Properties

Label 810.3.j.a.539.4
Level $810$
Weight $3$
Character 810.539
Analytic conductor $22.071$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(269,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.269");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.81622204416.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 165x^{4} - 434x^{2} + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 539.4
Root \(2.90379 + 1.67650i\) of defining polynomial
Character \(\chi\) \(=\) 810.539
Dual form 810.3.j.a.269.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(3.31368 + 3.74426i) q^{5} +(0.704577 - 0.406788i) q^{7} -2.82843 q^{8} +O(q^{10})\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(3.31368 + 3.74426i) q^{5} +(0.704577 - 0.406788i) q^{7} -2.82843 q^{8} +(-2.24264 + 6.70601i) q^{10} +(-13.3161 + 7.68808i) q^{11} +(-5.10300 - 2.94622i) q^{13} +(0.996422 + 0.575285i) q^{14} +(-2.00000 - 3.46410i) q^{16} -12.8995 q^{17} +1.24264 q^{19} +(-9.79894 + 1.99520i) q^{20} +(-18.8319 - 10.8726i) q^{22} +(2.39949 - 4.15605i) q^{23} +(-3.03902 + 24.8146i) q^{25} -8.33316i q^{26} +1.62715i q^{28} +(-36.9592 + 21.3384i) q^{29} +(-2.10660 + 3.64874i) q^{31} +(2.82843 - 4.89898i) q^{32} +(-9.12132 - 15.7986i) q^{34} +(3.85786 + 1.29016i) q^{35} -70.3144i q^{37} +(0.878680 + 1.52192i) q^{38} +(-9.37251 - 10.5904i) q^{40} +(6.09942 + 3.52150i) q^{41} +(-35.5500 + 20.5248i) q^{43} -30.7523i q^{44} +6.78680 q^{46} +(39.8995 + 69.1080i) q^{47} +(-24.1690 + 41.8620i) q^{49} +(-32.5405 + 13.8245i) q^{50} +(10.2060 - 5.89243i) q^{52} +63.7279 q^{53} +(-72.9117 - 24.3833i) q^{55} +(-1.99284 + 1.15057i) q^{56} +(-52.2682 - 30.1770i) q^{58} +(-31.7353 - 18.3224i) q^{59} +(41.4706 + 71.8291i) q^{61} -5.95837 q^{62} +8.00000 q^{64} +(-5.87830 - 28.8698i) q^{65} +(-77.0786 - 44.5013i) q^{67} +(12.8995 - 22.3426i) q^{68} +(1.14781 + 5.63718i) q^{70} +69.6982i q^{71} -89.6188i q^{73} +(86.1172 - 49.7198i) q^{74} +(-1.24264 + 2.15232i) q^{76} +(-6.25483 + 10.8337i) q^{77} +(-67.0477 - 116.130i) q^{79} +(6.34315 - 18.9675i) q^{80} +9.96031i q^{82} +(-54.5122 - 94.4179i) q^{83} +(-42.7448 - 48.2991i) q^{85} +(-50.2753 - 29.0265i) q^{86} +(37.6638 - 21.7452i) q^{88} +137.514i q^{89} -4.79394 q^{91} +(4.79899 + 8.31209i) q^{92} +(-56.4264 + 97.7334i) q^{94} +(4.11772 + 4.65277i) q^{95} +(-78.4877 + 45.3149i) q^{97} -68.3604 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 12 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 12 q^{5} + 16 q^{10} - 16 q^{16} - 24 q^{17} - 24 q^{19} - 24 q^{20} - 60 q^{23} + 12 q^{25} + 68 q^{31} - 56 q^{34} + 144 q^{35} + 24 q^{38} - 16 q^{40} + 224 q^{46} + 240 q^{47} + 180 q^{49} - 96 q^{50} + 408 q^{53} - 176 q^{55} + 196 q^{61} - 240 q^{62} + 64 q^{64} + 24 q^{65} + 24 q^{68} - 80 q^{70} + 24 q^{76} + 312 q^{77} - 180 q^{79} + 96 q^{80} - 108 q^{83} - 20 q^{85} + 912 q^{91} - 120 q^{92} - 112 q^{94} + 60 q^{95} - 1056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 3.31368 + 3.74426i 0.662736 + 0.748853i
\(6\) 0 0
\(7\) 0.704577 0.406788i 0.100654 0.0581125i −0.448828 0.893618i \(-0.648158\pi\)
0.549482 + 0.835506i \(0.314825\pi\)
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) −2.24264 + 6.70601i −0.224264 + 0.670601i
\(11\) −13.3161 + 7.68808i −1.21056 + 0.698917i −0.962881 0.269926i \(-0.913001\pi\)
−0.247678 + 0.968842i \(0.579667\pi\)
\(12\) 0 0
\(13\) −5.10300 2.94622i −0.392538 0.226632i 0.290721 0.956808i \(-0.406105\pi\)
−0.683259 + 0.730176i \(0.739438\pi\)
\(14\) 0.996422 + 0.575285i 0.0711730 + 0.0410918i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −12.8995 −0.758794 −0.379397 0.925234i \(-0.623869\pi\)
−0.379397 + 0.925234i \(0.623869\pi\)
\(18\) 0 0
\(19\) 1.24264 0.0654021 0.0327011 0.999465i \(-0.489589\pi\)
0.0327011 + 0.999465i \(0.489589\pi\)
\(20\) −9.79894 + 1.99520i −0.489947 + 0.0997601i
\(21\) 0 0
\(22\) −18.8319 10.8726i −0.855994 0.494209i
\(23\) 2.39949 4.15605i 0.104326 0.180698i −0.809137 0.587620i \(-0.800065\pi\)
0.913463 + 0.406923i \(0.133398\pi\)
\(24\) 0 0
\(25\) −3.03902 + 24.8146i −0.121561 + 0.992584i
\(26\) 8.33316i 0.320506i
\(27\) 0 0
\(28\) 1.62715i 0.0581125i
\(29\) −36.9592 + 21.3384i −1.27445 + 0.735807i −0.975823 0.218562i \(-0.929863\pi\)
−0.298631 + 0.954369i \(0.596530\pi\)
\(30\) 0 0
\(31\) −2.10660 + 3.64874i −0.0679549 + 0.117701i −0.898001 0.439994i \(-0.854981\pi\)
0.830046 + 0.557695i \(0.188314\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −9.12132 15.7986i −0.268274 0.464664i
\(35\) 3.85786 + 1.29016i 0.110225 + 0.0368616i
\(36\) 0 0
\(37\) 70.3144i 1.90039i −0.311657 0.950195i \(-0.600884\pi\)
0.311657 0.950195i \(-0.399116\pi\)
\(38\) 0.878680 + 1.52192i 0.0231231 + 0.0400505i
\(39\) 0 0
