689996\pi\)
0.997315 + 0.0732246i \(0.0233290\pi\)
\(212\) −444.000 + 769.031i −0.143840 + 0.249138i
\(213\) 0 0
\(214\) 24.0000 + 41.5692i 0.00766638 + 0.0132786i
\(215\) 160.000 0.0507531
\(216\) 0 0
\(217\) −608.000 −0.190202
\(218\) −950.000 1645.45i −0.295147 0.511210i
\(219\) 0 0
\(220\) −120.000 + 207.846i −0.0367745 + 0.0636954i
\(221\) 1914.00 3315.15i 0.582577 1.00905i
\(222\) 0 0
\(223\) −886.000 1534.60i −0.266058 0.460826i 0.701782 0.712392i \(-0.252388\pi\)
−0.967840 + 0.251565i \(0.919055\pi\)
\(224\) −128.000 −0.0381802
\(225\) 0 0
\(226\) −2076.00 −0.611033
\(227\) 1392.00 + 2411.01i 0.407006 + 0.704954i 0.994553 0.104236i \(-0.0332396\pi\)
−0.587547 + 0.809190i \(0.699906\pi\)
\(228\) 0 0
\(229\) −175.000 + 303.109i −0.0504992 + 0.0874672i −0.890170 0.455628i \(-0.849415\pi\)
0.839671 + 0.543096i \(0.182748\pi\)
\(230\) −660.000 + 1143.15i −0.189214 + 0.327727i
\(231\) 0 0
\(232\) 360.000 + 623.538i 0.101876 + 0.176454i
\(233\) 1962.00 0.551652 0.275826 0.961208i \(-0.411049\pi\)
0.275826 + 0.961208i \(0.411049\pi\)
\(234\) 0 0
\(235\) −1020.00 −0.283138
\(236\) −840.000 1454.92i −0.231692 0.401303i
\(237\) 0 0
\(238\) 264.000 457.261i 0.0719016 0.124537i
\(239\) 2160.00 3741.23i 0.584597 1.01255i −0.410328 0.911938i \(-0.634586\pi\)
0.994925 0.100614i \(-0.0320809\pi\)
\(240\) 0 0
\(241\) 239.000 + 413.960i 0.0638811 + 0.110645i 0.896197 0.443656i \(-0.146319\pi\)
−0.832316 + 0.554301i \(0.812985\pi\)
\(242\) −2374.00 −0.630605
\(243\) 0 0
\(244\) 3608.00 0.946633
\(245\) 817.500 + 1415.95i 0.213176 + 0.369232i
\(246\) 0 0
\(247\) −2900.00 + 5022.95i −0.747055 + 1.29394i
\(248\) −608.000 + 1053.09i −0.155678 + 0.269641i
\(249\) 0 0
\(250\) −125.000 216.506i −0.0316228 0.0547723i
\(251\) 2652.00 0.666903 0.333452 0.942767i \(-0.391787\pi\)
0.333452 + 0.942767i \(0.391787\pi\)
\(252\) 0 0
\(253\) 1584.00 0.393617
\(254\) 124.000 + 214.774i 0.0306317 + 0.0530557i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 1167.00 2021.30i 0.283251 0.490605i −0.688933 0.724825i \(-0.741920\pi\)
0.972183 + 0.234221i \(0.0752538\pi\)
\(258\) 0 0
\(259\) −68.0000 117.779i −0.0163140 0.0282566i
\(260\) −1160.00 −0.276693
\(261\) 0 0
\(262\) 264.000 0.0622518
\(263\) 1974.00 + 3419.07i 0.462822 + 0.801630i 0.999100 0.0424106i \(-0.0135038\pi\)
−0.536279 + 0.844041i \(0.680170\pi\)
\(264\) 0 0
\(265\) −555.000 + 961.288i −0.128654 + 0.222836i
\(266\) −400.000 + 692.820i −0.0922014 + 0.159698i
\(267\) 0 0
\(268\) 2048.00 + 3547.24i 0.466797 + 0.808516i
\(269\) 1590.00 0.360387 0.180193 0.983631i \(-0.442328\pi\)
0.180193 + 0.983631i \(0.442328\pi\)
\(270\) 0 0
\(271\) 4952.00 1.11001 0.555005 0.831847i \(-0.312716\pi\)
0.555005 + 0.831847i \(0.312716\pi\)
\(272\) −528.000 914.523i −0.117701 0.203864i
\(273\) 0 0
\(274\) 1254.00 2171.99i 0.276485 0.478886i
\(275\) −150.000 + 259.808i −0.0328921 + 0.0569709i
\(276\) 0 0
\(277\) −823.000 1425.48i −0.178517 0.309201i 0.762856 0.646569i \(-0.223797\pi\)
−0.941373 + 0.337368i \(0.890463\pi\)
\(278\) −5720.00 −1.23404
\(279\) 0 0
