Properties

Label 810.3.j.a.539.2
Level $810$
Weight $3$
Character 810.539
Analytic conductor $22.071$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(269,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.269");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.81622204416.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 165x^{4} - 434x^{2} + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 539.2
Root \(-1.43806 - 0.830265i\) of defining polynomial
Character \(\chi\) \(=\) 810.539
Dual form 810.3.j.a.269.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-0.173381 + 4.99699i) q^{5} +(11.8534 - 6.84358i) q^{7} +2.82843 q^{8} +(6.24264 - 3.32106i) q^{10} +(10.6621 - 6.15576i) q^{11} +(14.7295 + 8.50411i) q^{13} +(-16.7633 - 9.67828i) q^{14} +(-2.00000 - 3.46410i) q^{16} +6.89949 q^{17} -7.24264 q^{19} +(-8.48166 - 5.29730i) q^{20} +(-15.0785 - 8.70556i) q^{22} +(-17.3995 + 30.1368i) q^{23} +(-24.9399 - 1.73277i) q^{25} -24.0532i q^{26} +27.3743i q^{28} +(-18.3035 + 10.5675i) q^{29} +(19.1066 - 33.0936i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(-4.87868 - 8.45012i) q^{34} +(32.1421 + 60.4180i) q^{35} -21.5380i q^{37} +(5.12132 + 8.87039i) q^{38} +(-0.490397 + 14.1336i) q^{40} +(-31.4928 - 18.1824i) q^{41} +(5.40331 - 3.11960i) q^{43} +24.6230i q^{44} +49.2132 q^{46} +(20.1005 + 34.8151i) q^{47} +(69.1690 - 119.804i) q^{49} +(15.5130 + 31.7702i) q^{50} +(-29.4591 + 17.0082i) q^{52} +38.2721 q^{53} +(28.9117 + 54.3457i) q^{55} +(33.5265 - 19.3566i) q^{56} +(25.8851 + 14.9448i) q^{58} +(36.0537 + 20.8156i) q^{59} +(7.52944 + 13.0414i) q^{61} -54.0416 q^{62} +8.00000 q^{64} +(-45.0488 + 72.1290i) q^{65} +(111.386 + 64.3089i) q^{67} +(-6.89949 + 11.9503i) q^{68} +(51.2687 - 82.0879i) q^{70} -104.967i q^{71} +2.11232i q^{73} +(-26.3786 + 15.2297i) q^{74} +(7.24264 - 12.5446i) q^{76} +(84.2548 - 145.934i) q^{77} +(22.0477 + 38.1878i) q^{79} +(17.6569 - 9.39338i) q^{80} +51.4275i q^{82} +(27.5122 + 47.6525i) q^{83} +(-1.19624 + 34.4767i) q^{85} +(-7.64144 - 4.41179i) q^{86} +(30.1569 - 17.4111i) q^{88} +68.1020i q^{89} +232.794 q^{91} +(-34.7990 - 60.2736i) q^{92} +(28.4264 - 49.2360i) q^{94} +(1.25574 - 36.1914i) q^{95} +(87.6794 - 50.6217i) q^{97} -195.640 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 12 q^{5} + 16 q^{10} - 16 q^{16} - 24 q^{17} - 24 q^{19} - 24 q^{20} - 60 q^{23} + 12 q^{25} + 68 q^{31} - 56 q^{34} + 144 q^{35} + 24 q^{38} - 16 q^{40} + 224 q^{46} + 240 q^{47} + 180 q^{49}+ \cdots - 1056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −0.173381 + 4.99699i −0.0346763 + 0.999399i