\(40\) −9.37251 10.5904i −0.234313 0.264759i
\(41\) 6.09942 + 3.52150i 0.148766 + 0.0858903i 0.572535 0.819880i \(-0.305960\pi\)
−0.423769 + 0.905770i \(0.639293\pi\)
\(42\) 0 0
\(43\) −35.5500 + 20.5248i −0.826745 + 0.477321i −0.852737 0.522341i \(-0.825059\pi\)
0.0259920 + 0.999662i \(0.491726\pi\)
\(44\) 30.7523i 0.698917i
\(45\) 0 0
\(46\) 6.78680 0.147539
\(47\) 39.8995 + 69.1080i 0.848925 + 1.47038i 0.882168 + 0.470935i \(0.156083\pi\)
−0.0332427 + 0.999447i \(0.510583\pi\)
\(48\) 0 0
\(49\) −24.1690 + 41.8620i −0.493246 + 0.854327i
\(50\) −32.5405 + 13.8245i −0.650809 + 0.276491i
\(51\) 0 0
\(52\) 10.2060 5.89243i 0.196269 0.113316i
\(53\) 63.7279 1.20241 0.601207 0.799093i \(-0.294687\pi\)
0.601207 + 0.799093i \(0.294687\pi\)
\(54\) 0 0
\(55\) −72.9117 24.3833i −1.32567 0.443333i
\(56\) −1.99284 + 1.15057i −0.0355865 + 0.0205459i
\(57\) 0 0
\(58\) −52.2682 30.1770i −0.901175 0.520294i
\(59\) −31.7353 18.3224i −0.537886 0.310549i 0.206336 0.978481i \(-0.433846\pi\)
−0.744222 + 0.667932i \(0.767179\pi\)
\(60\) 0 0
\(61\) 41.4706 + 71.8291i 0.679845 + 1.17753i 0.975027 + 0.222086i \(0.0712864\pi\)
−0.295182 + 0.955441i \(0.595380\pi\)
\(62\) −5.95837 −0.0961027
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −5.87830 28.8698i −0.0904354 0.444151i
\(66\) 0 0
\(67\) −77.0786 44.5013i −1.15043 0.664199i −0.201435 0.979502i \(-0.564561\pi\)
−0.948991 + 0.315303i \(0.897894\pi\)
\(68\) 12.8995 22.3426i 0.189698 0.328567i
\(69\) 0 0
\(70\) 1.14781 + 5.63718i 0.0163973 + 0.0805311i
\(71\) 69.6982i 0.981665i 0.871254 + 0.490833i \(0.163307\pi\)
−0.871254 + 0.490833i \(0.836693\pi\)
\(72\) 0 0
\(73\) 89.6188i 1.22766i −0.789440 0.613828i \(-0.789629\pi\)
0.789440 0.613828i \(-0.210371\pi\)
\(74\) 86.1172 49.7198i 1.16375 0.671889i
\(75\) 0 0
\(76\) −1.24264 + 2.15232i −0.0163505 + 0.0283200i
\(77\) −6.25483 + 10.8337i −0.0812316 + 0.140697i
\(78\) 0 0
\(79\) −67.0477 116.130i −0.848705 1.47000i −0.882364 0.470567i \(-0.844049\pi\)
0.0336586 0.999433i \(-0.489284\pi\)
\(80\) 6.34315 18.9675i 0.0792893 0.237093i
\(81\) 0 0
\(82\) 9.96031i 0.121467i
\(83\) −54.5122 94.4179i −0.656773 1.13756i −0.981446 0.191738i \(-0.938587\pi\)
0.324673 0.945826i \(-0.394746\pi\)
\(84\) 0 0
\(85\) −42.7448 48.2991i −0.502880 0.568225i
\(86\) −50.2753 29.0265i −0.584597 0.337517i
\(87\) 0 0
\(88\) 37.6638 21.7452i 0.427997 0.247104i
\(89\) 137.514i 1.54510i 0.634953 + 0.772551i \(0.281020\pi\)
−0.634953 + 0.772551i \(0.718980\pi\)
\(90\) 0 0
\(91\) −4.79394 −0.0526807
\(92\) 4.79899 + 8.31209i 0.0521629 + 0.0903489i
\(93\) 0 0
\(94\) −56.4264 + 97.7334i −0.600281 + 1.03972i
\(95\) 4.11772 + 4.65277i 0.0433444 + 0.0489766i
\(96\) 0 0
\(97\) −78.4877 + 45.3149i −0.809152 + 0.467164i −0.846661 0.532132i \(-0.821391\pi\)
0.0375094 + 0.999296i \(0.488058\pi\)
\(98\) −68.3604 −0.697555
\(99\) 0 0
\(100\) −39.9411 30.0783i −0.399411 0.300783i
\(101\) 43.0586 24.8599i 0.426323 0.246138i −0.271456 0.962451i \(-0.587505\pi\)
0.697779 + 0.716313i \(0.254172\pi\)
\(102\) 0 0
\(103\) −111.582 64.4220i −1.08332 0.625456i −0.151531 0.988453i \(-0.548420\pi\)
−0.931790 + 0.362997i \(0.881754\pi\)
\(104\) 14.4335 + 8.33316i 0.138783 + 0.0801265i
\(105\) 0 0
\(106\) 45.0624 + 78.0504i 0.425117 + 0.736325i
\(107\) 6.42641 0.0600599 0.0300299 0.999549i \(-0.490440\pi\)
0.0300299 + 0.999549i \(0.490440\pi\)
\(108\) 0 0
\(109\) 108.279 0.993387 0.496694 0.867926i \(-0.334547\pi\)
0.496694 + 0.867926i \(0.334547\pi\)
\(110\) −21.6930 106.540i −0.197209 0.968544i
\(111\) 0 0
\(112\) −2.81831 1.62715i −0.0251635 0.0145281i
\(113\) 15.2132 26.3500i 0.134630 0.233186i −0.790826 0.612041i \(-0.790349\pi\)
0.925456 + 0.378855i \(0.123682\pi\)
\(114\) 0 0
\(115\) 23.5125 4.78748i 0.204457 0.0416302i
\(116\) 85.3536i 0.735807i
\(117\) 0 0
\(118\) 51.8235i 0.439182i
\(119\) −9.08869 + 5.24736i −0.0763755 + 0.0440954i
\(120\) 0 0
\(121\) 57.7132 99.9622i 0.476969 0.826134i
\(122\) −58.6482 + 101.582i −0.480723 + 0.832637i
\(123\) 0 0
\(124\) −4.21320 7.29748i −0.0339774 0.0588507i
\(125\) −102.983 + 70.8488i −0.823862 + 0.566790i
\(126\) 0 0
\(127\) 133.725i 1.05296i 0.850189 + 0.526478i \(0.176488\pi\)
−0.850189 + 0.526478i \(0.823512\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 31.2015 27.6134i 0.240012 0.212411i
\(131\) 53.5064 + 30.8919i 0.408446 + 0.235816i 0.690122 0.723693i \(-0.257557\pi\)
−0.281676 + 0.959510i \(0.590890\pi\)
\(132\) 0 0
\(133\) 0.875536 0.505491i 0.00658298 0.00380068i
\(134\) 125.869i 0.939319i
\(135\) 0 0
\(136\) 36.4853 0.268274
\(137\) 81.9594 + 141.958i 0.598244 + 1.03619i 0.993080 + 0.117437i \(0.0374679\pi\)
−0.394836 + 0.918751i \(0.629199\pi\)
\(138\) 0 0
\(139\) −91.1249 + 157.833i −0.655575 + 1.13549i 0.326175 + 0.945310i \(0.394240\pi\)