\(280\) −160.000 −0.0341494
\(281\) 579.000 + 1002.86i 0.122919 + 0.212902i 0.920918 0.389757i \(-0.127441\pi\)
−0.797999 + 0.602659i \(0.794108\pi\)
\(282\) 0 0
\(283\) −3496.00 + 6055.25i −0.734331 + 1.27190i 0.220685 + 0.975345i \(0.429171\pi\)
−0.955016 + 0.296553i \(0.904163\pi\)
\(284\) −864.000 + 1496.49i −0.180525 + 0.312678i
\(285\) 0 0
\(286\) 696.000 + 1205.51i 0.143900 + 0.249242i
\(287\) 1752.00 0.360339
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 450.000 + 779.423i 0.0911204 + 0.157825i
\(291\) 0 0
\(292\) −724.000 + 1254.00i −0.145099 + 0.251319i
\(293\) 129.000 223.435i 0.0257210 0.0445501i −0.852878 0.522110i \(-0.825145\pi\)
0.878599 + 0.477560i \(0.158479\pi\)
\(294\) 0 0
\(295\) −1050.00 1818.65i −0.207232 0.358936i
\(296\) −272.000 −0.0534111
\(297\) 0 0
\(298\) 1500.00 0.291586
\(299\) 3828.00 + 6630.29i 0.740398 + 1.28241i
\(300\) 0 0
\(301\) 64.0000 110.851i 0.0122555 0.0212271i
\(302\) 448.000 775.959i 0.0853626 0.147852i
\(303\) 0 0
\(304\) 800.000 + 1385.64i 0.150931 + 0.261421i
\(305\) 4510.00 0.846695
\(306\) 0 0
\(307\) −8944.00 −1.66274 −0.831370 0.555720i \(-0.812443\pi\)
−0.831370 + 0.555720i \(0.812443\pi\)
\(308\) 96.0000 + 166.277i 0.0177601 + 0.0307614i
\(309\) 0 0
\(310\) −760.000 + 1316.36i −0.139242 + 0.241175i
\(311\) −696.000 + 1205.51i −0.126902 + 0.219801i −0.922475 0.386057i \(-0.873837\pi\)
0.795573 + 0.605858i \(0.207170\pi\)
\(312\) 0 0
\(313\) 2939.00 + 5090.50i 0.530742 + 0.919271i 0.999357 + 0.0358688i \(0.0114198\pi\)
−0.468615 + 0.883403i \(0.655247\pi\)
\(314\) 4492.00 0.807319
\(315\) 0 0
\(316\) −640.000 −0.113933
\(317\) −5163.00 8942.58i −0.914773 1.58443i −0.807234 0.590232i \(-0.799036\pi\)
−0.107539 0.994201i \(-0.534297\pi\)
\(318\) 0 0
\(319\) 540.000 935.307i 0.0947780 0.164160i
\(320\) −160.000 + 277.128i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 528.000 + 914.523i 0.0913798 + 0.158274i
\(323\) −6600.00 −1.13695
\(324\) 0 0
\(325\) −1450.00 −0.247482
\(326\) 568.000 + 983.805i 0.0964988 + 0.167141i
\(327\) 0 0
\(328\) 1752.00 3034.55i 0.294933 0.510839i
\(329\) −408.000 + 706.677i −0.0683701 + 0.118421i
\(330\) 0 0
\(331\) 2114.00 + 3661.56i 0.351045 + 0.608028i 0.986433 0.164165i \(-0.0524930\pi\)
−0.635388 + 0.772193i \(0.719160\pi\)
\(332\) 288.000 0.0476086
\(333\) 0 0
\(334\) −3048.00 −0.499339
\(335\) 2560.00 + 4434.05i 0.417516 + 0.723158i
\(336\) 0 0
\(337\) −553.000 + 957.824i −0.0893882 + 0.154825i −0.907253 0.420586i \(-0.861825\pi\)
0.817864 + 0.575411i \(0.195158\pi\)
\(338\) −1167.00 + 2021.30i −0.187800 + 0.325279i
\(339\) 0 0
\(340\) −660.000 1143.15i −0.105275 0.182342i
\(341\) 1824.00 0.289663
\(342\) 0 0
\(343\) 2680.00 0.421885
\(344\) −128.000 221.703i −0.0200619 0.0347482i
\(345\) 0 0
\(346\) −3702.00 + 6412.05i −0.575204 + 0.996283i
\(347\) −4668.00 + 8085.21i −0.722165 + 1.25083i 0.237965 + 0.971274i \(0.423520\pi\)
−0.960130 + 0.279553i \(0.909814\pi\)
\(348\) 0 0
\(349\) 5885.00 + 10193.1i 0.902627 + 1.56340i 0.824071 + 0.566486i \(0.191698\pi\)
0.0785557 + 0.996910i \(0.474969\pi\)