\(6\) 0 0
\(7\) 11.8534 6.84358i 1.69335 0.977654i 0.741562 0.670885i \(-0.234085\pi\)
0.951784 0.306769i \(-0.0992479\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 6.24264 3.32106i 0.624264 0.332106i
\(11\) 10.6621 6.15576i 0.969281 0.559615i 0.0702641 0.997528i \(-0.477616\pi\)
0.899017 + 0.437914i \(0.144282\pi\)
\(12\) 0 0
\(13\) 14.7295 + 8.50411i 1.13304 + 0.654162i 0.944698 0.327941i \(-0.106355\pi\)
0.188344 + 0.982103i \(0.439688\pi\)
\(14\) −16.7633 9.67828i −1.19738 0.691306i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 6.89949 0.405853 0.202926 0.979194i \(-0.434955\pi\)
0.202926 + 0.979194i \(0.434955\pi\)
\(18\) 0 0
\(19\) −7.24264 −0.381192 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(20\) −8.48166 5.29730i −0.424083 0.264865i
\(21\) 0 0
\(22\) −15.0785 8.70556i −0.685385 0.395707i
\(23\) −17.3995 + 30.1368i −0.756500 + 1.31030i 0.188125 + 0.982145i \(0.439759\pi\)
−0.944625 + 0.328151i \(0.893574\pi\)
\(24\) 0 0
\(25\) −24.9399 1.73277i −0.997595 0.0693108i
\(26\) 24.0532i 0.925125i
\(27\) 0 0
\(28\) 27.3743i 0.977654i
\(29\) −18.3035 + 10.5675i −0.631156 + 0.364398i −0.781200 0.624281i \(-0.785392\pi\)
0.150044 + 0.988679i \(0.452059\pi\)
\(30\) 0 0
\(31\) 19.1066 33.0936i 0.616342 1.06754i −0.373805 0.927507i \(-0.621947\pi\)
0.990147 0.140029i \(-0.0447194\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −4.87868 8.45012i −0.143491 0.248533i
\(35\) 32.1421 + 60.4180i 0.918347 + 1.72623i
\(36\) 0 0
\(37\) 21.5380i 0.582108i −0.956707 0.291054i \(-0.905994\pi\)
0.956707 0.291054i \(-0.0940060\pi\)
\(38\) 5.12132 + 8.87039i 0.134772 + 0.233431i
\(39\) 0 0
\(40\) −0.490397 + 14.1336i −0.0122599 + 0.353341i
\(41\) −31.4928 18.1824i −0.768117 0.443473i 0.0640853 0.997944i \(-0.479587\pi\)
−0.832203 + 0.554472i \(0.812920\pi\)
\(42\) 0 0
\(43\) 5.40331 3.11960i 0.125658 0.0725489i −0.435853 0.900018i \(-0.643553\pi\)
0.561512 + 0.827469i \(0.310220\pi\)
\(44\) 24.6230i 0.559615i
\(45\) 0 0
\(46\) 49.2132 1.06985
\(47\) 20.1005 + 34.8151i 0.427670 + 0.740747i 0.996666 0.0815940i \(-0.0260011\pi\)
−0.568995 + 0.822341i \(0.692668\pi\)
\(48\) 0 0
\(49\) 69.1690 119.804i 1.41161 2.44499i
\(50\) 15.5130 + 31.7702i 0.310259 + 0.635405i
\(51\) 0 0
\(52\) −29.4591 + 17.0082i −0.566521 + 0.327081i
\(53\) 38.2721 0.722115 0.361057 0.932544i \(-0.382416\pi\)
0.361057 + 0.932544i \(0.382416\pi\)
\(54\) 0 0
\(55\) 28.9117 + 54.3457i 0.525667 + 0.988103i
\(56\) 33.5265 19.3566i 0.598688 0.345653i
\(57\) 0 0
\(58\) 25.8851 + 14.9448i 0.446295 + 0.257668i
\(59\) 36.0537 + 20.8156i 0.611080 + 0.352807i 0.773388 0.633933i \(-0.218560\pi\)