−0.981749 + 0.190179i \(0.939093\pi\)
\(140\) −6.09248 + 5.39186i −0.0435177 + 0.0385133i
\(141\) 0 0
\(142\) −85.3625 + 49.2841i −0.601145 + 0.347071i
\(143\) 90.6030 0.633588
\(144\) 0 0
\(145\) −202.368 67.6763i −1.39564 0.466733i
\(146\) 109.760 63.3701i 0.751782 0.434042i
\(147\) 0 0
\(148\) 121.788 + 70.3144i 0.822893 + 0.475097i
\(149\) 164.142 + 94.7675i 1.10163 + 0.636023i 0.936647 0.350274i \(-0.113911\pi\)
0.164978 + 0.986297i \(0.447245\pi\)
\(150\) 0 0
\(151\) 56.6690 + 98.1537i 0.375292 + 0.650024i 0.990371 0.138441i \(-0.0442092\pi\)
−0.615079 + 0.788466i \(0.710876\pi\)
\(152\) −3.51472 −0.0231231
\(153\) 0 0
\(154\) −17.6913 −0.114879
\(155\) −20.6425 + 4.20310i −0.133177 + 0.0271167i
\(156\) 0 0
\(157\) 98.0242 + 56.5943i 0.624358 + 0.360473i 0.778564 0.627566i \(-0.215949\pi\)
−0.154206 + 0.988039i \(0.549282\pi\)
\(158\) 94.8198 164.233i 0.600125 1.03945i
\(159\) 0 0
\(160\) 27.7156 5.64328i 0.173222 0.0352705i
\(161\) 3.90434i 0.0242506i
\(162\) 0 0
\(163\) 152.414i 0.935053i 0.883979 + 0.467527i \(0.154855\pi\)
−0.883979 + 0.467527i \(0.845145\pi\)
\(164\) −12.1988 + 7.04300i −0.0743832 + 0.0429451i
\(165\) 0 0
\(166\) 77.0919 133.527i 0.464409 0.804380i
\(167\) −52.9264 + 91.6712i −0.316925 + 0.548929i −0.979845 0.199761i \(-0.935984\pi\)
0.662920 + 0.748690i \(0.269317\pi\)
\(168\) 0 0
\(169\) −67.1396 116.289i −0.397276 0.688102i
\(170\) 28.9289 86.5041i 0.170170 0.508848i
\(171\) 0 0
\(172\) 82.0993i 0.477321i
\(173\) −55.0061 95.2734i −0.317954 0.550713i 0.662107 0.749410i \(-0.269663\pi\)
−0.980061 + 0.198697i \(0.936329\pi\)
\(174\) 0 0
\(175\) 7.95305 + 18.7200i 0.0454460 + 0.106972i
\(176\) 53.2646 + 30.7523i 0.302640 + 0.174729i
\(177\) 0 0
\(178\) −168.420 + 97.2371i −0.946178 + 0.546276i
\(179\) 118.407i 0.661492i −0.943720 0.330746i \(-0.892700\pi\)
0.943720 0.330746i \(-0.107300\pi\)
\(180\) 0 0
\(181\) 172.397 0.952469 0.476235 0.879318i \(-0.342001\pi\)
0.476235 + 0.879318i \(0.342001\pi\)
\(182\) −3.38983 5.87135i −0.0186254 0.0322602i
\(183\) 0 0
\(184\) −6.78680 + 11.7551i −0.0368848 + 0.0638863i
\(185\) 263.276 233.000i 1.42311 1.25946i
\(186\) 0 0
\(187\) 171.772 99.1724i 0.918565 0.530334i
\(188\) −159.598 −0.848925
\(189\) 0 0
\(190\) −2.78680 + 8.33316i −0.0146674 + 0.0438587i
\(191\) −250.622 + 144.697i −1.31216 + 0.757574i −0.982453 0.186510i \(-0.940282\pi\)
−0.329704 + 0.944084i \(0.606949\pi\)
\(192\) 0 0
\(193\) 110.707 + 63.9165i 0.573609 + 0.331173i 0.758590 0.651569i \(-0.225889\pi\)
−0.184980 + 0.982742i \(0.559222\pi\)
\(194\) −110.998 64.0850i −0.572157 0.330335i
\(195\) 0 0
\(196\) −48.3381 83.7240i −0.246623 0.427163i
\(197\) 280.414 1.42342 0.711711 0.702472i \(-0.247920\pi\)
0.711711 + 0.702472i \(0.247920\pi\)
\(198\) 0 0
\(199\) 156.426 0.786062 0.393031 0.919525i \(-0.371426\pi\)
0.393031 + 0.919525i \(0.371426\pi\)
\(200\) 8.59565 70.1863i 0.0429783 0.350931i
\(201\) 0 0
\(202\) 60.8941 + 35.1572i 0.301456 + 0.174046i
\(203\) −17.3604 + 30.0691i −0.0855192 + 0.148124i
\(204\) 0 0
\(205\) 7.02611 + 34.5070i 0.0342737 + 0.168327i
\(206\) 182.213i 0.884528i
\(207\) 0 0
\(208\) 23.5697i 0.113316i
\(209\) −16.5472 + 9.55352i −0.0791731 + 0.0457106i
\(210\) 0 0
\(211\) −11.2538 + 19.4921i −0.0533355 + 0.0923798i −0.891460 0.453098i \(-0.850319\pi\)
0.838125 + 0.545478i \(0.183652\pi\)
\(212\) −63.7279 + 110.380i −0.300603 + 0.520660i
\(213\) 0 0
\(214\) 4.54416 + 7.87071i 0.0212344 + 0.0367790i
\(215\) −194.652 65.0959i −0.905357 0.302772i
\(216\) 0 0
\(217\) 3.42776i 0.0157961i
\(218\) 76.5650 + 132.614i 0.351215 + 0.608323i
\(219\) 0 0
\(220\) 115.145 101.903i 0.523386 0.463197i
\(221\) 65.8261 + 38.0047i 0.297856 + 0.171967i
\(222\) 0 0
\(223\) 307.289 177.413i 1.37798 0.795575i 0.386060 0.922474i \(-0.373836\pi\)
0.991916 + 0.126899i \(0.0405024\pi\)
\(224\) 4.60228i 0.0205459i
\(225\) 0 0
\(226\) 43.0294 0.190396
\(227\) 207.549 + 359.485i 0.914312 + 1.58363i 0.807906 + 0.589312i \(0.200601\pi\)
0.106406 + 0.994323i \(0.466066\pi\)
\(228\) 0 0
\(229\) 110.110 190.716i 0.480830 0.832823i −0.518928 0.854818i \(-0.673669\pi\)
0.999758 + 0.0219954i \(0.00700192\pi\)
\(230\) 22.4893 + 25.4116i 0.0977795 + 0.110485i
\(231\) 0 0
\(232\) 104.536 60.3541i 0.450588 0.260147i
\(233\) 10.0345 0.0430665 0.0215332 0.999768i \(-0.493145\pi\)
0.0215332 + 0.999768i \(0.493145\pi\)
\(234\) 0 0
\(235\) −126.544 + 378.396i −0.538486 + 1.61020i
\(236\) 63.4706 36.6448i 0.268943 0.155274i
\(237\) 0 0
\(238\) −12.8533 7.42088i −0.0540056 0.0311802i
\(239\) −99.0414 57.1816i −0.414399 0.239253i 0.278279 0.960500i \(-0.410236\pi\)
−0.692678 + 0.721247i \(0.743569\pi\)
\(240\) 0 0
\(241\) 31.8604 + 55.1838i 0.132201 + 0.228978i 0.924525 0.381122i \(-0.124462\pi\)
