Properties

Label 810.3.j.e.269.2
Level $810$
Weight $3$
Character 810.269
Analytic conductor $22.071$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.2
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 810.269
Dual form 810.3.j.e.539.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(1.29410 - 4.82963i) q^{5} +(-4.33013 - 2.50000i) q^{7} +2.82843 q^{8} +O(q^{10})\) \(q+(-0.707107 + 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(1.29410 - 4.82963i) q^{5} +(-4.33013 - 2.50000i) q^{7} +2.82843 q^{8} +(5.00000 + 5.00000i) q^{10} +(1.22474 + 0.707107i) q^{11} +(7.79423 - 4.50000i) q^{13} +(6.12372 - 3.53553i) q^{14} +(-2.00000 + 3.46410i) q^{16} -11.3137 q^{17} +21.0000 q^{19} +(-9.65926 + 2.58819i) q^{20} +(-1.73205 + 1.00000i) q^{22} +(0.707107 + 1.22474i) q^{23} +(-21.6506 - 12.5000i) q^{25} +12.7279i q^{26} +10.0000i q^{28} +(33.0681 + 19.0919i) q^{29} +(-20.0000 - 34.6410i) q^{31} +(-2.82843 - 4.89898i) q^{32} +(8.00000 - 13.8564i) q^{34} +(-17.6777 + 17.6777i) q^{35} -25.0000i q^{37} +(-14.8492 + 25.7196i) q^{38} +(3.66025 - 13.6603i) q^{40} +(-45.3156 + 26.1630i) q^{41} +(-55.4256 - 32.0000i) q^{43} -2.82843i q^{44} -2.00000 q^{46} +(11.3137 - 19.5959i) q^{47} +(-12.0000 - 20.7846i) q^{49} +(30.6186 - 17.6777i) q^{50} +(-15.5885 - 9.00000i) q^{52} -72.1249 q^{53} +(5.00000 - 5.00000i) q^{55} +(-12.2474 - 7.07107i) q^{56} +(-46.7654 + 27.0000i) q^{58} +(-78.3837 + 45.2548i) q^{59} +(48.5000 - 84.0045i) q^{61} +56.5685 q^{62} +8.00000 q^{64} +(-11.6469 - 43.4667i) q^{65} +(-113.449 + 65.5000i) q^{67} +(11.3137 + 19.5959i) q^{68} +(-9.15064 - 34.1506i) q^{70} +89.0955i q^{71} -17.0000i q^{73} +(30.6186 + 17.6777i) q^{74} +(-21.0000 - 36.3731i) q^{76} +(-3.53553 - 6.12372i) q^{77} +(58.5000 - 101.325i) q^{79} +(14.1421 + 14.1421i) q^{80} -74.0000i q^{82} +(-28.9914 + 50.2145i) q^{83} +(-14.6410 + 54.6410i) q^{85} +(78.3837 - 45.2548i) q^{86} +(3.46410 + 2.00000i) q^{88} -147.078i q^{89} -45.0000 q^{91} +(1.41421 - 2.44949i) q^{92} +(16.0000 + 27.7128i) q^{94} +(27.1760 - 101.422i) q^{95} +(35.5070 + 20.5000i) q^{97} +33.9411 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} + 40 q^{10} - 16 q^{16} + 168 q^{19} - 160 q^{31} + 64 q^{34} - 40 q^{40} - 16 q^{46} - 96 q^{49} + 40 q^{55} + 388 q^{61} + 64 q^{64} + 100 q^{70} - 168 q^{76} + 468 q^{79} + 160 q^{85} - 360 q^{91} + 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 1.29410 4.82963i 0.258819 0.965926i
\(6\) 0 0
\(7\) −4.33013 2.50000i −0.618590 0.357143i 0.157730 0.987482i \(-0.449582\pi\)
−0.776320 + 0.630339i \(0.782916\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 5.00000 + 5.00000i 0.500000 + 0.500000i
\(11\) 1.22474 + 0.707107i 0.111340 + 0.0642824i 0.554636 0.832093i \(-0.312857\pi\)
−0.443296 + 0.896375i \(0.646191\pi\)
\(12\) 0 0
\(13\) 7.79423 4.50000i 0.599556 0.346154i −0.169311 0.985563i \(-0.554154\pi\)
0.768867 + 0.639409i \(0.220821\pi\)
\(14\) 6.12372 3.53553i 0.437409 0.252538i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −11.3137 −0.665512 −0.332756 0.943013i \(-0.607979\pi\)
−0.332756 + 0.943013i \(0.607979\pi\)
\(18\) 0 0
\(19\) 21.0000 1.10526 0.552632 0.833426i \(-0.313624\pi\)
0.552632 + 0.833426i \(0.313624\pi\)
\(20\) −9.65926 + 2.58819i −0.482963 + 0.129410i
\(21\) 0 0
\(22\) −1.73205 + 1.00000i −0.0787296 + 0.0454545i
\(23\) 0.707107 + 1.22474i 0.0307438 + 0.0532498i 0.880988 0.473139i \(-0.156879\pi\)
−0.850244 + 0.526389i \(0.823546\pi\)
\(24\) 0 0
\(25\) −21.6506 12.5000i −0.866025 0.500000i
\(26\) 12.7279i 0.489535i
\(27\) 0 0
\(28\) 10.0000i 0.357143i
\(29\) 33.0681 + 19.0919i 1.14028 + 0.658341i 0.946500 0.322704i \(-0.104592\pi\)
0.193780 + 0.981045i \(0.437925\pi\)
\(30\) 0 0
\(31\) −20.0000 34.6410i −0.645161 1.11745i −0.984264 0.176703i \(-0.943457\pi\)
0.339103 0.940749i \(-0.389876\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 8.00000 13.8564i 0.235294 0.407541i
\(35\) −17.6777 + 17.6777i −0.505076 + 0.505076i
\(36\) 0 0
\(37\) 25.0000i 0.675676i −0.941204 0.337838i \(-0.890304\pi\)
0.941204 0.337838i \(-0.109696\pi\)
\(38\) −14.8492 + 25.7196i −0.390770 + 0.676833i
\(39\) 0 0
\(40\) 3.66025 13.6603i 0.0915064 0.341506i
\(41\) −45.3156 + 26.1630i −1.10526 + 0.638121i −0.937597 0.347724i \(-0.886955\pi\)
−0.167661 + 0.985845i \(0.553621\pi\)
\(42\) 0 0
\(43\) −55.4256 32.0000i −1.28897 0.744186i −0.310498 0.950574i \(-0.600496\pi\)
−0.978470 + 0.206388i \(0.933829\pi\)
\(44\) 2.82843i 0.0642824i
\(45\) 0 0
\(46\) −2.00000 −0.0434783
\(47\) 11.3137 19.5959i 0.240717 0.416934i −0.720202 0.693765i \(-0.755951\pi\)
0.960919 + 0.276830i \(0.0892840\pi\)
\(48\) 0 0
\(49\) −12.0000 20.7846i −0.244898 0.424176i