−0.162308 + 0.986740i \(0.551894\pi\)
\(60\) 0 0
\(61\) 7.52944 + 13.0414i 0.123433 + 0.213793i 0.921119 0.389280i \(-0.127276\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(62\) −54.0416 −0.871639
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −45.0488 + 72.1290i −0.693058 + 1.10968i
\(66\) 0 0
\(67\) 111.386 + 64.3089i 1.66248 + 0.959834i 0.971525 + 0.236937i \(0.0761435\pi\)
0.690956 + 0.722897i \(0.257190\pi\)
\(68\) −6.89949 + 11.9503i −0.101463 + 0.175739i
\(69\) 0 0
\(70\) 51.2687 82.0879i 0.732410 1.17268i
\(71\) 104.967i 1.47841i −0.673478 0.739207i \(-0.735200\pi\)
0.673478 0.739207i \(-0.264800\pi\)
\(72\) 0 0
\(73\) 2.11232i 0.0289359i 0.999895 + 0.0144680i \(0.00460546\pi\)
−0.999895 + 0.0144680i \(0.995395\pi\)
\(74\) −26.3786 + 15.2297i −0.356467 + 0.205806i
\(75\) 0 0
\(76\) 7.24264 12.5446i 0.0952979 0.165061i
\(77\) 84.2548 145.934i 1.09422 1.89524i
\(78\) 0 0
\(79\) 22.0477 + 38.1878i 0.279085 + 0.483390i 0.971158 0.238438i \(-0.0766355\pi\)
−0.692072 + 0.721828i \(0.743302\pi\)
\(80\) 17.6569 9.39338i 0.220711 0.117417i
\(81\) 0 0
\(82\) 51.4275i 0.627165i
\(83\) 27.5122 + 47.6525i 0.331472 + 0.574127i 0.982801 0.184669i \(-0.0591214\pi\)
−0.651329 + 0.758796i \(0.725788\pi\)
\(84\) 0 0
\(85\) −1.19624 + 34.4767i −0.0140735 + 0.405609i
\(86\) −7.64144 4.41179i −0.0888539 0.0512998i
\(87\) 0 0
\(88\) 30.1569 17.4111i 0.342693 0.197854i
\(89\) 68.1020i 0.765191i 0.923916 + 0.382595i \(0.124970\pi\)
−0.923916 + 0.382595i \(0.875030\pi\)
\(90\) 0 0
\(91\) 232.794 2.55818
\(92\) −34.7990 60.2736i −0.378250 0.655148i
\(93\) 0 0
\(94\) 28.4264 49.2360i 0.302409 0.523787i
\(95\) 1.25574 36.1914i 0.0132183 0.380962i
\(96\) 0 0
\(97\) 87.6794 50.6217i 0.903911 0.521873i 0.0254441 0.999676i \(-0.491900\pi\)
0.878467 + 0.477803i \(0.158567\pi\)
\(98\) −195.640 −1.99632
\(99\) 0 0
\(100\) 27.9411 41.4644i 0.279411 0.414644i
\(101\) −13.1893 + 7.61484i −0.130587 + 0.0753944i −0.563870 0.825863i \(-0.690688\pi\)
0.433283 + 0.901258i \(0.357355\pi\)
\(102\) 0 0
\(103\) −66.7640 38.5462i −0.648194 0.374235i 0.139570 0.990212i \(-0.455428\pi\)
−0.787764 + 0.615977i \(0.788761\pi\)
\(104\) 41.6614 + 24.0532i 0.400591 + 0.231281i
\(105\) 0 0
\(106\) −27.0624 46.8735i −0.255306 0.442203i
\(107\) −78.4264 −0.732957 −0.366479 0.930427i \(-0.619437\pi\)
−0.366479 + 0.930427i \(0.619437\pi\)
\(108\) 0 0
\(109\) −146.279 −1.34201 −0.671006 0.741452i \(-0.734137\pi\)
−0.671006 + 0.741452i \(0.734137\pi\)
\(110\) 46.1160 73.8376i 0.419236 0.671251i
\(111\) 0 0
\(112\) −47.4137 27.3743i −0.423336 0.244413i