−0.792324 + 0.610101i \(0.791129\pi\)
\(242\) 163.238 0.674535
\(243\) 0 0
\(244\) −165.882 −0.679845
\(245\) −236.831 + 48.2221i −0.966657 + 0.196825i
\(246\) 0 0
\(247\) −6.34119 3.66109i −0.0256728 0.0148222i
\(248\) 5.95837 10.3202i 0.0240257 0.0416137i
\(249\) 0 0
\(250\) −159.592 76.0299i −0.638366 0.304120i
\(251\) 229.631i 0.914866i 0.889244 + 0.457433i \(0.151231\pi\)
−0.889244 + 0.457433i \(0.848769\pi\)
\(252\) 0 0
\(253\) 73.7901i 0.291660i
\(254\) −163.779 + 94.5581i −0.644801 + 0.372276i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −194.114 + 336.215i −0.755306 + 1.30823i 0.189915 + 0.981800i \(0.439179\pi\)
−0.945222 + 0.326429i \(0.894155\pi\)
\(258\) 0 0
\(259\) −28.6030 49.5419i −0.110436 0.191281i
\(260\) 55.8823 + 18.6883i 0.214932 + 0.0718780i
\(261\) 0 0
\(262\) 87.3755i 0.333494i
\(263\) −113.439 196.481i −0.431325 0.747078i 0.565662 0.824637i \(-0.308621\pi\)
−0.996988 + 0.0775594i \(0.975287\pi\)
\(264\) 0 0
\(265\) 211.174 + 238.614i 0.796883 + 0.900431i
\(266\) 1.23819 + 0.714872i 0.00465487 + 0.00268749i
\(267\) 0 0
\(268\) 154.157 89.0027i 0.575213 0.332100i
\(269\) 226.772i 0.843019i 0.906824 + 0.421509i \(0.138500\pi\)
−0.906824 + 0.421509i \(0.861500\pi\)
\(270\) 0 0
\(271\) 322.889 1.19147 0.595737 0.803180i \(-0.296860\pi\)
0.595737 + 0.803180i \(0.296860\pi\)
\(272\) 25.7990 + 44.6852i 0.0948492 + 0.164284i
\(273\) 0 0
\(274\) −115.908 + 200.759i −0.423022 + 0.732696i
\(275\) −150.309 353.799i −0.546577 1.28654i
\(276\) 0 0
\(277\) 173.694 100.282i 0.627053 0.362029i −0.152557 0.988295i \(-0.548751\pi\)
0.779610 + 0.626266i \(0.215417\pi\)
\(278\) −257.740 −0.927123
\(279\) 0 0
\(280\) −10.9117 3.64911i −0.0389703 0.0130326i
\(281\) 110.878 64.0152i 0.394582 0.227812i −0.289562 0.957159i \(-0.593510\pi\)
0.684144 + 0.729347i \(0.260176\pi\)
\(282\) 0 0
\(283\) 363.934 + 210.118i 1.28599 + 0.742465i 0.977936 0.208905i \(-0.0669898\pi\)
0.308051 + 0.951370i \(0.400323\pi\)
\(284\) −120.721 69.6982i −0.425073 0.245416i
\(285\) 0 0
\(286\) 64.0660 + 110.966i 0.224007 + 0.387992i
\(287\) 5.73001 0.0199652
\(288\) 0 0
\(289\) −122.603 −0.424232
\(290\) −60.2093 295.703i −0.207618 1.01967i
\(291\) 0 0
\(292\) 155.224 + 89.6188i 0.531590 + 0.306914i
\(293\) −68.7168 + 119.021i −0.234528 + 0.406215i −0.959135 0.282947i \(-0.908688\pi\)
0.724607 + 0.689162i \(0.242021\pi\)
\(294\) 0 0
\(295\) −36.5569 179.540i −0.123922 0.608610i
\(296\) 198.879i 0.671889i
\(297\) 0 0
\(298\) 268.043i 0.899473i
\(299\) −24.4892 + 14.1389i −0.0819038 + 0.0472872i
\(300\) 0 0
\(301\) −16.6985 + 28.9226i −0.0554767 + 0.0960885i
\(302\) −80.1421 + 138.810i −0.265371 + 0.459637i
\(303\) 0 0
\(304\) −2.48528 4.30463i −0.00817527 0.0141600i
\(305\) −131.527 + 393.296i −0.431236 + 1.28949i
\(306\) 0 0
\(307\) 117.849i 0.383872i −0.981407 0.191936i \(-0.938523\pi\)
0.981407 0.191936i \(-0.0614766\pi\)
\(308\) −12.5097 21.6674i −0.0406158 0.0703486i
\(309\) 0 0
\(310\) −19.7441 22.3097i −0.0636908 0.0719668i
\(311\) −432.429 249.663i −1.39045 0.802774i −0.397081 0.917783i \(-0.629977\pi\)
−0.993364 + 0.115009i \(0.963310\pi\)
\(312\) 0 0
\(313\) −425.916 + 245.903i −1.36076 + 0.785633i −0.989724 0.142988i \(-0.954329\pi\)
−0.371031 + 0.928620i \(0.620996\pi\)
\(314\) 160.073i 0.509786i
\(315\) 0 0
\(316\) 268.191 0.848705
\(317\) 120.700 + 209.058i 0.380756 + 0.659488i 0.991170 0.132594i \(-0.0423306\pi\)
−0.610415 + 0.792082i \(0.708997\pi\)
\(318\) 0 0
\(319\) 328.103 568.290i 1.02853 1.78147i
\(320\) 26.5095 + 29.9541i 0.0828421 + 0.0936066i
\(321\) 0 0
\(322\) 4.78182 2.76079i 0.0148504 0.00857387i
\(323\) −16.0294 −0.0496267
\(324\) 0 0
\(325\) 88.6173 117.675i 0.272669 0.362078i
\(326\) −186.668 + 107.773i −0.572601 + 0.330591i
\(327\) 0 0
\(328\) −17.2518 9.96031i −0.0525968 0.0303668i
\(329\) 56.2245 + 32.4612i 0.170895 + 0.0986664i
\(330\) 0 0
\(331\) 43.9045 + 76.0449i 0.132642 + 0.229743i 0.924694 0.380711i \(-0.124321\pi\)
−0.792052 + 0.610453i \(0.790987\pi\)
\(332\) 218.049 0.656773
\(333\) 0 0
\(334\) −149.698 −0.448199
\(335\) −88.7892 436.066i −0.265042 1.30169i
\(336\) 0 0
\(337\) 391.563 + 226.069i 1.16191 + 0.670828i 0.951761 0.306841i \(-0.0992721\pi\)
0.210148 + 0.977670i \(0.432605\pi\)
\(338\) 94.9497 164.458i 0.280916 0.486561i
\(339\) 0 0
\(340\) 126.401 25.7371i 0.371769 0.0756974i
\(341\) 64.7829i 0.189979i
\(342\) 0 0
\(343\) 79.1919i 0.230880i
\(344\) 100.551 58.0529i 0.292298 0.168759i
\(345\) 0 0
\(346\) 77.7904 134.737i 0.224828 0.389413i
\(347\) −94.7056 + 164.035i −0.272927 + 0.472723i −0.969610 0.244656i \(-0.921325\pi\)
0.696683 + 0.717379i \(0.254658\pi\)
\(348\) 0 0
\(349\) 77.8970 + 134.922i 0.223200 + 0.386595i 0.955778 0.294089i \(-0.0950162\pi\)
−0.732578 + 0.680684i \(0.761683\pi\)