\(50\) 30.6186 17.6777i 0.612372 0.353553i
\(51\) 0 0
\(52\) −15.5885 9.00000i −0.299778 0.173077i
\(53\) −72.1249 −1.36085 −0.680424 0.732819i \(-0.738204\pi\)
−0.680424 + 0.732819i \(0.738204\pi\)
\(54\) 0 0
\(55\) 5.00000 5.00000i 0.0909091 0.0909091i
\(56\) −12.2474 7.07107i −0.218704 0.126269i
\(57\) 0 0
\(58\) −46.7654 + 27.0000i −0.806300 + 0.465517i
\(59\) −78.3837 + 45.2548i −1.32854 + 0.767031i −0.985073 0.172135i \(-0.944933\pi\)
−0.343463 + 0.939166i \(0.611600\pi\)
\(60\) 0 0
\(61\) 48.5000 84.0045i 0.795082 1.37712i −0.127705 0.991812i \(-0.540761\pi\)
0.922787 0.385310i \(-0.125906\pi\)
\(62\) 56.5685 0.912396
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −11.6469 43.4667i −0.179182 0.668718i
\(66\) 0 0
\(67\) −113.449 + 65.5000i −1.69327 + 0.977612i −0.741429 + 0.671032i \(0.765851\pi\)
−0.951845 + 0.306580i \(0.900815\pi\)
\(68\) 11.3137 + 19.5959i 0.166378 + 0.288175i
\(69\) 0 0
\(70\) −9.15064 34.1506i −0.130723 0.487866i
\(71\) 89.0955i 1.25487i 0.778671 + 0.627433i \(0.215894\pi\)
−0.778671 + 0.627433i \(0.784106\pi\)
\(72\) 0 0
\(73\) 17.0000i 0.232877i −0.993198 0.116438i \(-0.962852\pi\)
0.993198 0.116438i \(-0.0371477\pi\)
\(74\) 30.6186 + 17.6777i 0.413765 + 0.238887i
\(75\) 0 0
\(76\) −21.0000 36.3731i −0.276316 0.478593i
\(77\) −3.53553 6.12372i −0.0459160 0.0795289i
\(78\) 0 0
\(79\) 58.5000 101.325i 0.740506 1.28259i −0.211759 0.977322i \(-0.567919\pi\)
0.952265 0.305273i \(-0.0987476\pi\)
\(80\) 14.1421 + 14.1421i 0.176777 + 0.176777i
\(81\) 0 0
\(82\) 74.0000i 0.902439i
\(83\) −28.9914 + 50.2145i −0.349294 + 0.604994i −0.986124 0.166009i \(-0.946912\pi\)
0.636830 + 0.771004i \(0.280245\pi\)
\(84\) 0 0
\(85\) −14.6410 + 54.6410i −0.172247 + 0.642835i
\(86\) 78.3837 45.2548i 0.911438 0.526219i
\(87\) 0 0
\(88\) 3.46410 + 2.00000i 0.0393648 + 0.0227273i
\(89\) 147.078i 1.65256i −0.563257 0.826282i \(-0.690452\pi\)
0.563257 0.826282i \(-0.309548\pi\)
\(90\) 0 0
\(91\) −45.0000 −0.494505
\(92\) 1.41421 2.44949i 0.0153719 0.0266249i
\(93\) 0 0
\(94\) 16.0000 + 27.7128i 0.170213 + 0.294817i
\(95\) 27.1760 101.422i 0.286063 1.06760i
\(96\) 0 0
\(97\) 35.5070 + 20.5000i 0.366052 + 0.211340i 0.671732 0.740794i \(-0.265551\pi\)
−0.305680 + 0.952134i \(0.598884\pi\)
\(98\) 33.9411 0.346338
\(99\) 0 0
\(100\) 50.0000i 0.500000i
\(101\) −78.3837 45.2548i −0.776076 0.448068i 0.0589618 0.998260i \(-0.481221\pi\)
−0.835038 + 0.550193i \(0.814554\pi\)
\(102\) 0 0
\(103\) −11.2583 + 6.50000i −0.109304 + 0.0631068i −0.553655 0.832746i \(-0.686768\pi\)
0.444351 + 0.895853i \(0.353434\pi\)
\(104\) 22.0454 12.7279i 0.211975 0.122384i
\(105\) 0 0
\(106\) 51.0000 88.3346i 0.481132 0.833345i
\(107\) 123.037 1.14987 0.574937 0.818197i \(-0.305026\pi\)
0.574937 + 0.818197i \(0.305026\pi\)
\(108\) 0 0
\(109\) 8.00000 0.0733945 0.0366972 0.999326i \(-0.488316\pi\)
0.0366972 + 0.999326i \(0.488316\pi\)
\(110\) 2.58819 + 9.65926i 0.0235290 + 0.0878114i
\(111\) 0 0
\(112\) 17.3205 10.0000i 0.154647 0.0892857i
\(113\) −19.0919 33.0681i −0.168955 0.292638i 0.769098 0.639131i \(-0.220706\pi\)
−0.938053 + 0.346493i \(0.887372\pi\)
\(114\) 0 0
\(115\) 6.83013 1.83013i 0.0593924 0.0159141i
\(116\) 76.3675i 0.658341i
\(117\) 0 0
\(118\) 128.000i 1.08475i
\(119\) 48.9898 + 28.2843i 0.411679 + 0.237683i
\(120\) 0 0
\(121\) −59.5000 103.057i −0.491736 0.851711i
\(122\) 68.5894 + 118.800i 0.562208 + 0.973773i
\(123\) 0 0
\(124\) −40.0000 + 69.2820i −0.322581 + 0.558726i
\(125\) −88.3883 + 88.3883i −0.707107 + 0.707107i
\(126\) 0 0
\(127\) 8.00000i 0.0629921i 0.999504 + 0.0314961i \(0.0100272\pi\)
−0.999504 + 0.0314961i \(0.989973\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 61.4711 + 16.4711i 0.472855 + 0.126701i
\(131\) 117.576 67.8823i 0.897523 0.518185i 0.0211272 0.999777i \(-0.493274\pi\)
0.876396 + 0.481592i \(0.159941\pi\)
\(132\) 0 0
\(133\) −90.9327 52.5000i −0.683704 0.394737i
\(134\) 185.262i 1.38255i
\(135\) 0 0
\(136\) −32.0000 −0.235294
\(137\) 133.643 231.477i 0.975498 1.68961i 0.297215 0.954811i \(-0.403942\pi\)
0.678283 0.734801i \(-0.262724\pi\)
\(138\) 0 0
\(139\) 18.5000 + 32.0429i 0.133094 + 0.230525i 0.924868 0.380289i \(-0.124176\pi\)
−0.791774 + 0.610814i \(0.790842\pi\)
\(140\) 48.2963 + 12.9410i 0.344974 + 0.0924354i
\(141\) 0 0
\(142\) −109.119 63.0000i −0.768445 0.443662i
\(143\) 12.7279 0.0890064
\(144\) 0 0
\(145\) 135.000 135.000i 0.931034 0.931034i
\(146\) 20.8207 + 12.0208i 0.142607 + 0.0823344i
\(147\) 0 0
\(148\) −43.3013 + 25.0000i −0.292576 + 0.168919i
\(149\) −225.353 + 130.108i −1.51244 + 0.873206i −0.512542 + 0.858662i \(0.671296\pi\)
−0.999894 + 0.0145438i \(0.995370\pi\)
\(150\) 0 0