\(113\) −27.2132 + 47.1347i −0.240825 + 0.417121i −0.960949 0.276724i \(-0.910751\pi\)
0.720125 + 0.693845i \(0.244085\pi\)
\(114\) 0 0
\(115\) −147.577 92.1703i −1.28328 0.801481i
\(116\) 42.2702i 0.364398i
\(117\) 0 0
\(118\) 58.8755i 0.498945i
\(119\) 81.7826 47.2172i 0.687249 0.396783i
\(120\) 0 0
\(121\) 15.2868 26.4775i 0.126337 0.218822i
\(122\) 10.6482 18.4433i 0.0872806 0.151174i
\(123\) 0 0
\(124\) 38.2132 + 66.1872i 0.308171 + 0.533768i
\(125\) 12.9828 124.324i 0.103862 0.994592i
\(126\) 0 0
\(127\) 159.215i 1.25366i 0.779154 + 0.626832i \(0.215649\pi\)
−0.779154 + 0.626832i \(0.784351\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 120.194 + 4.17038i 0.924568 + 0.0320799i
\(131\) 95.5252 + 55.1515i 0.729200 + 0.421004i 0.818130 0.575034i \(-0.195011\pi\)
−0.0889293 + 0.996038i \(0.528345\pi\)
\(132\) 0 0
\(133\) −85.8501 + 49.5656i −0.645489 + 0.372673i
\(134\) 181.893i 1.35741i
\(135\) 0 0
\(136\) 19.5147 0.143491
\(137\) −108.959 188.723i −0.795324 1.37754i −0.922633 0.385679i \(-0.873967\pi\)
0.127309 0.991863i \(-0.459366\pi\)
\(138\) 0 0
\(139\) 53.1249 92.0150i 0.382193 0.661979i −0.609182 0.793030i \(-0.708502\pi\)
0.991376 + 0.131052i \(0.0418355\pi\)
\(140\) −136.789 4.74619i −0.977066 0.0339014i
\(141\) 0 0
\(142\) −128.558 + 74.2232i −0.905340 + 0.522698i
\(143\) 209.397 1.46431
\(144\) 0 0
\(145\) −49.6325 93.2948i −0.342293 0.643413i
\(146\) 2.58706 1.49364i 0.0177196 0.0102304i
\(147\) 0 0
\(148\) 37.3049 + 21.5380i 0.252060 + 0.145527i
\(149\) 12.2622 + 7.07960i 0.0822968 + 0.0475141i 0.540584 0.841290i \(-0.318203\pi\)
−0.458287 + 0.888804i \(0.651537\pi\)
\(150\) 0 0
\(151\) −36.6690 63.5127i −0.242841 0.420614i 0.718681 0.695340i \(-0.244746\pi\)
−0.961522 + 0.274726i \(0.911413\pi\)
\(152\) −20.4853 −0.134772
\(153\) 0 0
\(154\) −238.309 −1.54746
\(155\) 162.056 + 101.213i 1.04552 + 0.652989i
\(156\) 0 0
\(157\) −60.7475 35.0726i −0.386927 0.223392i 0.293901 0.955836i \(-0.405046\pi\)
−0.680828 + 0.732444i \(0.738380\pi\)
\(158\) 31.1802 54.0057i 0.197343 0.341808i
\(159\) 0 0
\(160\) −23.9898 14.9830i −0.149936 0.0936439i
\(161\) 476.299i 2.95838i
\(162\) 0 0
\(163\) 9.05959i 0.0555803i 0.999614 + 0.0277902i \(0.00884702\pi\)
−0.999614 + 0.0277902i \(0.991153\pi\)
\(164\) 62.9856 36.3648i 0.384059 0.221736i
\(165\) 0 0
\(166\) 38.9081 67.3908i 0.234386 0.405969i
\(167\) 31.9264 55.2982i 0.191176 0.331127i −0.754464 0.656341i \(-0.772103\pi\)
0.945640 + 0.325215i \(0.105437\pi\)
\(168\) 0 0
\(169\) 60.1396 + 104.165i 0.355856 + 0.616360i
\(170\) 43.0711 22.9136i 0.253359 0.134786i
\(171\) 0 0