\(350\) −17.3036 + 22.9775i −0.0494389 + 0.0656500i
\(351\) 0 0
\(352\) 86.9807i 0.247104i
\(353\) −131.693 228.100i −0.373069 0.646175i 0.616967 0.786989i \(-0.288361\pi\)
−0.990036 + 0.140814i \(0.955028\pi\)
\(354\) 0 0
\(355\) −260.969 + 230.958i −0.735123 + 0.650585i
\(356\) −238.181 137.514i −0.669049 0.386275i
\(357\) 0 0
\(358\) 145.018 83.7264i 0.405079 0.233873i
\(359\) 79.6346i 0.221823i −0.993830 0.110912i \(-0.964623\pi\)
0.993830 0.110912i \(-0.0353771\pi\)
\(360\) 0 0
\(361\) −359.456 −0.995723
\(362\) 121.903 + 211.142i 0.336749 + 0.583266i
\(363\) 0 0
\(364\) 4.79394 8.30335i 0.0131702 0.0228114i
\(365\) 335.557 296.968i 0.919333 0.813612i
\(366\) 0 0
\(367\) −412.188 + 237.977i −1.12313 + 0.648438i −0.942197 0.335058i \(-0.891244\pi\)
−0.180930 + 0.983496i \(0.557911\pi\)
\(368\) −19.1960 −0.0521629
\(369\) 0 0
\(370\) 471.529 + 157.690i 1.27440 + 0.426189i
\(371\) 44.9012 25.9237i 0.121028 0.0698753i
\(372\) 0 0
\(373\) 53.5064 + 30.8919i 0.143449 + 0.0828201i 0.570007 0.821640i \(-0.306941\pi\)
−0.426558 + 0.904460i \(0.640274\pi\)
\(374\) 242.922 + 140.251i 0.649523 + 0.375002i
\(375\) 0 0
\(376\) −112.853 195.467i −0.300140 0.519859i
\(377\) 251.470 0.667030
\(378\) 0 0
\(379\) −142.345 −0.375581 −0.187791 0.982209i \(-0.560133\pi\)
−0.187791 + 0.982209i \(0.560133\pi\)
\(380\) −12.1766 + 2.47932i −0.0320436 + 0.00652452i
\(381\) 0 0
\(382\) −354.433 204.632i −0.927835 0.535686i
\(383\) −178.760 + 309.621i −0.466736 + 0.808410i −0.999278 0.0379931i \(-0.987904\pi\)
0.532542 + 0.846404i \(0.321237\pi\)
\(384\) 0 0
\(385\) −61.2907 + 12.4797i −0.159197 + 0.0324147i
\(386\) 180.783i 0.468350i
\(387\) 0 0
\(388\) 181.260i 0.467164i
\(389\) 356.005 205.539i 0.915179 0.528379i 0.0330850 0.999453i \(-0.489467\pi\)
0.882094 + 0.471074i \(0.156133\pi\)
\(390\) 0 0
\(391\) −30.9523 + 53.6109i −0.0791618 + 0.137112i
\(392\) 68.3604 118.404i 0.174389 0.302050i
\(393\) 0 0
\(394\) 198.283 + 343.436i 0.503256 + 0.871665i
\(395\) 212.647 635.863i 0.538346 1.60978i
\(396\) 0 0
\(397\) 457.462i 1.15230i 0.817345 + 0.576149i \(0.195445\pi\)
−0.817345 + 0.576149i \(0.804555\pi\)
\(398\) 110.610 + 191.582i 0.277915 + 0.481363i
\(399\) 0 0
\(400\) 92.0383 39.1017i 0.230096 0.0977543i
\(401\) 404.679 + 233.642i 1.00917 + 0.582647i 0.910950 0.412517i \(-0.135350\pi\)
0.0982247 + 0.995164i \(0.468684\pi\)
\(402\) 0 0
\(403\) 21.5000 12.4130i 0.0533498 0.0308015i
\(404\) 99.4396i 0.246138i
\(405\) 0 0
\(406\) −49.1026 −0.120942
\(407\) 540.583 + 936.317i 1.32821 + 2.30053i
\(408\) 0 0
\(409\) 224.287 388.476i 0.548378 0.949819i −0.450007 0.893025i \(-0.648579\pi\)
0.998386 0.0567946i \(-0.0180880\pi\)
\(410\) −37.2940 + 33.0053i −0.0909611 + 0.0805007i
\(411\) 0 0
\(412\) 223.164 128.844i 0.541661 0.312728i
\(413\) −29.8133 −0.0721871
\(414\) 0 0
\(415\) 172.889 516.979i 0.416601 1.24573i
\(416\) −28.8669 + 16.6663i −0.0693916 + 0.0400633i
\(417\) 0 0
\(418\) −23.4013 13.5107i −0.0559839 0.0323223i
\(419\) −312.492 180.417i −0.745804 0.430590i 0.0783720 0.996924i \(-0.475028\pi\)
−0.824176 + 0.566334i \(0.808361\pi\)
\(420\) 0 0
\(421\) −178.529 309.222i −0.424060 0.734494i 0.572272 0.820064i \(-0.306062\pi\)
−0.996332 + 0.0855699i \(0.972729\pi\)
\(422\) −31.8305 −0.0754278
\(423\) 0 0
\(424\) −180.250 −0.425117
\(425\) 39.2018 320.096i 0.0922396 0.753167i
\(426\) 0 0
\(427\) 58.4384 + 33.7394i 0.136858 + 0.0790151i
\(428\) −6.42641 + 11.1309i −0.0150150 + 0.0260067i
\(429\) 0 0
\(430\) −57.9137 284.429i −0.134683 0.661462i
\(431\) 655.947i 1.52192i −0.648800 0.760959i \(-0.724729\pi\)
0.648800 0.760959i \(-0.275271\pi\)
\(432\) 0 0
\(433\) 164.372i 0.379612i −0.981822 0.189806i \(-0.939214\pi\)
0.981822 0.189806i \(-0.0607859\pi\)
\(434\) −4.19813 + 2.42379i −0.00967311 + 0.00558477i
\(435\) 0 0
\(436\) −108.279 + 187.545i −0.248347 + 0.430149i
\(437\) 2.98171 5.16447i 0.00682314 0.0118180i
\(438\) 0 0
\(439\) 66.1432 + 114.563i 0.150668 + 0.260964i 0.931473 0.363810i \(-0.118524\pi\)
−0.780805 + 0.624774i \(0.785191\pi\)
\(440\) 206.225 + 68.9664i 0.468694 + 0.156742i
\(441\) 0 0
\(442\) 107.494i 0.243198i
\(443\) −227.743 394.462i −0.514092 0.890433i −0.999866 0.0163489i \(-0.994796\pi\)
0.485775 0.874084i \(-0.338538\pi\)
\(444\) 0 0
\(445\) −514.889 + 455.678i −1.15705 + 1.02400i
\(446\) 434.572 + 250.900i 0.974376 + 0.562556i
\(447\) 0 0
\(448\) 5.63662 3.25430i 0.0125817 0.00726407i
\(449\) 415.749i 0.925944i −0.886373 0.462972i \(-0.846783\pi\)
0.886373 0.462972i \(-0.153217\pi\)
\(450\) 0 0
\(451\) −108.294 −0.240121
\(452\) 30.4264 + 52.7001i 0.0673151 + 0.116593i
\(453\) 0 0
\(454\) −293.518 + 508.389i −0.646516 + 1.11980i
\(455\) −15.8856 17.9498i −0.0349134 0.0394501i
\(456\) 0 0