\(151\) −54.5000 + 94.3968i −0.360927 + 0.625144i −0.988114 0.153725i \(-0.950873\pi\)
0.627187 + 0.778869i \(0.284206\pi\)
\(152\) 59.3970 0.390770
\(153\) 0 0
\(154\) 10.0000 0.0649351
\(155\) −193.185 + 51.7638i −1.24636 + 0.333960i
\(156\) 0 0
\(157\) 102.191 59.0000i 0.650898 0.375796i −0.137902 0.990446i \(-0.544036\pi\)
0.788800 + 0.614650i \(0.210703\pi\)
\(158\) 82.7315 + 143.295i 0.523617 + 0.906931i
\(159\) 0 0
\(160\) −27.3205 + 7.32051i −0.170753 + 0.0457532i
\(161\) 7.07107i 0.0439197i
\(162\) 0 0
\(163\) 203.000i 1.24540i 0.782461 + 0.622699i \(0.213964\pi\)
−0.782461 + 0.622699i \(0.786036\pi\)
\(164\) 90.6311 + 52.3259i 0.552629 + 0.319060i
\(165\) 0 0
\(166\) −41.0000 71.0141i −0.246988 0.427796i
\(167\) −50.9117 88.1816i −0.304860 0.528034i 0.672370 0.740215i \(-0.265276\pi\)
−0.977230 + 0.212182i \(0.931943\pi\)
\(168\) 0 0
\(169\) −44.0000 + 76.2102i −0.260355 + 0.450948i
\(170\) −56.5685 56.5685i −0.332756 0.332756i
\(171\) 0 0
\(172\) 128.000i 0.744186i
\(173\) 5.65685 9.79796i 0.0326986 0.0566356i −0.849213 0.528050i \(-0.822923\pi\)
0.881912 + 0.471415i \(0.156257\pi\)
\(174\) 0 0
\(175\) 62.5000 + 108.253i 0.357143 + 0.618590i
\(176\) −4.89898 + 2.82843i −0.0278351 + 0.0160706i
\(177\) 0 0
\(178\) 180.133 + 104.000i 1.01198 + 0.584270i
\(179\) 125.865i 0.703156i 0.936159 + 0.351578i \(0.114355\pi\)
−0.936159 + 0.351578i \(0.885645\pi\)
\(180\) 0 0
\(181\) −127.000 −0.701657 −0.350829 0.936440i \(-0.614100\pi\)
−0.350829 + 0.936440i \(0.614100\pi\)
\(182\) 31.8198 55.1135i 0.174834 0.302822i
\(183\) 0 0
\(184\) 2.00000 + 3.46410i 0.0108696 + 0.0188266i
\(185\) −120.741 32.3524i −0.652653 0.174878i
\(186\) 0 0
\(187\) −13.8564 8.00000i −0.0740984 0.0427807i
\(188\) −45.2548 −0.240717
\(189\) 0 0
\(190\) 105.000 + 105.000i 0.552632 + 0.552632i
\(191\) −88.1816 50.9117i −0.461684 0.266553i 0.251068 0.967969i \(-0.419218\pi\)
−0.712752 + 0.701416i \(0.752552\pi\)
\(192\) 0 0
\(193\) 234.693 135.500i 1.21603 0.702073i 0.251960 0.967738i \(-0.418925\pi\)
0.964065 + 0.265665i \(0.0855915\pi\)
\(194\) −50.2145 + 28.9914i −0.258838 + 0.149440i
\(195\) 0 0
\(196\) −24.0000 + 41.5692i −0.122449 + 0.212088i
\(197\) 316.784 1.60804 0.804020 0.594602i \(-0.202691\pi\)
0.804020 + 0.594602i \(0.202691\pi\)
\(198\) 0 0
\(199\) 147.000 0.738693 0.369347 0.929292i \(-0.379581\pi\)
0.369347 + 0.929292i \(0.379581\pi\)
\(200\) −61.2372 35.3553i −0.306186 0.176777i
\(201\) 0 0
\(202\) 110.851 64.0000i 0.548769 0.316832i
\(203\) −95.4594 165.341i −0.470243 0.814486i
\(204\) 0 0
\(205\) 67.7147 + 252.715i 0.330316 + 1.23275i
\(206\) 18.3848i 0.0892465i
\(207\) 0 0
\(208\) 36.0000i 0.173077i
\(209\) 25.7196 + 14.8492i 0.123060 + 0.0710490i
\(210\) 0 0
\(211\) −70.5000 122.110i −0.334123 0.578718i 0.649193 0.760624i \(-0.275107\pi\)
−0.983316 + 0.181906i \(0.941774\pi\)
\(212\) 72.1249 + 124.924i 0.340212 + 0.589264i
\(213\) 0 0
\(214\) −87.0000 + 150.688i −0.406542 + 0.704151i
\(215\) −226.274 + 226.274i −1.05244 + 1.05244i
\(216\) 0 0
\(217\) 200.000i 0.921659i
\(218\) −5.65685 + 9.79796i −0.0259489 + 0.0449448i
\(219\) 0 0
\(220\) −13.6603 3.66025i −0.0620921 0.0166375i
\(221\) −88.1816 + 50.9117i −0.399012 + 0.230370i
\(222\) 0 0
\(223\) 6.92820 + 4.00000i 0.0310682 + 0.0179372i 0.515454 0.856917i \(-0.327623\pi\)
−0.484385 + 0.874855i \(0.660957\pi\)
\(224\) 28.2843i 0.126269i
\(225\) 0 0
\(226\) 54.0000 0.238938
\(227\) −34.6482 + 60.0125i −0.152635 + 0.264372i −0.932196 0.361955i \(-0.882109\pi\)
0.779560 + 0.626327i \(0.215443\pi\)
\(228\) 0 0
\(229\) 4.00000 + 6.92820i 0.0174672 + 0.0302542i 0.874627 0.484797i \(-0.161106\pi\)
−0.857160 + 0.515051i \(0.827773\pi\)
\(230\) −2.58819 + 9.65926i −0.0112530 + 0.0419968i
\(231\) 0 0
\(232\) 93.5307 + 54.0000i 0.403150 + 0.232759i
\(233\) −316.784 −1.35959 −0.679794 0.733403i \(-0.737931\pi\)
−0.679794 + 0.733403i \(0.737931\pi\)
\(234\) 0 0
\(235\) −80.0000 80.0000i −0.340426 0.340426i
\(236\) 156.767 + 90.5097i 0.664268 + 0.383516i
\(237\) 0 0
\(238\) −69.2820 + 40.0000i −0.291101 + 0.168067i
\(239\) 177.588 102.530i 0.743046 0.428998i −0.0801297 0.996784i \(-0.525533\pi\)
0.823176 + 0.567787i \(0.192200\pi\)
\(240\) 0 0
\(241\) −39.5000 + 68.4160i −0.163900 + 0.283884i −0.936264 0.351297i \(-0.885741\pi\)
0.772364 + 0.635180i \(0.219074\pi\)
\(242\) 168.291 0.695419
\(243\) 0 0
\(244\) −194.000 −0.795082
\(245\) −115.911 + 31.0583i −0.473107 + 0.126769i
\(246\) 0 0
\(247\) 163.679 94.5000i 0.662667 0.382591i
\(248\) −56.5685 97.9796i −0.228099 0.395079i
\(249\) 0 0
\(250\) −45.7532 170.753i −0.183013 0.683013i
\(251\) 46.6690i 0.185932i 0.995669 + 0.0929662i \(0.0296349\pi\)