\(350\) −200.000 −0.0305441
\(351\) 0 0
\(352\) 384.000 0.0581456
\(353\) −4161.00 7207.06i −0.627387 1.08667i −0.988074 0.153980i \(-0.950791\pi\)
0.360687 0.932687i \(-0.382542\pi\)
\(354\) 0 0
\(355\) −1080.00 + 1870.61i −0.161466 + 0.279667i
\(356\) −1620.00 + 2805.92i −0.241179 + 0.417735i
\(357\) 0 0
\(358\) −3180.00 5507.92i −0.469464 0.813136i
\(359\) 10680.0 1.57011 0.785054 0.619427i \(-0.212635\pi\)
0.785054 + 0.619427i \(0.212635\pi\)
\(360\) 0 0
\(361\) 3141.00 0.457938
\(362\) 2098.00 + 3633.84i 0.304609 + 0.527598i
\(363\) 0 0
\(364\) −464.000 + 803.672i −0.0668138 + 0.115725i
\(365\) −905.000 + 1567.51i −0.129780 + 0.224786i
\(366\) 0 0
\(367\) 2942.00 + 5095.69i 0.418450 + 0.724777i 0.995784 0.0917316i \(-0.0292402\pi\)
−0.577334 + 0.816508i \(0.695907\pi\)
\(368\) 2112.00 0.299173
\(369\) 0 0
\(370\) −340.000 −0.0477723
\(371\) 444.000 + 769.031i 0.0621330 + 0.107617i
\(372\) 0 0
\(373\) 1049.00 1816.92i 0.145617 0.252216i −0.783986 0.620779i \(-0.786817\pi\)
0.929603 + 0.368562i \(0.120150\pi\)
\(374\) −792.000 + 1371.78i −0.109501 + 0.189661i
\(375\) 0 0
\(376\) 816.000 + 1413.35i 0.111920 + 0.193851i
\(377\) 5220.00 0.713113
\(378\) 0 0
\(379\) 3860.00 0.523153 0.261576 0.965183i \(-0.415758\pi\)
0.261576 + 0.965183i \(0.415758\pi\)
\(380\) 1000.00 + 1732.05i 0.134997 + 0.233822i
\(381\) 0 0
\(382\) −4392.00 + 7607.17i −0.588257 + 1.01889i
\(383\) 4794.00 8303.45i 0.639587 1.10780i −0.345936 0.938258i \(-0.612439\pi\)
0.985523 0.169540i \(-0.0542281\pi\)
\(384\) 0 0
\(385\) 120.000 + 207.846i 0.0158851 + 0.0275138i
\(386\) −4316.00 −0.569116
\(387\) 0 0
\(388\) 4424.00 0.578852
\(389\) 6705.00 + 11613.4i 0.873925 + 1.51368i 0.857903 + 0.513812i \(0.171767\pi\)
0.0160224 + 0.999872i \(0.494900\pi\)
\(390\) 0 0
\(391\) −4356.00 + 7544.81i −0.563408 + 0.975851i
\(392\) 1308.00 2265.52i 0.168531 0.291903i
\(393\) 0 0
\(394\) 1074.00 + 1860.22i 0.137328 + 0.237860i
\(395\) −800.000 −0.101905
\(396\) 0 0
\(397\) −13114.0 −1.65787 −0.828933 0.559348i \(-0.811052\pi\)
−0.828933 + 0.559348i \(0.811052\pi\)
\(398\) −2840.00 4919.02i −0.357679 0.619519i
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.0250000 + 0.0433013i
\(401\) 2919.00 5055.86i 0.363511 0.629619i −0.625025 0.780605i \(-0.714911\pi\)
0.988536 + 0.150985i \(0.0482446\pi\)
\(402\) 0 0
\(403\) 4408.00 + 7634.88i 0.544859 + 0.943723i
\(404\) −1032.00 −0.127089
\(405\) 0 0
\(406\) 720.000 0.0880123
\(407\) 204.000 + 353.338i 0.0248450 + 0.0430328i
\(408\) 0 0
\(409\) −4765.00 + 8253.22i −0.576074 + 0.997789i 0.419851 + 0.907593i \(0.362082\pi\)
−0.995924 + 0.0901954i \(0.971251\pi\)
\(410\) 2190.00 3793.19i 0.263796 0.456908i
\(411\) 0 0
\(412\) 1976.00 + 3422.53i 0.236288 + 0.409262i
\(413\) −1680.00 −0.200163
\(414\) 0 0
\(415\) 360.000 0.0425824
\(416\) 928.000 + 1607.34i 0.109372 + 0.189439i
\(417\) 0 0
\(418\) 1200.00 2078.46i 0.140416 0.243208i
\(419\) −3630.00 + 6287.34i −0.423239 + 0.733071i −0.996254 0.0864734i \(-0.972440\pi\)
0.573015 + 0.819545i \(0.305774\pi\)
\(420\) 0 0