\(457\) −262.962 + 151.821i −0.575410 + 0.332213i −0.759307 0.650732i \(-0.774462\pi\)
0.183897 + 0.982946i \(0.441129\pi\)
\(458\) 311.439 0.679997
\(459\) 0 0
\(460\) −15.2203 + 45.5123i −0.0330877 + 0.0989398i
\(461\) 371.343 214.395i 0.805516 0.465065i −0.0398803 0.999204i \(-0.512698\pi\)
0.845396 + 0.534140i \(0.179364\pi\)
\(462\) 0 0
\(463\) −705.364 407.242i −1.52346 0.879572i −0.999615 0.0277616i \(-0.991162\pi\)
−0.523850 0.851811i \(-0.675505\pi\)
\(464\) 147.837 + 85.3536i 0.318614 + 0.183952i
\(465\) 0 0
\(466\) 7.09545 + 12.2897i 0.0152263 + 0.0263727i
\(467\) −607.118 −1.30004 −0.650019 0.759918i \(-0.725239\pi\)
−0.650019 + 0.759918i \(0.725239\pi\)
\(468\) 0 0
\(469\) −72.4104 −0.154393
\(470\) −552.919 + 112.582i −1.17642 + 0.239536i
\(471\) 0 0
\(472\) 89.7610 + 51.8235i 0.190172 + 0.109796i
\(473\) 315.593 546.623i 0.667215 1.15565i
\(474\) 0 0
\(475\) −3.77641 + 30.8356i −0.00795034 + 0.0649171i
\(476\) 20.9894i 0.0440954i
\(477\) 0 0
\(478\) 161.734i 0.338355i
\(479\) −297.816 + 171.944i −0.621746 + 0.358965i −0.777549 0.628823i \(-0.783537\pi\)
0.155802 + 0.987788i \(0.450204\pi\)
\(480\) 0 0
\(481\) −207.161 + 358.814i −0.430689 + 0.745975i
\(482\) −45.0574 + 78.0417i −0.0934801 + 0.161912i
\(483\) 0 0
\(484\) 115.426 + 199.924i 0.238484 + 0.413067i
\(485\) −429.754 143.720i −0.886092 0.296329i
\(486\) 0 0
\(487\) 300.759i 0.617576i −0.951131 0.308788i \(-0.900077\pi\)
0.951131 0.308788i \(-0.0999233\pi\)
\(488\) −117.296 203.163i −0.240362 0.416319i
\(489\) 0 0
\(490\) −226.525 255.959i −0.462295 0.522366i
\(491\) 150.614 + 86.9568i 0.306749 + 0.177101i 0.645471 0.763785i \(-0.276661\pi\)
−0.338722 + 0.940886i \(0.609995\pi\)
\(492\) 0 0
\(493\) 476.755 275.254i 0.967048 0.558326i
\(494\) 10.3551i 0.0209618i
\(495\) 0 0
\(496\) 16.8528 0.0339774
\(497\) 28.3524 + 49.1078i 0.0570470 + 0.0988084i
\(498\) 0 0
\(499\) 380.805 659.574i 0.763136 1.32179i −0.178090 0.984014i \(-0.556992\pi\)
0.941226 0.337777i \(-0.109675\pi\)
\(500\) −19.7310 249.220i −0.0394619 0.498440i
\(501\) 0 0
\(502\) −281.240 + 162.374i −0.560239 + 0.323454i
\(503\) −280.632 −0.557917 −0.278959 0.960303i \(-0.589989\pi\)
−0.278959 + 0.960303i \(0.589989\pi\)
\(504\) 0 0
\(505\) 235.765 + 78.8450i 0.466860 + 0.156129i
\(506\) −90.3740 + 52.1774i −0.178605 + 0.103117i
\(507\) 0 0
\(508\) −231.619 133.725i −0.455943 0.263239i
\(509\) 548.347 + 316.588i 1.07730 + 0.621981i 0.930167 0.367136i \(-0.119662\pi\)
0.147135 + 0.989116i \(0.452995\pi\)
\(510\) 0 0
\(511\) −36.4558 63.1434i −0.0713422 0.123568i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) −549.037 −1.06816
\(515\) −128.535 631.267i −0.249582 1.22576i
\(516\) 0 0
\(517\) −1062.62 613.501i −2.05535 1.18666i
\(518\) 40.4508 70.0628i 0.0780903 0.135256i
\(519\) 0 0
\(520\) 16.6263 + 81.6561i 0.0319737 + 0.157031i
\(521\) 92.3966i 0.177345i 0.996061 + 0.0886723i \(0.0282624\pi\)
−0.996061 + 0.0886723i \(0.971738\pi\)
\(522\) 0 0
\(523\) 818.552i 1.56511i −0.622582 0.782554i \(-0.713916\pi\)
0.622582 0.782554i \(-0.286084\pi\)
\(524\) −107.013 + 61.7838i −0.204223 + 0.117908i
\(525\) 0 0
\(526\) 160.426 277.867i 0.304993 0.528264i
\(527\) 27.1741 47.0669i 0.0515638 0.0893110i
\(528\) 0 0
\(529\) 252.985 + 438.183i 0.478232 + 0.828323i
\(530\) −142.919 + 427.360i −0.269658 + 0.806340i
\(531\) 0 0
\(532\) 2.02196i 0.00380068i
\(533\) −20.7502 35.9404i −0.0389310 0.0674304i
\(534\) 0 0
\(535\) 21.2951 + 24.0622i 0.0398039 + 0.0449760i
\(536\) 218.011 + 125.869i 0.406737 + 0.234830i
\(537\) 0 0
\(538\) −277.738 + 160.352i −0.516241 + 0.298052i
\(539\) 743.254i 1.37895i
\(540\) 0 0
\(541\) −376.985 −0.696830 −0.348415 0.937340i \(-0.613280\pi\)
−0.348415 + 0.937340i \(0.613280\pi\)
\(542\) 228.317 + 395.457i 0.421250 + 0.729626i
\(543\) 0 0
\(544\) −36.4853 + 63.1944i −0.0670685 + 0.116166i
\(545\) 358.803 + 405.426i 0.658354 + 0.743901i
\(546\) 0 0
\(547\) 292.151 168.673i 0.534096 0.308360i −0.208587 0.978004i \(-0.566886\pi\)
0.742683 + 0.669643i \(0.233553\pi\)
\(548\) −327.838 −0.598244
\(549\) 0 0
\(550\) 327.029 434.263i 0.594599 0.789570i
\(551\) −45.9270 + 26.5160i −0.0833520 + 0.0481233i
\(552\) 0 0
\(553\) −94.4806 54.5484i −0.170851 0.0986408i
\(554\) 245.640 + 141.820i 0.443393 + 0.255993i
\(555\) 0 0
\(556\) −182.250 315.666i −0.327787 0.567744i
\(557\) 303.338 0.544593 0.272296 0.962213i \(-0.412217\pi\)
0.272296 + 0.962213i \(0.412217\pi\)
\(558\) 0 0
\(559\) 241.882 0.432705
\(560\) −3.24649 15.9443i −0.00579731 0.0284720i
\(561\) 0 0
\(562\) 156.805 + 90.5311i 0.279012 + 0.161087i
\(563\) −117.047 + 202.731i −0.207898 + 0.360090i −0.951052 0.309030i \(-0.899996\pi\)
0.743154 + 0.669120i \(0.233329\pi\)
\(564\) 0 0
\(565\) 149.073 30.3534i 0.263846 0.0537229i