−0.995669 + 0.0929662i \(0.970365\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.00790514i
\(254\) −9.79796 5.65685i −0.0385746 0.0222711i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 84.8528 + 146.969i 0.330167 + 0.571865i 0.982544 0.186029i \(-0.0595617\pi\)
−0.652378 + 0.757894i \(0.726228\pi\)
\(258\) 0 0
\(259\) −62.5000 + 108.253i −0.241313 + 0.417966i
\(260\) −63.6396 + 63.6396i −0.244768 + 0.244768i
\(261\) 0 0
\(262\) 192.000i 0.732824i
\(263\) −141.421 + 244.949i −0.537724 + 0.931365i 0.461302 + 0.887243i \(0.347382\pi\)
−0.999026 + 0.0441219i \(0.985951\pi\)
\(264\) 0 0
\(265\) −93.3365 + 348.336i −0.352213 + 1.31448i
\(266\) 128.598 74.2462i 0.483452 0.279121i
\(267\) 0 0
\(268\) 226.899 + 131.000i 0.846637 + 0.488806i
\(269\) 101.823i 0.378526i 0.981926 + 0.189263i \(0.0606098\pi\)
−0.981926 + 0.189263i \(0.939390\pi\)
\(270\) 0 0
\(271\) −221.000 −0.815498 −0.407749 0.913094i \(-0.633686\pi\)
−0.407749 + 0.913094i \(0.633686\pi\)
\(272\) 22.6274 39.1918i 0.0831890 0.144088i
\(273\) 0 0
\(274\) 189.000 + 327.358i 0.689781 + 1.19474i
\(275\) −17.6777 30.6186i −0.0642824 0.111340i
\(276\) 0 0
\(277\) 76.2102 + 44.0000i 0.275127 + 0.158845i 0.631215 0.775608i \(-0.282556\pi\)
−0.356088 + 0.934452i \(0.615890\pi\)
\(278\) −52.3259 −0.188223
\(279\) 0 0
\(280\) −50.0000 + 50.0000i −0.178571 + 0.178571i
\(281\) 176.363 + 101.823i 0.627627 + 0.362361i 0.779833 0.625988i \(-0.215304\pi\)
−0.152205 + 0.988349i \(0.548638\pi\)
\(282\) 0 0
\(283\) 27.7128 16.0000i 0.0979251 0.0565371i −0.450238 0.892909i \(-0.648661\pi\)
0.548163 + 0.836372i \(0.315327\pi\)
\(284\) 154.318 89.0955i 0.543373 0.313716i
\(285\) 0 0
\(286\) −9.00000 + 15.5885i −0.0314685 + 0.0545051i
\(287\) 261.630 0.911601
\(288\) 0 0
\(289\) −161.000 −0.557093
\(290\) 69.8811 + 260.800i 0.240969 + 0.899310i
\(291\) 0 0
\(292\) −29.4449 + 17.0000i −0.100839 + 0.0582192i
\(293\) −86.9741 150.644i −0.296840 0.514142i 0.678571 0.734535i \(-0.262599\pi\)
−0.975411 + 0.220393i \(0.929266\pi\)
\(294\) 0 0
\(295\) 117.128 + 437.128i 0.397045 + 1.48179i
\(296\) 70.7107i 0.238887i
\(297\) 0 0
\(298\) 368.000i 1.23490i
\(299\) 11.0227 + 6.36396i 0.0368652 + 0.0212842i
\(300\) 0 0
\(301\) 160.000 + 277.128i 0.531561 + 0.920691i
\(302\) −77.0746 133.497i −0.255214 0.442044i
\(303\) 0 0
\(304\) −42.0000 + 72.7461i −0.138158 + 0.239296i
\(305\) −342.947 342.947i −1.12442 1.12442i
\(306\) 0 0
\(307\) 486.000i 1.58306i −0.611129 0.791531i \(-0.709284\pi\)
0.611129 0.791531i \(-0.290716\pi\)
\(308\) −7.07107 + 12.2474i −0.0229580 + 0.0397644i
\(309\) 0 0
\(310\) 73.2051 273.205i 0.236145 0.881307i
\(311\) −58.7878 + 33.9411i −0.189028 + 0.109135i −0.591528 0.806285i \(-0.701475\pi\)
0.402499 + 0.915420i \(0.368142\pi\)
\(312\) 0 0
\(313\) 243.353 + 140.500i 0.777486 + 0.448882i 0.835539 0.549432i \(-0.185156\pi\)
−0.0580525 + 0.998314i \(0.518489\pi\)
\(314\) 166.877i 0.531456i
\(315\) 0 0
\(316\) −234.000 −0.740506
\(317\) 260.215 450.706i 0.820868 1.42179i −0.0841679 0.996452i \(-0.526823\pi\)
0.905036 0.425334i \(-0.139843\pi\)
\(318\) 0 0
\(319\) 27.0000 + 46.7654i 0.0846395 + 0.146600i
\(320\) 10.3528 38.6370i 0.0323524 0.120741i
\(321\) 0 0
\(322\) 8.66025 + 5.00000i 0.0268952 + 0.0155280i
\(323\) −237.588 −0.735566
\(324\) 0 0
\(325\) −225.000 −0.692308
\(326\) −248.623 143.543i −0.762648 0.440315i
\(327\) 0 0
\(328\) −128.172 + 74.0000i −0.390768 + 0.225610i
\(329\) −97.9796 + 56.5685i −0.297810 + 0.171941i
\(330\) 0 0
\(331\) 29.5000 51.0955i 0.0891239 0.154367i −0.818017 0.575194i \(-0.804927\pi\)
0.907141 + 0.420827i \(0.138260\pi\)
\(332\) 115.966 0.349294
\(333\) 0 0
\(334\) 144.000 0.431138
\(335\) 169.526 + 632.681i 0.506049 + 1.88860i
\(336\) 0 0
\(337\) −47.6314 + 27.5000i −0.141339 + 0.0816024i −0.569002 0.822336i \(-0.692670\pi\)
0.427663 + 0.903938i \(0.359337\pi\)
\(338\) −62.2254 107.778i −0.184099 0.318868i
\(339\) 0 0
\(340\) 109.282 29.2820i 0.321418 0.0861236i
\(341\) 56.5685i 0.165890i
\(342\) 0 0
\(343\) 365.000i 1.06414i
\(344\) −156.767 90.5097i −0.455719 0.263109i
\(345\) 0 0
\(346\) 8.00000 + 13.8564i 0.0231214 + 0.0400474i
\(347\) 299.106 + 518.067i 0.861977 + 1.49299i 0.870017 + 0.493021i \(0.164107\pi\)
−0.00803996 + 0.999968i \(0.502559\pi\)
\(348\) 0 0
\(349\) 219.500 380.185i 0.628940 1.08936i −0.358825 0.933405i \(-0.616823\pi\)
0.987765 0.155951i \(-0.0498442\pi\)
\(350\) −176.777 −0.505076
\(351\) 0 0
\(352\) 8.00000i 0.0227273i
\(353\) 260.215 450.706i 0.737154 1.27679i −0.216618 0.976256i \(-0.569503\pi\)
0.953772 0.300531i \(-0.0971640\pi\)
\(354\) 0 0
\(355\) 430.298 + 115.298i 1.21211 + 0.324783i
\(356\) −254.747 + 147.078i −0.715581 + 0.413141i