\(421\) −6031.00 10446.0i −0.698178 1.20928i −0.969098 0.246678i \(-0.920661\pi\)
0.270920 0.962602i \(-0.412672\pi\)
\(422\) −5336.00 −0.615527
\(423\) 0 0
\(424\) 1776.00 0.203420
\(425\) −825.000 1428.94i −0.0941609 0.163091i
\(426\) 0 0
\(427\) 1804.00 3124.62i 0.204454 0.354124i
\(428\) 48.0000 83.1384i 0.00542095 0.00938936i
\(429\) 0 0
\(430\) −160.000 277.128i −0.0179439 0.0310798i
\(431\) −13608.0 −1.52082 −0.760411 0.649442i \(-0.775002\pi\)
−0.760411 + 0.649442i \(0.775002\pi\)
\(432\) 0 0
\(433\) −3838.00 −0.425964 −0.212982 0.977056i \(-0.568318\pi\)
−0.212982 + 0.977056i \(0.568318\pi\)
\(434\) 608.000 + 1053.09i 0.0672464 + 0.116474i
\(435\) 0 0
\(436\) −1900.00 + 3290.90i −0.208701 + 0.361480i
\(437\) 6600.00 11431.5i 0.722473 1.25136i
\(438\) 0 0
\(439\) −3700.00 6408.59i −0.402258 0.696732i 0.591740 0.806129i \(-0.298441\pi\)
−0.993998 + 0.109397i \(0.965108\pi\)
\(440\) 480.000 0.0520071
\(441\) 0 0
\(442\) −7656.00 −0.823889
\(443\) −4176.00 7233.04i −0.447873 0.775739i 0.550374 0.834918i \(-0.314485\pi\)
−0.998247 + 0.0591792i \(0.981152\pi\)
\(444\) 0 0
\(445\) −2025.00 + 3507.40i −0.215717 + 0.373633i
\(446\) −1772.00 + 3069.19i −0.188131 + 0.325853i
\(447\) 0 0
\(448\) 128.000 + 221.703i 0.0134987 + 0.0233805i
\(449\) 10770.0 1.13200 0.566000 0.824405i \(-0.308490\pi\)
0.566000 + 0.824405i \(0.308490\pi\)
\(450\) 0 0
\(451\) −5256.00 −0.548770
\(452\) 2076.00 + 3595.74i 0.216033 + 0.374180i
\(453\) 0 0
\(454\) 2784.00 4822.03i 0.287796 0.498478i
\(455\) −580.000 + 1004.59i −0.0597600 + 0.103507i
\(456\) 0 0
\(457\) 3347.00 + 5797.17i 0.342595 + 0.593392i 0.984914 0.173045i \(-0.0553607\pi\)
−0.642319 + 0.766438i \(0.722027\pi\)
\(458\) 700.000 0.0714167
\(459\) 0 0
\(460\) 2640.00 0.267588
\(461\) 1509.00 + 2613.66i 0.152454 + 0.264057i 0.932129 0.362127i \(-0.117949\pi\)
−0.779675 + 0.626184i \(0.784616\pi\)
\(462\) 0 0
\(463\) −7246.00 + 12550.4i −0.727322 + 1.25976i 0.230689 + 0.973028i \(0.425902\pi\)
−0.958011 + 0.286731i \(0.907431\pi\)
\(464\) 720.000 1247.08i 0.0720370 0.124772i
\(465\) 0 0
\(466\) −1962.00 3398.28i −0.195038 0.337816i
\(467\) 7776.00 0.770515 0.385257 0.922809i \(-0.374113\pi\)
0.385257 + 0.922809i \(0.374113\pi\)
\(468\) 0 0
\(469\) 4096.00 0.403274
\(470\) 1020.00 + 1766.69i 0.100104 + 0.173386i
\(471\) 0 0
\(472\) −1680.00 + 2909.85i −0.163831 + 0.283764i
\(473\) −192.000 + 332.554i −0.0186642 + 0.0323274i
\(474\) 0 0
\(475\) 1250.00 + 2165.06i 0.120745 + 0.209137i
\(476\) −1056.00 −0.101684
\(477\) 0 0
\(478\) −8640.00 −0.826746
\(479\) 6840.00 + 11847.2i 0.652458 + 1.13009i 0.982525 + 0.186133i \(0.0595956\pi\)
−0.330066 + 0.943958i \(0.607071\pi\)
\(480\) 0 0
\(481\) −986.000 + 1707.80i −0.0934672 + 0.161890i
\(482\) 478.000 827.920i 0.0451708 0.0782380i
\(483\) 0 0
\(484\) 2374.00 + 4111.89i 0.222953 + 0.386165i
\(485\) 5530.00 0.517741
\(486\) 0 0
\(487\) 7916.00 0.736567 0.368284 0.929714i \(-0.379946\pi\)
0.368284 + 0.929714i \(0.379946\pi\)
\(488\) −3608.00 6249.24i −0.334685 0.579692i
\(489\) 0 0
\(490\) 1635.00 2831.90i 0.150738 0.261086i