\(566\) 594.302i 1.05000i
\(567\) 0 0
\(568\) 197.136i 0.347071i
\(569\) −57.6129 + 33.2628i −0.101253 + 0.0584584i −0.549771 0.835315i \(-0.685285\pi\)
0.448518 + 0.893774i \(0.351952\pi\)
\(570\) 0 0
\(571\) −557.768 + 966.082i −0.976826 + 1.69191i −0.303053 + 0.952974i \(0.598006\pi\)
−0.673773 + 0.738939i \(0.735327\pi\)
\(572\) −90.6030 + 156.929i −0.158397 + 0.274351i
\(573\) 0 0
\(574\) 4.05173 + 7.01781i 0.00705877 + 0.0122261i
\(575\) 95.8385 + 72.1728i 0.166676 + 0.125518i
\(576\) 0 0
\(577\) 957.356i 1.65920i −0.558361 0.829598i \(-0.688570\pi\)
0.558361 0.829598i \(-0.311430\pi\)
\(578\) −86.6934 150.157i −0.149989 0.259788i
\(579\) 0 0
\(580\) 319.586 282.835i 0.551011 0.487646i
\(581\) −76.8161 44.3498i −0.132214 0.0763335i
\(582\) 0 0
\(583\) −848.610 + 489.945i −1.45559 + 0.840387i
\(584\) 253.480i 0.434042i
\(585\) 0 0
\(586\) −194.360 −0.331673
\(587\) 39.9487 + 69.1932i 0.0680557 + 0.117876i 0.898045 0.439903i \(-0.144987\pi\)
−0.829990 + 0.557779i \(0.811654\pi\)
\(588\) 0 0
\(589\) −2.61775 + 4.53407i −0.00444440 + 0.00769792i
\(590\) 194.041 171.727i 0.328883 0.291062i
\(591\) 0 0
\(592\) −243.576 + 140.629i −0.411446 + 0.237549i
\(593\) −213.831 −0.360593 −0.180296 0.983612i \(-0.557706\pi\)
−0.180296 + 0.983612i \(0.557706\pi\)
\(594\) 0 0
\(595\) −49.7645 16.6424i −0.0836378 0.0279704i
\(596\) −328.284 + 189.535i −0.550813 + 0.318012i
\(597\) 0 0
\(598\) −34.6330 19.9954i −0.0579147 0.0334371i
\(599\) −792.840 457.746i −1.32361 0.764184i −0.339304 0.940677i \(-0.610192\pi\)
−0.984302 + 0.176492i \(0.943525\pi\)
\(600\) 0 0
\(601\) −239.713 415.195i −0.398857 0.690841i 0.594728 0.803927i \(-0.297260\pi\)
−0.993585 + 0.113086i \(0.963926\pi\)
\(602\) −47.2304 −0.0784559
\(603\) 0 0
\(604\) −226.676 −0.375292
\(605\) 565.528 115.150i 0.934757 0.190330i
\(606\) 0 0
\(607\) −190.433 109.946i −0.313727 0.181131i 0.334866 0.942266i \(-0.391309\pi\)
−0.648593 + 0.761135i \(0.724642\pi\)
\(608\) 3.51472 6.08767i 0.00578079 0.0100126i
\(609\) 0 0
\(610\) −574.690 + 117.015i −0.942115 + 0.191828i
\(611\) 470.210i 0.769575i
\(612\) 0 0
\(613\) 862.066i 1.40631i 0.711038 + 0.703154i \(0.248225\pi\)
−0.711038 + 0.703154i \(0.751775\pi\)
\(614\) 144.335 83.3316i 0.235073 0.135719i
\(615\) 0 0
\(616\) 17.6913 30.6423i 0.0287197 0.0497440i
\(617\) −347.712 + 602.254i −0.563552 + 0.976101i 0.433631 + 0.901091i \(0.357232\pi\)
−0.997183 + 0.0750103i \(0.976101\pi\)
\(618\) 0 0
\(619\) 256.037 + 443.468i 0.413629 + 0.716427i 0.995283 0.0970091i \(-0.0309276\pi\)
−0.581654 + 0.813436i \(0.697594\pi\)
\(620\) 13.3625 39.9569i 0.0215524 0.0644466i
\(621\) 0 0
\(622\) 706.153i 1.13529i
\(623\) 55.9390 + 96.8892i 0.0897898 + 0.155520i
\(624\) 0 0
\(625\) −606.529 150.824i −0.970446 0.241319i
\(626\) −602.337 347.759i −0.962199 0.555526i
\(627\) 0 0
\(628\) −196.048 + 113.189i −0.312179 + 0.180237i
\(629\) 907.020i 1.44200i
\(630\) 0 0
\(631\) −643.375 −1.01961 −0.509806 0.860290i \(-0.670283\pi\)
−0.509806 + 0.860290i \(0.670283\pi\)
\(632\) 189.640 + 328.465i 0.300063 + 0.519724i
\(633\) 0 0
\(634\) −170.695 + 295.652i −0.269235 + 0.466328i
\(635\) −500.703 + 443.123i −0.788509 + 0.697832i
\(636\) 0 0
\(637\) 246.669 142.415i 0.387236 0.223571i
\(638\) 928.014 1.45457
\(639\) 0 0
\(640\) −17.9411 + 53.6481i −0.0280330 + 0.0838251i
\(641\) 170.542 98.4625i 0.266056 0.153608i −0.361038 0.932551i \(-0.617578\pi\)
0.627094 + 0.778944i \(0.284244\pi\)
\(642\) 0 0
\(643\) 205.208 + 118.477i 0.319141 + 0.184256i 0.651010 0.759069i \(-0.274346\pi\)
−0.331868 + 0.943326i \(0.607679\pi\)
\(644\) 6.76252 + 3.90434i 0.0105008 + 0.00606264i
\(645\) 0 0
\(646\) −11.3345 19.6320i −0.0175457 0.0303900i
\(647\) 17.3818 0.0268653 0.0134326 0.999910i \(-0.495724\pi\)
0.0134326 + 0.999910i \(0.495724\pi\)
\(648\) 0 0
\(649\) 563.456 0.868191
\(650\) 206.784 + 25.3247i 0.318129 + 0.0389610i
\(651\) 0 0
\(652\) −263.988 152.414i −0.404890 0.233763i
\(653\) 392.852 680.439i 0.601611 1.04202i −0.390967 0.920405i \(-0.627859\pi\)
0.992577 0.121615i \(-0.0388074\pi\)
\(654\) 0 0
\(655\) 61.6356 + 302.708i 0.0941002 + 0.462150i
\(656\) 28.1720i 0.0429451i
\(657\) 0 0
\(658\) 91.8143i 0.139535i
\(659\) 431.945 249.384i 0.655455 0.378427i −0.135088 0.990834i \(-0.543132\pi\)
0.790543 + 0.612406i \(0.209798\pi\)
\(660\) 0 0
\(661\) −151.566 + 262.521i −0.229299 + 0.397157i −0.957600 0.288100i \(-0.906977\pi\)
0.728302 + 0.685257i \(0.240310\pi\)
\(662\) −62.0904 + 107.544i −0.0937922 + 0.162453i
\(663\) 0 0
\(664\) 154.184 + 267.054i 0.232204 + 0.402190i
\(665\) 4.79394 + 1.60320i 0.00720893 + 0.00241083i
\(666\) 0 0
\(667\) 204.805i 0.307055i
\(668\) −105.853 183.342i −0.158462 0.274465i
\(669\) 0 0
\(670\) 471.286 417.089i 0.703412 0.622521i