\(172\) 12.4784i 0.0725489i
\(173\) −13.9939 24.2382i −0.0808896 0.140105i 0.822743 0.568414i \(-0.192443\pi\)
−0.903632 + 0.428309i \(0.859109\pi\)
\(174\) 0 0
\(175\) −307.481 + 150.139i −1.75704 + 0.857935i
\(176\) −42.6484 24.6230i −0.242320 0.139904i
\(177\) 0 0
\(178\) 83.4075 48.1554i 0.468582 0.270536i
\(179\) 21.0660i 0.117687i 0.998267 + 0.0588435i \(0.0187413\pi\)
−0.998267 + 0.0588435i \(0.981259\pi\)
\(180\) 0 0
\(181\) 53.6030 0.296149 0.148075 0.988976i \(-0.452692\pi\)
0.148075 + 0.988976i \(0.452692\pi\)
\(182\) −164.610 285.113i −0.904452 1.56656i
\(183\) 0 0
\(184\) −49.2132 + 85.2398i −0.267463 + 0.463260i
\(185\) 107.625 + 3.73429i 0.581758 + 0.0201853i
\(186\) 0 0
\(187\) 73.5630 42.4716i 0.393385 0.227121i
\(188\) −80.4020 −0.427670
\(189\) 0 0
\(190\) −45.2132 + 24.0532i −0.237964 + 0.126596i
\(191\) −193.144 + 111.512i −1.01123 + 0.583831i −0.911550 0.411189i \(-0.865114\pi\)
−0.0996752 + 0.995020i \(0.531780\pi\)
\(192\) 0 0
\(193\) 152.614 + 88.1118i 0.790746 + 0.456538i 0.840225 0.542237i \(-0.182423\pi\)
−0.0494788 + 0.998775i \(0.515756\pi\)
\(194\) −123.997 71.5899i −0.639162 0.369020i
\(195\) 0 0
\(196\) 138.338 + 239.609i 0.705807 + 1.22249i
\(197\) 277.586 1.40906 0.704532 0.709672i \(-0.251157\pi\)
0.704532 + 0.709672i \(0.251157\pi\)
\(198\) 0 0
\(199\) 71.5736 0.359666 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(200\) −70.5406 4.90102i −0.352703 0.0245051i
\(201\) 0 0
\(202\) 18.6525 + 10.7690i 0.0923389 + 0.0533119i
\(203\) −144.640 + 250.523i −0.712510 + 1.23410i
\(204\) 0 0
\(205\) 96.3175 154.217i 0.469841 0.752277i
\(206\) 109.025i 0.529248i
\(207\) 0 0
\(208\) 68.0328i 0.327081i
\(209\) −77.2217 + 44.5840i −0.369482 + 0.213320i
\(210\) 0 0
\(211\) −159.746 + 276.689i −0.757091 + 1.31132i 0.187237 + 0.982315i \(0.440047\pi\)
−0.944328 + 0.329005i \(0.893287\pi\)
\(212\) −38.2721 + 66.2892i −0.180529 + 0.312685i
\(213\) 0 0
\(214\) 55.4558 + 96.0523i 0.259139 + 0.448843i
\(215\) 14.6518 + 27.5412i 0.0681479 + 0.128099i
\(216\) 0 0
\(217\) 523.030i 2.41028i
\(218\) 103.435 + 179.155i 0.474473 + 0.821811i
\(219\) 0 0
\(220\) −123.041 4.26918i −0.559278 0.0194054i
\(221\) 101.626 + 58.6740i 0.459848 + 0.265493i
\(222\) 0 0
\(223\) 140.676 81.2193i 0.630834 0.364212i −0.150241 0.988649i \(-0.548005\pi\)
0.781075 + 0.624437i \(0.214672\pi\)
\(224\) 77.4262i 0.345653i
\(225\) 0 0
\(226\) 76.9706 0.340578
\(227\) −120.549 208.797i −0.531052 0.919809i −0.999343 0.0362347i \(-0.988464\pi\)
0.468291 0.883574i \(-0.344870\pi\)
\(228\) 0 0
\(229\) −51.1102 + 88.5254i −0.223189 + 0.386574i −0.955774 0.294101i \(-0.904980\pi\)