\(491\) −6966.00 + 12065.5i −0.640267 + 1.10898i 0.345106 + 0.938564i \(0.387843\pi\)
−0.985373 + 0.170411i \(0.945490\pi\)
\(492\) 0 0
\(493\) 2970.00 + 5144.19i 0.271323 + 0.469945i
\(494\) 11600.0 1.05650
\(495\) 0 0
\(496\) 2432.00 0.220161
\(497\) 864.000 + 1496.49i 0.0779793 + 0.135064i
\(498\) 0 0
\(499\) 4130.00 7153.37i 0.370509 0.641741i −0.619135 0.785285i \(-0.712516\pi\)
0.989644 + 0.143544i \(0.0458498\pi\)
\(500\) −250.000 + 433.013i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −2652.00 4593.40i −0.235786 0.408393i
\(503\) −11148.0 −0.988200 −0.494100 0.869405i \(-0.664502\pi\)
−0.494100 + 0.869405i \(0.664502\pi\)
\(504\) 0 0
\(505\) −1290.00 −0.113672
\(506\) −1584.00 2743.57i −0.139165 0.241041i
\(507\) 0 0
\(508\) 248.000 429.549i 0.0216599 0.0375160i
\(509\) 4845.00 8391.79i 0.421907 0.730765i −0.574219 0.818702i \(-0.694694\pi\)
0.996126 + 0.0879370i \(0.0280274\pi\)
\(510\) 0 0
\(511\) 724.000 + 1254.00i 0.0626769 + 0.108560i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −4668.00 −0.400577
\(515\) 2470.00 + 4278.17i 0.211342 + 0.366055i
\(516\) 0 0
\(517\) 1224.00 2120.03i 0.104123 0.180346i
\(518\) −136.000 + 235.559i −0.0115357 + 0.0199804i
\(519\) 0 0
\(520\) 1160.00 + 2009.18i 0.0978257 + 0.169439i
\(521\) −16038.0 −1.34863 −0.674316 0.738443i \(-0.735562\pi\)
−0.674316 + 0.738443i \(0.735562\pi\)
\(522\) 0 0
\(523\) 992.000 0.0829391 0.0414695 0.999140i \(-0.486796\pi\)
0.0414695 + 0.999140i \(0.486796\pi\)
\(524\) −264.000 457.261i −0.0220093 0.0381213i
\(525\) 0 0
\(526\) 3948.00 6838.14i 0.327264 0.566838i
\(527\) −5016.00 + 8687.97i −0.414612 + 0.718129i
\(528\) 0 0
\(529\) −2628.50 4552.70i −0.216035 0.374184i
\(530\) 2220.00 0.181945
\(531\) 0 0
\(532\) 1600.00 0.130392
\(533\) −12702.0 22000.5i −1.03224 1.78789i
\(534\) 0 0
\(535\) 60.0000 103.923i 0.00484865 0.00839810i
\(536\) 4096.00 7094.48i 0.330075 0.571707i
\(537\) 0 0
\(538\) −1590.00 2753.96i −0.127416 0.220691i
\(539\) −3924.00 −0.313578
\(540\) 0 0
\(541\) 7142.00 0.567576 0.283788 0.958887i \(-0.408409\pi\)
0.283788 + 0.958887i \(0.408409\pi\)
\(542\) −4952.00 8577.12i −0.392448 0.679739i
\(543\) 0 0
\(544\) −1056.00 + 1829.05i −0.0832273 + 0.144154i
\(545\) −2375.00 + 4113.62i −0.186668 + 0.323318i
\(546\) 0 0
\(547\) −3808.00 6595.65i −0.297657 0.515557i 0.677943 0.735115i \(-0.262872\pi\)
−0.975599 + 0.219558i \(0.929538\pi\)
\(548\) −5016.00 −0.391009
\(549\) 0 0
\(550\) 600.000 0.0465165
\(551\) −4500.00 7794.23i −0.347925 0.602623i
\(552\) 0 0
\(553\) −320.000 + 554.256i −0.0246072 + 0.0426209i
\(554\) −1646.00 + 2850.96i −0.126231 + 0.218638i
\(555\) 0 0
\(556\) 5720.00 + 9907.33i 0.436299 + 0.755691i
\(557\) −10314.0 −0.784593 −0.392296 0.919839i \(-0.628319\pi\)
−0.392296 + 0.919839i \(0.628319\pi\)
\(558\) 0 0
\(559\) −1856.00 −0.140430
\(560\) 160.000 + 277.128i 0.0120736 + 0.0209121i
\(561\) 0 0
\(562\) 1158.00 2005.71i 0.0869169 0.150544i
\(563\) 3564.00 6173.03i 0.266793 0.462100i −0.701239 0.712927i \(-0.747369\pi\)
0.968032 + 0.250827i \(0.0807025\pi\)