\(357\) 0 0
\(358\) −154.153 89.0000i −0.430594 0.248603i
\(359\) 55.1543i 0.153633i 0.997045 + 0.0768166i \(0.0244756\pi\)
−0.997045 + 0.0768166i \(0.975524\pi\)
\(360\) 0 0
\(361\) 80.0000 0.221607
\(362\) 89.8026 155.543i 0.248073 0.429676i
\(363\) 0 0
\(364\) 45.0000 + 77.9423i 0.123626 + 0.214127i
\(365\) −82.1037 21.9996i −0.224942 0.0602729i
\(366\) 0 0
\(367\) 510.089 + 294.500i 1.38989 + 0.802452i 0.993302 0.115545i \(-0.0368615\pi\)
0.396586 + 0.917998i \(0.370195\pi\)
\(368\) −5.65685 −0.0153719
\(369\) 0 0
\(370\) 125.000 125.000i 0.337838 0.337838i
\(371\) 312.310 + 180.312i 0.841806 + 0.486017i
\(372\) 0 0
\(373\) 7.79423 4.50000i 0.0208961 0.0120643i −0.489516 0.871995i \(-0.662826\pi\)
0.510412 + 0.859930i \(0.329493\pi\)
\(374\) 19.5959 11.3137i 0.0523955 0.0302506i
\(375\) 0 0
\(376\) 32.0000 55.4256i 0.0851064 0.147409i
\(377\) 343.654 0.911549
\(378\) 0 0
\(379\) 157.000 0.414248 0.207124 0.978315i \(-0.433590\pi\)
0.207124 + 0.978315i \(0.433590\pi\)
\(380\) −202.844 + 54.3520i −0.533801 + 0.143032i
\(381\) 0 0
\(382\) 124.708 72.0000i 0.326460 0.188482i
\(383\) 141.421 + 244.949i 0.369246 + 0.639553i 0.989448 0.144889i \(-0.0462825\pi\)
−0.620202 + 0.784443i \(0.712949\pi\)
\(384\) 0 0
\(385\) −34.1506 + 9.15064i −0.0887029 + 0.0237679i
\(386\) 383.252i 0.992881i
\(387\) 0 0
\(388\) 82.0000i 0.211340i
\(389\) −519.292 299.813i −1.33494 0.770728i −0.348888 0.937164i \(-0.613441\pi\)
−0.986052 + 0.166436i \(0.946774\pi\)
\(390\) 0 0
\(391\) −8.00000 13.8564i −0.0204604 0.0354384i
\(392\) −33.9411 58.7878i −0.0865845 0.149969i
\(393\) 0 0
\(394\) −224.000 + 387.979i −0.568528 + 0.984719i
\(395\) −413.657 413.657i −1.04723 1.04723i
\(396\) 0 0
\(397\) 296.000i 0.745592i 0.927913 + 0.372796i \(0.121601\pi\)
−0.927913 + 0.372796i \(0.878399\pi\)
\(398\) −103.945 + 180.037i −0.261168 + 0.452356i
\(399\) 0 0
\(400\) 86.6025 50.0000i 0.216506 0.125000i
\(401\) −336.805 + 194.454i −0.839912 + 0.484924i −0.857234 0.514926i \(-0.827819\pi\)
0.0173221 + 0.999850i \(0.494486\pi\)
\(402\) 0 0
\(403\) −311.769 180.000i −0.773621 0.446650i
\(404\) 181.019i 0.448068i
\(405\) 0 0
\(406\) 270.000 0.665025
\(407\) 17.6777 30.6186i 0.0434341 0.0752300i
\(408\) 0 0
\(409\) −72.5000 125.574i −0.177262 0.307026i 0.763680 0.645595i \(-0.223391\pi\)
−0.940942 + 0.338569i \(0.890057\pi\)
\(410\) −357.393 95.7630i −0.871689 0.233568i
\(411\) 0 0
\(412\) 22.5167 + 13.0000i 0.0546521 + 0.0315534i
\(413\) 452.548 1.09576
\(414\) 0 0
\(415\) 205.000 + 205.000i 0.493976 + 0.493976i
\(416\) −44.0908 25.4558i −0.105988 0.0611919i
\(417\) 0 0
\(418\) −36.3731 + 21.0000i −0.0870169 + 0.0502392i
\(419\) 607.473 350.725i 1.44982 0.837052i 0.451347 0.892348i \(-0.350944\pi\)
0.998470 + 0.0552959i \(0.0176102\pi\)
\(420\) 0 0
\(421\) −252.500 + 437.343i −0.599762 + 1.03882i 0.393093 + 0.919499i \(0.371405\pi\)
−0.992856 + 0.119320i \(0.961928\pi\)
\(422\) 199.404 0.472522
\(423\) 0 0
\(424\) −204.000 −0.481132
\(425\) 244.949 + 141.421i 0.576351 + 0.332756i
\(426\) 0 0
\(427\) −420.022 + 242.500i −0.983659 + 0.567916i
\(428\) −123.037 213.106i −0.287469 0.497910i
\(429\) 0 0
\(430\) −117.128 437.128i −0.272391 1.01658i
\(431\) 43.8406i 0.101718i −0.998706 0.0508592i \(-0.983804\pi\)
0.998706 0.0508592i \(-0.0161960\pi\)
\(432\) 0 0
\(433\) 32.0000i 0.0739030i −0.999317 0.0369515i \(-0.988235\pi\)
0.999317 0.0369515i \(-0.0117647\pi\)
\(434\) −244.949 141.421i −0.564399 0.325856i
\(435\) 0 0
\(436\) −8.00000 13.8564i −0.0183486 0.0317807i
\(437\) 14.8492 + 25.7196i 0.0339800 + 0.0588550i
\(438\) 0 0
\(439\) 252.000 436.477i 0.574032 0.994252i −0.422114 0.906543i \(-0.638712\pi\)
0.996146 0.0877097i \(-0.0279548\pi\)
\(440\) 14.1421 14.1421i 0.0321412 0.0321412i
\(441\) 0 0
\(442\) 144.000i 0.325792i
\(443\) −118.794 + 205.757i −0.268158 + 0.464463i −0.968386 0.249456i \(-0.919748\pi\)
0.700228 + 0.713919i \(0.253082\pi\)
\(444\) 0 0
\(445\) −710.333 190.333i −1.59625 0.427715i
\(446\) −9.79796 + 5.65685i −0.0219685 + 0.0126835i
\(447\) 0 0
\(448\) −34.6410 20.0000i −0.0773237 0.0446429i
\(449\) 67.8823i 0.151185i 0.997139 + 0.0755927i \(0.0240849\pi\)
−0.997139 + 0.0755927i \(0.975915\pi\)
\(450\) 0 0
\(451\) −74.0000 −0.164080
\(452\) −38.1838 + 66.1362i −0.0844774 + 0.146319i
\(453\) 0 0
\(454\) −49.0000 84.8705i −0.107930 0.186939i
\(455\) −58.2343 + 217.333i −0.127987 + 0.477656i
\(456\) 0 0
\(457\) −651.251 376.000i −1.42506 0.822757i −0.428332 0.903621i \(-0.640899\pi\)
−0.996725 + 0.0808643i \(0.974232\pi\)
\(458\) −11.3137 −0.0247024
\(459\) 0 0
\(460\) −10.0000 10.0000i −0.0217391 0.0217391i
\(461\) −529.090 305.470i −1.14770 0.662625i −0.199374 0.979923i \(-0.563891\pi\)