\(671\) −1104.46 637.658i −1.64599 0.950310i
\(672\) 0 0
\(673\) 401.085 231.567i 0.595966 0.344081i −0.171487 0.985186i \(-0.554857\pi\)
0.767453 + 0.641105i \(0.221524\pi\)
\(674\) 639.420i 0.948694i
\(675\) 0 0
\(676\) 268.558 0.397276
\(677\) −155.532 269.389i −0.229737 0.397916i 0.727993 0.685584i \(-0.240453\pi\)
−0.957730 + 0.287668i \(0.907120\pi\)
\(678\) 0 0
\(679\) −36.8671 + 63.8557i −0.0542962 + 0.0940437i
\(680\) 120.901 + 136.611i 0.177795 + 0.200898i
\(681\) 0 0
\(682\) 79.3425 45.8084i 0.116338 0.0671678i
\(683\) 232.009 0.339691 0.169846 0.985471i \(-0.445673\pi\)
0.169846 + 0.985471i \(0.445673\pi\)
\(684\) 0 0
\(685\) −259.940 + 777.281i −0.379475 + 1.13472i
\(686\) −96.9898 + 55.9971i −0.141385 + 0.0816284i
\(687\) 0 0
\(688\) 142.200 + 82.0993i 0.206686 + 0.119330i
\(689\) −325.203 187.756i −0.471993 0.272506i
\(690\) 0 0
\(691\) 276.452 + 478.829i 0.400075 + 0.692950i 0.993735 0.111766i \(-0.0356507\pi\)
−0.593660 + 0.804716i \(0.702317\pi\)
\(692\) 220.024 0.317954
\(693\) 0 0
\(694\) −267.868 −0.385977
\(695\) −892.927 + 181.813i −1.28479 + 0.261601i
\(696\) 0 0
\(697\) −78.6794 45.4256i −0.112883 0.0651730i
\(698\) −110.163 + 190.808i −0.157827 + 0.273364i
\(699\) 0 0
\(700\) −40.3771 4.94495i −0.0576816 0.00706421i
\(701\) 250.274i 0.357024i 0.983938 + 0.178512i \(0.0571284\pi\)
−0.983938 + 0.178512i \(0.942872\pi\)
\(702\) 0 0
\(703\) 87.3755i 0.124290i
\(704\) −106.529 + 61.5047i −0.151320 + 0.0873646i
\(705\) 0 0
\(706\) 186.243 322.582i 0.263800 0.456915i
\(707\) 20.2254 35.0314i 0.0286074 0.0495494i
\(708\) 0 0
\(709\) −585.286 1013.75i −0.825510 1.42982i −0.901529 0.432718i \(-0.857554\pi\)
0.0760195 0.997106i \(-0.475779\pi\)
\(710\) −467.397 156.308i −0.658306 0.220152i
\(711\) 0 0
\(712\) 388.949i 0.546276i
\(713\) 10.1096 + 17.5103i 0.0141789 + 0.0245586i
\(714\) 0 0
\(715\) 300.230 + 339.242i 0.419902 + 0.474464i
\(716\) 205.087 + 118.407i 0.286434 + 0.165373i
\(717\) 0 0
\(718\) 97.5321 56.3102i 0.135839 0.0784264i
\(719\) 168.127i 0.233834i −0.993142 0.116917i \(-0.962699\pi\)
0.993142 0.116917i \(-0.0373012\pi\)
\(720\) 0 0
\(721\) −104.824 −0.145387
\(722\) −254.174 440.242i −0.352041 0.609753i
\(723\) 0 0
\(724\) −172.397 + 298.600i −0.238117 + 0.412431i
\(725\) −417.184 981.975i −0.575426 1.35445i
\(726\) 0 0
\(727\) 331.545 191.417i 0.456045 0.263298i −0.254335 0.967116i \(-0.581857\pi\)
0.710380 + 0.703819i \(0.248523\pi\)
\(728\) 13.5593 0.0186254
\(729\) 0 0
\(730\) 600.985 + 200.983i 0.823267 + 0.275319i
\(731\) 458.577 264.760i 0.627329 0.362188i
\(732\) 0 0
\(733\) −1215.10 701.541i −1.65771 0.957082i −0.973766 0.227550i \(-0.926928\pi\)
−0.683948 0.729531i \(-0.739738\pi\)
\(734\) −582.921 336.550i −0.794171 0.458515i
\(735\) 0 0
\(736\) −13.5736 23.5102i −0.0184424 0.0319431i
\(737\) 1368.52 1.85688
\(738\) 0 0
\(739\) 899.125 1.21668 0.608339 0.793677i \(-0.291836\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(740\) 140.291 + 689.006i 0.189583 + 0.931090i
\(741\) 0 0
\(742\) 63.4999 + 36.6617i 0.0855794 + 0.0494093i
\(743\) 158.294 274.172i 0.213046 0.369007i −0.739620 0.673025i \(-0.764995\pi\)
0.952666 + 0.304017i \(0.0983281\pi\)
\(744\) 0 0
\(745\) 189.080 + 928.621i 0.253799 + 1.24647i
\(746\) 87.3755i 0.117125i
\(747\) 0 0
\(748\) 396.689i 0.530334i
\(749\) 4.52790 2.61418i 0.00604526 0.00349023i
\(750\) 0 0
\(751\) 143.216 248.058i 0.190701 0.330304i −0.754782 0.655976i \(-0.772257\pi\)
0.945483 + 0.325672i \(0.105591\pi\)
\(752\) 159.598 276.432i 0.212231 0.367595i
\(753\) 0 0
\(754\) 177.816 + 307.987i 0.235831 + 0.408470i
\(755\) −179.730 + 537.434i −0.238053 + 0.711833i
\(756\) 0 0
\(757\) 783.221i 1.03464i 0.855793 + 0.517319i \(0.173070\pi\)
−0.855793 + 0.517319i \(0.826930\pi\)
\(758\) −100.653 174.337i −0.132788 0.229996i
\(759\) 0 0
\(760\) −11.6467 13.1600i −0.0153246 0.0173158i
\(761\) 893.662 + 515.956i 1.17433 + 0.677997i 0.954695 0.297586i \(-0.0961814\pi\)
0.219631 + 0.975583i \(0.429515\pi\)
\(762\) 0 0
\(763\) 76.2910 44.0467i 0.0999883 0.0577282i
\(764\) 578.787i 0.757574i
\(765\) 0 0
\(766\) −505.609 −0.660064
\(767\) 107.963 + 186.998i 0.140761 + 0.243805i
\(768\) 0 0
\(769\) 415.625 719.883i 0.540475 0.936129i −0.458402 0.888745i \(-0.651578\pi\)
0.998877 0.0473845i \(-0.0150886\pi\)
\(770\) −58.6235 66.2411i −0.0761344 0.0860273i
\(771\) 0 0
\(772\) −221.413 + 127.833i −0.286805 + 0.165587i
\(773\) −395.360 −0.511462 −0.255731 0.966748i \(-0.582316\pi\)
−0.255731 + 0.966748i \(0.582316\pi\)
\(774\) 0 0
\(775\) −84.1400 63.3631i −0.108568 0.0817588i
\(776\) 221.997 128.170i 0.286078 0.165167i
\(777\) 0 0
\(778\) 503.466 + 290.676i 0.647129 + 0.373620i
\(779\) 7.57939 + 4.37596i 0.00972964 + 0.00561741i
\(780\) 0 0
\(781\) −535.846 928.112i