\(564\) 0 0
\(565\) 2595.00 + 4494.67i 0.193226 + 0.334677i
\(566\) 13984.0 1.03850
\(567\) 0 0
\(568\) 3456.00 0.255300
\(569\) −1005.00 1740.71i −0.0740453 0.128250i 0.826625 0.562753i \(-0.190258\pi\)
−0.900671 + 0.434502i \(0.856924\pi\)
\(570\) 0 0
\(571\) 11594.0 20081.4i 0.849726 1.47177i −0.0317260 0.999497i \(-0.510100\pi\)
0.881452 0.472273i \(-0.156566\pi\)
\(572\) 1392.00 2411.01i 0.101753 0.176241i
\(573\) 0 0
\(574\) −1752.00 3034.55i −0.127399 0.220662i
\(575\) 3300.00 0.239338
\(576\) 0 0
\(577\) 22466.0 1.62092 0.810461 0.585793i \(-0.199217\pi\)
0.810461 + 0.585793i \(0.199217\pi\)
\(578\) 557.000 + 964.752i 0.0400833 + 0.0694263i
\(579\) 0 0
\(580\) 900.000 1558.85i 0.0644318 0.111599i
\(581\) 144.000 249.415i 0.0102825 0.0178098i
\(582\) 0 0
\(583\) −1332.00 2307.09i −0.0946240 0.163894i
\(584\) 2896.00 0.205201
\(585\) 0 0
\(586\) −516.000 −0.0363750
\(587\) −11388.0 19724.6i −0.800738 1.38692i −0.919131 0.393952i \(-0.871108\pi\)
0.118393 0.992967i \(-0.462226\pi\)
\(588\) 0 0
\(589\) 7600.00 13163.6i 0.531668 0.920876i
\(590\) −2100.00 + 3637.31i −0.146535 + 0.253806i
\(591\) 0 0
\(592\) 272.000 + 471.118i 0.0188837 + 0.0327075i
\(593\) −21198.0 −1.46796 −0.733978 0.679174i \(-0.762338\pi\)
−0.733978 + 0.679174i \(0.762338\pi\)
\(594\) 0 0
\(595\) −1320.00 −0.0909491
\(596\) −1500.00 2598.08i −0.103091 0.178559i
\(597\) 0 0
\(598\) 7656.00 13260.6i 0.523540 0.906798i
\(599\) −7980.00 + 13821.8i −0.544330 + 0.942808i 0.454318 + 0.890839i \(0.349883\pi\)
−0.998649 + 0.0519686i \(0.983450\pi\)
\(600\) 0 0
\(601\) −2941.00 5093.96i −0.199610 0.345735i 0.748792 0.662805i \(-0.230634\pi\)
−0.948402 + 0.317070i \(0.897301\pi\)
\(602\) −256.000 −0.0173319
\(603\) 0 0
\(604\) −1792.00 −0.120721
\(605\) 2967.50 + 5139.86i 0.199415 + 0.345397i
\(606\) 0 0
\(607\) −4258.00 + 7375.07i −0.284723 + 0.493155i −0.972542 0.232728i \(-0.925235\pi\)
0.687819 + 0.725882i \(0.258568\pi\)
\(608\) 1600.00 2771.28i 0.106725 0.184852i
\(609\) 0 0
\(610\) −4510.00 7811.55i −0.299352 0.518492i
\(611\) 11832.0 0.783423
\(612\) 0 0
\(613\) 8462.00 0.557548 0.278774 0.960357i \(-0.410072\pi\)
0.278774 + 0.960357i \(0.410072\pi\)
\(614\) 8944.00 + 15491.5i 0.587867 + 1.01822i
\(615\) 0 0
\(616\) 192.000 332.554i 0.0125583 0.0217516i
\(617\) 5547.00 9607.69i 0.361935 0.626890i −0.626344 0.779546i \(-0.715450\pi\)
0.988279 + 0.152657i \(0.0487829\pi\)
\(618\) 0 0
\(619\) −1090.00 1887.94i −0.0707767 0.122589i 0.828465 0.560041i \(-0.189214\pi\)
−0.899242 + 0.437452i \(0.855881\pi\)
\(620\) 3040.00 0.196918
\(621\) 0 0
\(622\) 2784.00 0.179467
\(623\) 1620.00 + 2805.92i 0.104180 + 0.180444i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 5878.00 10181.0i 0.375291 0.650023i
\(627\) 0 0
\(628\) −4492.00 7780.37i −0.285430 0.494380i
\(629\) −2244.00 −0.142248
\(630\) 0 0
\(631\) −26848.0 −1.69382 −0.846911 0.531734i \(-0.821541\pi\)
−0.846911 + 0.531734i \(0.821541\pi\)
\(632\) 640.000 + 1108.51i 0.0402814 + 0.0697694i
\(633\) 0 0
\(634\) −10326.0 + 17885.2i −0.646842 + 1.12036i