−0.948326 + 0.317298i \(0.897224\pi\)
\(462\) 0 0
\(463\) 517.017 298.500i 1.11667 0.644708i 0.176120 0.984369i \(-0.443645\pi\)
0.940548 + 0.339660i \(0.110312\pi\)
\(464\) −132.272 + 76.3675i −0.285070 + 0.164585i
\(465\) 0 0
\(466\) 224.000 387.979i 0.480687 0.832574i
\(467\) 848.528 1.81698 0.908488 0.417910i \(-0.137237\pi\)
0.908488 + 0.417910i \(0.137237\pi\)
\(468\) 0 0
\(469\) 655.000 1.39659
\(470\) 154.548 41.4110i 0.328826 0.0881086i
\(471\) 0 0
\(472\) −221.703 + 128.000i −0.469709 + 0.271186i
\(473\) −45.2548 78.3837i −0.0956762 0.165716i
\(474\) 0 0
\(475\) −454.663 262.500i −0.957186 0.552632i
\(476\) 113.137i 0.237683i
\(477\) 0 0
\(478\) 290.000i 0.606695i
\(479\) 145.745 + 84.1457i 0.304269 + 0.175670i 0.644359 0.764723i \(-0.277124\pi\)
−0.340090 + 0.940393i \(0.610458\pi\)
\(480\) 0 0
\(481\) −112.500 194.856i −0.233888 0.405105i
\(482\) −55.8614 96.7548i −0.115895 0.200736i
\(483\) 0 0
\(484\) −119.000 + 206.114i −0.245868 + 0.425855i
\(485\) 144.957 144.957i 0.298880 0.298880i
\(486\) 0 0
\(487\) 507.000i 1.04107i −0.853841 0.520534i \(-0.825733\pi\)
0.853841 0.520534i \(-0.174267\pi\)
\(488\) 137.179 237.601i 0.281104 0.486886i
\(489\) 0 0
\(490\) 43.9230 163.923i 0.0896389 0.334537i
\(491\) 371.098 214.253i 0.755800 0.436361i −0.0719859 0.997406i \(-0.522934\pi\)
0.827786 + 0.561044i \(0.189600\pi\)
\(492\) 0 0
\(493\) −374.123 216.000i −0.758870 0.438134i
\(494\) 267.286i 0.541066i
\(495\) 0 0
\(496\) 160.000 0.322581
\(497\) 222.739 385.795i 0.448166 0.776247i
\(498\) 0 0
\(499\) −435.000 753.442i −0.871743 1.50990i −0.860192 0.509971i \(-0.829656\pi\)
−0.0115517 0.999933i \(-0.503677\pi\)
\(500\) 241.481 + 64.7048i 0.482963 + 0.129410i
\(501\) 0 0
\(502\) −57.1577 33.0000i −0.113860 0.0657371i
\(503\) −462.448 −0.919379 −0.459690 0.888080i \(-0.652039\pi\)
−0.459690 + 0.888080i \(0.652039\pi\)
\(504\) 0 0
\(505\) −320.000 + 320.000i −0.633663 + 0.633663i
\(506\) −2.44949 1.41421i −0.00484089 0.00279489i
\(507\) 0 0
\(508\) 13.8564 8.00000i 0.0272764 0.0157480i
\(509\) 709.127 409.415i 1.39318 0.804351i 0.399512 0.916728i \(-0.369180\pi\)
0.993666 + 0.112377i \(0.0358464\pi\)
\(510\) 0 0
\(511\) −42.5000 + 73.6122i −0.0831703 + 0.144055i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −240.000 −0.466926
\(515\) 16.8232 + 62.7852i 0.0326665 + 0.121913i
\(516\) 0 0
\(517\) 27.7128 16.0000i 0.0536031 0.0309478i
\(518\) −88.3883 153.093i −0.170634 0.295547i
\(519\) 0 0
\(520\) −32.9423 122.942i −0.0633506 0.236427i
\(521\) 864.084i 1.65851i −0.558869 0.829256i \(-0.688765\pi\)
0.558869 0.829256i \(-0.311235\pi\)
\(522\) 0 0
\(523\) 163.000i 0.311663i −0.987784 0.155832i \(-0.950194\pi\)
0.987784 0.155832i \(-0.0498058\pi\)
\(524\) −235.151 135.765i −0.448761 0.259093i
\(525\) 0 0
\(526\) −200.000 346.410i −0.380228 0.658574i
\(527\) 226.274 + 391.918i 0.429363 + 0.743678i
\(528\) 0 0
\(529\) 263.500 456.395i 0.498110 0.862751i
\(530\) −360.624 360.624i −0.680424 0.680424i
\(531\) 0 0
\(532\) 210.000i 0.394737i
\(533\) −235.467 + 407.840i −0.441776 + 0.765178i
\(534\) 0 0
\(535\) 159.221 594.221i 0.297609 1.11069i
\(536\) −320.883 + 185.262i −0.598663 + 0.345638i
\(537\) 0 0
\(538\) −124.708 72.0000i −0.231799 0.133829i
\(539\) 33.9411i 0.0629705i
\(540\) 0 0
\(541\) 697.000 1.28835 0.644177 0.764876i \(-0.277200\pi\)
0.644177 + 0.764876i \(0.277200\pi\)
\(542\) 156.271 270.669i 0.288322 0.499389i
\(543\) 0 0
\(544\) 32.0000 + 55.4256i 0.0588235 + 0.101885i
\(545\) 10.3528 38.6370i 0.0189959 0.0708936i
\(546\) 0 0
\(547\) −336.884 194.500i −0.615875 0.355576i 0.159386 0.987216i \(-0.449049\pi\)
−0.775261 + 0.631640i \(0.782382\pi\)
\(548\) −534.573 −0.975498
\(549\) 0 0
\(550\) 50.0000 0.0909091
\(551\) 694.430 + 400.930i 1.26031 + 0.727640i
\(552\) 0 0
\(553\) −506.625 + 292.500i −0.916139 + 0.528933i
\(554\) −107.778 + 62.2254i −0.194544 + 0.112320i
\(555\) 0 0
\(556\) 37.0000 64.0859i 0.0665468 0.115262i
\(557\) 1086.12 1.94994 0.974969 0.222339i \(-0.0713691\pi\)
0.974969 + 0.222339i \(0.0713691\pi\)
\(558\) 0 0
\(559\) −576.000 −1.03041
\(560\) −25.8819 96.5926i −0.0462177 0.172487i
\(561\) 0 0
\(562\) −249.415 + 144.000i −0.443799 + 0.256228i
\(563\) 311.127 + 538.888i 0.552623 + 0.957172i 0.998084 + 0.0618704i \(0.0197065\pi\)
−0.445461 + 0.895301i \(0.646960\pi\)
\(564\) 0 0
\(565\) −184.413 + 49.4134i −0.326395 + 0.0874574i
\(566\) 45.2548i 0.0799555i
\(567\) 0 0
\(568\) 252.000i 0.443662i
\(569\) −401.716 231.931i −0.706004 0.407612i 0.103576 0.994622i \(-0.466972\pi\)
−0.809580 + 0.587010i \(0.800305\pi\)
\(570\) 0 0
\(571\) 461.500 + 799.341i 0.808231 + 1.39990i 0.914088 + 0.405516i \(0.132908\pi\)
−0.105857 + 0.994381i \(0.533758\pi\)
\(572\) −12.7279 22.0454i −0.0222516 0.0385409i
\(573\) 0 0
\(574\) −185.000 + 320.429i −0.322300 + 0.558239i
\(575\) 35.3553i 0.0614875i
\(576\) 0 0
\(577\) 247.000i 0.428076i −0.976825 0.214038i \(-0.931338\pi\)
0.976825 0.214038i \(-0.0686617\pi\)
\(578\) 113.844 197.184i 0.196962 0.341149i
\(579\) 0 0
\(580\) −368.827 98.8269i −0.635908 0.170391i
\(581\) 251.073 144.957i 0.432139 0.249496i
\(582\) 0 0
\(583\) −88.3346 51.0000i −0.151517 0.0874786i
\(584\) 48.0833i 0.0823344i
\(585\) 0 0
\(586\) 246.000 0.419795
\(587\) 226.981 393.143i 0.386680 0.669750i −0.605321 0.795982i \(-0.706955\pi\)
0.992001 + 0.126232i \(0.0402884\pi\)
\(588\) 0 0
\(589\) −420.000 727.461i −0.713073 1.23508i
\(590\) −618.193 165.644i −1.04778 0.280753i
\(591\) 0 0
\(592\) 86.6025 + 50.0000i 0.146288 + 0.0844595i
\(593\) −4.24264 −0.00715454 −0.00357727 0.999994i \(-0.501139\pi\)
−0.00357727 + 0.999994i \(0.501139\pi\)
\(594\) 0 0
\(595\) 200.000 200.000i 0.336134 0.336134i
\(596\) 450.706 + 260.215i 0.756218 + 0.436603i
\(597\) 0 0
\(598\) −15.5885 + 9.00000i −0.0260677 + 0.0150502i
\(599\) 194.734 112.430i 0.325099 0.187696i −0.328564 0.944482i \(-0.606565\pi\)
0.653663 + 0.756786i \(0.273231\pi\)
\(600\) 0 0
\(601\) 368.000 637.395i 0.612313 1.06056i −0.378537 0.925586i \(-0.623573\pi\)
0.990850 0.134971i \(-0.0430940\pi\)
\(602\) −452.548 −0.751741
\(603\) 0 0
\(604\) 218.000 0.360927
\(605\) −574.726 + 153.997i −0.949960 + 0.254541i
\(606\) 0 0
\(607\) −378.453 + 218.500i −0.623481 + 0.359967i −0.778223 0.627988i \(-0.783879\pi\)
0.154742 + 0.987955i \(0.450545\pi\)
\(608\) −59.3970 102.879i −0.0976924 0.169208i
\(609\) 0 0
\(610\) 662.522 177.522i 1.08610 0.291020i
\(611\) 203.647i 0.333301i
\(612\) 0 0
\(613\) 335.000i 0.546493i −0.961944 0.273246i \(-0.911903\pi\)
0.961944 0.273246i \(-0.0880974\pi\)
\(614\) 595.226 + 343.654i 0.969423 + 0.559697i
\(615\) 0 0
\(616\) −10.0000 17.3205i −0.0162338 0.0281177i
\(617\) −127.986 221.679i −0.207433 0.359285i 0.743472 0.668767i \(-0.233178\pi\)
−0.950905 + 0.309482i \(0.899844\pi\)
\(618\) 0 0
\(619\) 482.500 835.715i 0.779483 1.35010i −0.152757 0.988264i \(-0.548815\pi\)
0.932240 0.361840i \(-0.117851\pi\)
\(620\) 282.843 + 282.843i 0.456198 + 0.456198i
\(621\) 0 0
\(622\) 96.0000i 0.154341i
\(623\) −367.696 + 636.867i −0.590201 + 1.02226i
\(624\) 0 0
\(625\) 312.500 + 541.266i 0.500000 + 0.866025i
\(626\) −344.153 + 198.697i −0.549766 + 0.317407i
\(627\) 0 0
\(628\) −204.382 118.000i −0.325449 0.187898i
\(629\) 282.843i 0.449670i
\(630\) 0 0
\(631\) 275.000 0.435816 0.217908 0.975969i \(-0.430077\pi\)
0.217908 + 0.975969i \(0.430077\pi\)
\(632\) 165.463 286.590i 0.261809 0.453466i
\(633\) 0 0
\(634\) 368.000 + 637.395i 0.580442 + 1.00535i
\(635\) 38.6370 + 10.3528i 0.0608457 + 0.0163036i
\(636\) 0 0
\(637\) −187.061 108.000i −0.293660 0.169545i
\(638\) −76.3675 −0.119698
\(639\) 0 0
\(640\) 40.0000 + 40.0000i 0.0625000 + 0.0625000i
\(641\) −421.312 243.245i −0.657273 0.379477i 0.133964 0.990986i \(-0.457229\pi\)
−0.791237 + 0.611509i \(0.790563\pi\)
\(642\) 0 0
\(643\) −997.661 + 576.000i −1.55157 + 0.895801i −0.553559 + 0.832810i \(0.686731\pi\)
−0.998014 + 0.0629907i \(0.979936\pi\)
\(644\) −12.2474 + 7.07107i −0.0190178 + 0.0109799i
\(645\) 0 0
\(646\) 168.000 290.985i 0.260062 0.450440i
\(647\) −691.550 −1.06886 −0.534428 0.845214i \(-0.679473\pi\)
−0.534428 + 0.845214i \(0.679473\pi\)
\(648\) 0 0
\(649\) −128.000 −0.197227
\(650\) 159.099 275.568i 0.244768 0.423950i
\(651\) 0 0
\(652\) 351.606 203.000i 0.539273 0.311350i
\(653\) −175.362 303.737i −0.268549 0.465140i 0.699938 0.714203i \(-0.253211\pi\)
−0.968487 + 0.249063i \(0.919877\pi\)
\(654\) 0 0
\(655\) −175.692 655.692i −0.268232 1.00106i
\(656\) 209.304i 0.319060i
\(657\) 0 0
\(658\) 160.000i 0.243161i
\(659\) 431.110 + 248.902i 0.654188 + 0.377696i 0.790059 0.613031i \(-0.210050\pi\)
−0.135871 + 0.990727i \(0.543383\pi\)
\(660\) 0 0
\(661\) 288.500 + 499.697i 0.436460 + 0.755971i 0.997414 0.0718765i \(-0.0228987\pi\)
−0.560954 + 0.827847i \(0.689565\pi\)
\(662\) 41.7193 + 72.2599i 0.0630201 + 0.109154i
\(663\) 0 0
\(664\) −82.0000 + 142.028i −0.123494 + 0.213898i
\(665\) −371.231 + 371.231i −0.558242 + 0.558242i
\(666\) 0 0
\(667\) 54.0000i 0.0809595i
\(668\) −101.823 + 176.363i −0.152430 + 0.264017i
\(669\) 0 0
\(670\) −894.747 239.747i −1.33544 0.357831i
\(671\) 118.800 68.5894i 0.177050 0.102220i
\(672\) 0 0
\(673\) 423.486 + 244.500i 0.629252 + 0.363299i 0.780462 0.625203i \(-0.214984\pi\)
−0.151210 + 0.988502i \(0.548317\pi\)
\(674\) 77.7817i 0.115403i
\(675\) 0 0