\(635\) 310.000 536.936i 0.0193732 0.0335553i
\(636\) 0 0
\(637\) −9483.00 16425.0i −0.589843 1.02164i
\(638\) −2160.00 −0.134036
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) −13161.0 22795.5i −0.810965 1.40463i −0.912190 0.409768i \(-0.865610\pi\)
0.101225 0.994864i \(-0.467724\pi\)
\(642\) 0 0
\(643\) 5084.00 8805.75i 0.311809 0.540070i −0.666945 0.745107i \(-0.732398\pi\)
0.978754 + 0.205038i \(0.0657317\pi\)
\(644\) 1056.00 1829.05i 0.0646153 0.111917i
\(645\) 0 0
\(646\) 6600.00 + 11431.5i 0.401971 + 0.696235i
\(647\) −23604.0 −1.43426 −0.717132 0.696937i \(-0.754546\pi\)
−0.717132 + 0.696937i \(0.754546\pi\)
\(648\) 0 0
\(649\) 5040.00 0.304834
\(650\) 1450.00 + 2511.47i 0.0874980 + 0.151551i
\(651\) 0 0
\(652\) 1136.00 1967.61i 0.0682350 0.118186i
\(653\) −8211.00 + 14221.9i −0.492069 + 0.852289i −0.999958 0.00913349i \(-0.997093\pi\)
0.507889 + 0.861423i \(0.330426\pi\)
\(654\) 0 0
\(655\) −330.000 571.577i −0.0196858 0.0340967i
\(656\) −7008.00 −0.417098
\(657\) 0 0
\(658\) 1632.00 0.0966899
\(659\) 13050.0 + 22603.3i 0.771405 + 1.33611i 0.936793 + 0.349884i \(0.113779\pi\)
−0.165388 + 0.986229i \(0.552888\pi\)
\(660\) 0 0
\(661\) 1529.00 2648.31i 0.0899716 0.155835i −0.817527 0.575890i \(-0.804656\pi\)
0.907499 + 0.420055i \(0.137989\pi\)
\(662\) 4228.00 7323.11i 0.248226 0.429941i
\(663\) 0 0
\(664\) −288.000 498.831i −0.0168322 0.0291542i
\(665\) 2000.00 0.116627
\(666\) 0 0
\(667\) −11880.0 −0.689648
\(668\) 3048.00 + 5279.29i 0.176543 + 0.305781i
\(669\) 0 0
\(670\) 5120.00 8868.10i 0.295228 0.511350i
\(671\) −5412.00 + 9373.86i −0.311368 + 0.539305i
\(672\) 0 0
\(673\) −5401.00 9354.81i −0.309351 0.535812i 0.668870 0.743380i \(-0.266778\pi\)
−0.978221 + 0.207568i \(0.933445\pi\)
\(674\) 2212.00 0.126414
\(675\) 0 0
\(676\) 4668.00 0.265589
\(677\) 5337.00 + 9243.96i 0.302980 + 0.524777i 0.976810 0.214110i \(-0.0686851\pi\)
−0.673829 + 0.738887i \(0.735352\pi\)
\(678\) 0 0
\(679\) 2212.00 3831.30i 0.125020 0.216541i
\(680\) −1320.00 + 2286.31i −0.0744407 + 0.128935i
\(681\) 0 0
\(682\) −1824.00 3159.26i −0.102411 0.177382i
\(683\) −28608.0 −1.60272 −0.801358 0.598185i \(-0.795889\pi\)
−0.801358 + 0.598185i \(0.795889\pi\)
\(684\) 0 0
\(685\) −6270.00 −0.349729
\(686\) −2680.00 4641.90i −0.149159 0.258350i
\(687\) 0 0
\(688\) −256.000 + 443.405i −0.0141859 + 0.0245707i
\(689\) 6438.00 11150.9i 0.355977 0.616571i
\(690\) 0 0
\(691\) 1214.00 + 2102.71i 0.0668346 + 0.115761i 0.897506 0.441002i \(-0.145377\pi\)
−0.830672 + 0.556763i \(0.812043\pi\)
\(692\) 14808.0 0.813462
\(693\) 0 0
\(694\) 18672.0 1.02130
\(695\) 7150.00 + 12384.2i 0.390237 + 0.675911i
\(696\) 0 0
\(697\) 14454.0 25035.1i 0.785487 1.36050i
\(698\) 11770.0 20386.2i 0.638254 1.10549i
\(699\) 0 0
\(700\) 200.000 + 346.410i 0.0107990 + 0.0187044i
\(701\) −6618.00 −0.356574 −0.178287 0.983979i \(-0.557056\pi\)
−0.178287 + 0.983979i \(0.557056\pi\)
\(702\) 0 0
\(703\) 3400.00 0.182409
\(704\) −384.000 665.108i −0.0205576 0.0356068i
\(705\) 0 0
\(706\) −8322.00 + 14414.1i −0.443630 + 0.768389i
\(707\) −516.000 + 893.738i −0.0274486 + 0.0475424i