\(676\) 176.000 0.260355
\(677\) −299.813 + 519.292i −0.442856 + 0.767048i −0.997900 0.0647722i \(-0.979368\pi\)
0.555044 + 0.831821i \(0.312701\pi\)
\(678\) 0 0
\(679\) −102.500 177.535i −0.150957 0.261466i
\(680\) −41.4110 + 154.548i −0.0608986 + 0.227277i
\(681\) 0 0
\(682\) 69.2820 + 40.0000i 0.101587 + 0.0586510i
\(683\) 236.174 0.345789 0.172894 0.984940i \(-0.444688\pi\)
0.172894 + 0.984940i \(0.444688\pi\)
\(684\) 0 0
\(685\) −945.000 945.000i −1.37956 1.37956i
\(686\) −447.032 258.094i −0.651650 0.376230i
\(687\) 0 0
\(688\) 221.703 128.000i 0.322242 0.186047i
\(689\) −562.158 + 324.562i −0.815904 + 0.471062i
\(690\) 0 0
\(691\) −320.000 + 554.256i −0.463097 + 0.802107i −0.999113 0.0421001i \(-0.986595\pi\)
0.536016 + 0.844208i \(0.319928\pi\)
\(692\) −22.6274 −0.0326986
\(693\) 0 0
\(694\) −846.000 −1.21902
\(695\) 178.696 47.8815i 0.257117 0.0688943i
\(696\) 0 0
\(697\) 512.687 296.000i 0.735562 0.424677i
\(698\) 310.420 + 537.663i 0.444728 + 0.770291i
\(699\) 0 0
\(700\) 125.000 216.506i 0.178571 0.309295i
\(701\) 1093.19i 1.55947i 0.626111 + 0.779734i \(0.284646\pi\)
−0.626111 + 0.779734i \(0.715354\pi\)
\(702\) 0 0
\(703\) 525.000i 0.746799i
\(704\) 9.79796 + 5.65685i 0.0139176 + 0.00803530i
\(705\) 0 0
\(706\) 368.000 + 637.395i 0.521246 + 0.902825i
\(707\) 226.274 + 391.918i 0.320048 + 0.554340i
\(708\) 0 0
\(709\) 244.500 423.486i 0.344852 0.597301i −0.640475 0.767979i \(-0.721262\pi\)
0.985327 + 0.170678i \(0.0545958\pi\)
\(710\) −445.477 + 445.477i −0.627433 + 0.627433i
\(711\) 0 0
\(712\) 416.000i 0.584270i
\(713\) 28.2843 48.9898i 0.0396694 0.0687094i
\(714\) 0 0
\(715\) 16.4711 61.4711i 0.0230366 0.0859736i
\(716\) 218.005 125.865i 0.304476 0.175789i
\(717\) 0 0
\(718\) −67.5500 39.0000i −0.0940808 0.0543175i
\(719\) 620.840i 0.863477i 0.901999 + 0.431738i \(0.142100\pi\)
−0.901999 + 0.431738i \(0.857900\pi\)
\(720\) 0 0
\(721\) 65.0000 0.0901526
\(722\) −56.5685 + 97.9796i −0.0783498 + 0.135706i
\(723\) 0 0
\(724\) 127.000 + 219.970i 0.175414 + 0.303827i
\(725\) −477.297 826.703i −0.658341 1.14028i
\(726\) 0 0
\(727\) 935.307 + 540.000i 1.28653 + 0.742779i 0.978034 0.208447i \(-0.0668409\pi\)
0.308496 + 0.951225i \(0.400174\pi\)
\(728\) −127.279 −0.174834
\(729\) 0 0
\(730\) 85.0000 85.0000i 0.116438 0.116438i
\(731\) 627.069 + 362.039i 0.857824 + 0.495265i
\(732\) 0 0
\(733\) 214.774 124.000i 0.293007 0.169168i −0.346290 0.938128i \(-0.612559\pi\)
0.639297 + 0.768960i \(0.279225\pi\)
\(734\) −721.375 + 416.486i −0.982799 + 0.567419i
\(735\) 0 0
\(736\) 4.00000 6.92820i 0.00543478 0.00941332i
\(737\) −185.262 −0.251373
\(738\) 0 0
\(739\) 848.000 1.14750 0.573748 0.819032i \(-0.305489\pi\)
0.573748 + 0.819032i \(0.305489\pi\)
\(740\) 64.7048 + 241.481i 0.0874389 + 0.326326i
\(741\) 0 0
\(742\) −441.673 + 255.000i −0.595247 + 0.343666i
\(743\) −16.9706 29.3939i −0.0228406 0.0395611i 0.854379 0.519650i \(-0.173938\pi\)
−0.877220 + 0.480089i \(0.840604\pi\)
\(744\) 0 0
\(745\) 336.743 + 1256.74i 0.452005 + 1.68690i
\(746\) 12.7279i 0.0170616i
\(747\) 0 0
\(748\) 32.0000i 0.0427807i
\(749\) −532.764 307.591i −0.711300 0.410669i
\(750\) 0 0
\(751\) 66.5000 + 115.181i 0.0885486 + 0.153371i 0.906898 0.421351i \(-0.138444\pi\)
−0.818349 + 0.574721i \(0.805110\pi\)
\(752\) 45.2548 + 78.3837i 0.0601793 + 0.104234i
\(753\) 0 0
\(754\) −243.000 + 420.888i −0.322281 + 0.558207i
\(755\) 385.373 + 385.373i 0.510428 + 0.510428i
\(756\) 0 0
\(757\) 1271.00i 1.67900i 0.543363 + 0.839498i \(0.317151\pi\)
−0.543363 + 0.839498i \(0.682849\pi\)
\(758\) −111.016 + 192.285i −0.146459 + 0.253674i
\(759\) 0 0
\(760\) 76.8653 286.865i 0.101139 0.377454i
\(761\) 466.628 269.408i 0.613177 0.354018i −0.161031 0.986949i \(-0.551482\pi\)
0.774208 + 0.632931i \(0.218148\pi\)
\(762\) 0 0
\(763\) −34.6410 20.0000i −0.0454011 0.0262123i
\(764\) 203.647i 0.266553i
\(765\) 0 0
\(766\) −400.000 −0.522193
\(767\) −407.294 + 705.453i −0.531022 + 0.919756i
\(768\) 0 0
\(769\) 40.5000 + 70.1481i 0.0526658 + 0.0912198i 0.891156 0.453696i \(-0.149895\pi\)
−0.838491 + 0.544916i \(0.816562\pi\)
\(770\) 12.9410 48.2963i 0.0168064 0.0627225i
\(771\) 0 0
\(772\) −469.386 271.000i −0.608013 0.351036i
\(773\) 445.477 0.576297 0.288148 0.957586i \(-0.406960\pi\)
0.288148 + 0.957586i \(0.406960\pi\)
\(774\) 0 0
\(775\) 1000.00i 1.29032i
\(776\) 100.429 + 57.9828i 0.129419 + 0.0747200i
\(777\) 0 0
\(778\) 734.390 424.000i 0.943945 0.544987i
\(779\) −951.627 + 549.422i −1.22160 + 0.705291i
\(780\) 0 0
\(781\) −63.0000 + 109.119i −0.0806658 + 0.139717i
\(782\) 22.6274 0.0289353
\(783\) 0 0
\(784\) 96.0000 0.122449
\(785\) −152.703 569.896i −0.194526 0.725982i
\(786\) 0 0