\(708\) 0 0
\(709\) −10255.0 17762.2i −0.543208 0.940864i −0.998717 0.0506331i \(-0.983876\pi\)
0.455509 0.890231i \(-0.349457\pi\)
\(710\) 4320.00 0.228347
\(711\) 0 0
\(712\) 6480.00 0.341079
\(713\) −10032.0 17375.9i −0.526930 0.912670i
\(714\) 0 0
\(715\) 1740.00 3013.77i 0.0910102 0.157634i
\(716\) −6360.00 + 11015.8i −0.331961 + 0.574974i
\(717\) 0 0
\(718\) −10680.0 18498.3i −0.555117 0.961491i
\(719\) 31680.0 1.64321 0.821603 0.570061i \(-0.193080\pi\)
0.821603 + 0.570061i \(0.193080\pi\)
\(720\) 0 0
\(721\) 3952.00 0.204133
\(722\) −3141.00 5440.37i −0.161906 0.280429i
\(723\) 0 0
\(724\) 4196.00 7267.69i 0.215391 0.373068i
\(725\) 1125.00 1948.56i 0.0576296 0.0998174i
\(726\) 0 0
\(727\) −6598.00 11428.1i −0.336597 0.583004i 0.647193 0.762326i \(-0.275943\pi\)
−0.983790 + 0.179322i \(0.942609\pi\)
\(728\) 1856.00 0.0944889
\(729\) 0 0
\(730\) 3620.00 0.183537
\(731\) −1056.00 1829.05i −0.0534303 0.0925440i
\(732\) 0 0
\(733\) −4051.00 + 7016.54i −0.204130 + 0.353563i −0.949855 0.312690i \(-0.898770\pi\)
0.745725 + 0.666253i \(0.232103\pi\)
\(734\) 5884.00 10191.4i 0.295889 0.512494i
\(735\) 0 0
\(736\) −2112.00 3658.09i −0.105774 0.183205i
\(737\) −12288.0 −0.614158
\(738\) 0 0
\(739\) −12580.0 −0.626201 −0.313101 0.949720i \(-0.601368\pi\)
−0.313101 + 0.949720i \(0.601368\pi\)
\(740\) 340.000 + 588.897i 0.0168901 + 0.0292545i
\(741\) 0 0
\(742\) 888.000 1538.06i 0.0439346 0.0760970i
\(743\) −14946.0 + 25887.2i −0.737975 + 1.27821i 0.215430 + 0.976519i \(0.430885\pi\)
−0.953406 + 0.301691i \(0.902449\pi\)
\(744\) 0 0
\(745\) −1875.00 3247.60i −0.0922076 0.159708i
\(746\) −4196.00 −0.205934
\(747\) 0 0
\(748\) 3168.00 0.154858
\(749\) −48.0000 83.1384i −0.00234163 0.00405582i
\(750\) 0 0
\(751\) 20204.0 34994.4i 0.981697 1.70035i 0.325914 0.945399i \(-0.394328\pi\)
0.655783 0.754950i \(-0.272339\pi\)
\(752\) 1632.00 2826.71i 0.0791395 0.137074i
\(753\) 0 0
\(754\) −5220.00 9041.31i −0.252124 0.436691i
\(755\) −2240.00 −0.107976
\(756\) 0 0
\(757\) 32366.0 1.55398 0.776990 0.629513i \(-0.216746\pi\)
0.776990 + 0.629513i \(0.216746\pi\)
\(758\) −3860.00 6685.72i −0.184962 0.320364i
\(759\) 0 0
\(760\) 2000.00 3464.10i 0.0954574 0.165337i
\(761\) 8619.00 14928.5i 0.410563 0.711116i −0.584388 0.811474i \(-0.698665\pi\)
0.994951 + 0.100358i \(0.0319988\pi\)
\(762\) 0 0
\(763\) 1900.00 + 3290.90i 0.0901502 + 0.156145i
\(764\) 17568.0 0.831921
\(765\) 0 0
\(766\) −19176.0 −0.904513
\(767\) 12180.0 + 21096.4i 0.573395 + 0.993150i
\(768\) 0 0
\(769\) −5425.00 + 9396.38i −0.254396 + 0.440627i −0.964731 0.263237i \(-0.915210\pi\)
0.710335 + 0.703863i \(0.248543\pi\)
\(770\) 240.000 415.692i 0.0112325 0.0194552i
\(771\) 0 0
\(772\) 4316.00 + 7475.53i 0.201213 + 0.348511i
\(773\) 9102.00 0.423514 0.211757 0.977322i \(-0.432081\pi\)
0.211757 + 0.977322i \(0.432081\pi\)
\(774\) 0 0
\(775\) 3800.00 0.176129
\(776\) −4424.00 7662.59i −0.204655 0.354473i
\(777\) 0 0
\(778\) 13410.0 23226.8i 0.617959 1.07034i
\(779\) −21900.0 + 37931.9i −1.00725 + 1.74461i
\(780\) 0 0