0.732586 + 0.680675i \(0.238313\pi\)
\(230\) −8.53265 + 245.918i −0.0370985 + 1.06921i
\(231\) 0 0
\(232\) −51.7702 + 29.8895i −0.223147 + 0.128834i
\(233\) 241.966 1.03848 0.519239 0.854629i \(-0.326215\pi\)
0.519239 + 0.854629i \(0.326215\pi\)
\(234\) 0 0
\(235\) −177.456 + 94.4058i −0.755131 + 0.401727i
\(236\) −72.1075 + 41.6313i −0.305540 + 0.176404i
\(237\) 0 0
\(238\) −115.658 66.7752i −0.485958 0.280568i
\(239\) −325.157 187.729i −1.36049 0.785478i −0.370799 0.928713i \(-0.620916\pi\)
−0.989689 + 0.143235i \(0.954250\pi\)
\(240\) 0 0
\(241\) 159.140 + 275.638i 0.660330 + 1.14373i 0.980529 + 0.196375i \(0.0629171\pi\)
−0.320198 + 0.947350i \(0.603750\pi\)
\(242\) −43.2376 −0.178668
\(243\) 0 0
\(244\) −30.1177 −0.123433
\(245\) 586.669 + 366.409i 2.39457 + 1.49555i
\(246\) 0 0
\(247\) −106.681 61.5922i −0.431906 0.249361i
\(248\) 54.0416 93.6028i 0.217910 0.377431i
\(249\) 0 0
\(250\) −161.445 + 72.0098i −0.645781 + 0.288039i
\(251\) 85.5417i 0.340804i −0.985375 0.170402i \(-0.945493\pi\)
0.985375 0.170402i \(-0.0545066\pi\)
\(252\) 0 0
\(253\) 428.429i 1.69339i
\(254\) 194.998 112.582i 0.767709 0.443237i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 107.114 185.526i 0.416785 0.721893i −0.578829 0.815449i \(-0.696490\pi\)
0.995614 + 0.0935562i \(0.0298235\pi\)
\(258\) 0 0
\(259\) −147.397 255.299i −0.569100 0.985711i
\(260\) −79.8823 150.156i −0.307239 0.577522i
\(261\) 0 0
\(262\) 155.992i 0.595389i
\(263\) 53.4386 + 92.5584i 0.203189 + 0.351933i 0.949554 0.313603i \(-0.101536\pi\)
−0.746365 + 0.665536i \(0.768203\pi\)
\(264\) 0 0
\(265\) −6.63567 + 191.245i −0.0250402 + 0.721680i
\(266\) 121.410 + 70.0963i 0.456430 + 0.263520i
\(267\) 0 0
\(268\) −222.772 + 128.618i −0.831241 + 0.479917i
\(269\) 365.927i 1.36032i −0.733062 0.680161i \(-0.761910\pi\)
0.733062 0.680161i \(-0.238090\pi\)
\(270\) 0 0
\(271\) −92.8894 −0.342765 −0.171383 0.985205i \(-0.554823\pi\)
−0.171383 + 0.985205i \(0.554823\pi\)
\(272\) −13.7990 23.9006i −0.0507316 0.0878697i
\(273\) 0 0
\(274\) −154.092 + 266.895i −0.562379 + 0.974069i
\(275\) −276.578 + 135.049i −1.00574 + 0.491087i
\(276\) 0 0
\(277\) −195.841 + 113.069i −0.707006 + 0.408190i −0.809951 0.586497i \(-0.800507\pi\)
0.102946 + 0.994687i \(0.467173\pi\)
\(278\) −150.260 −0.540503
\(279\) 0 0
\(280\) 90.9117 + 170.888i 0.324685 + 0.610314i
\(281\) 54.9106 31.7026i 0.195411 0.112821i −0.399102 0.916907i \(-0.630678\pi\)
0.594513 + 0.804086i \(0.297345\pi\)
\(282\) 0 0
\(283\) −314.459 181.553i −1.11116 0.641531i −0.172033 0.985091i \(-0.555034\pi\)
−0.939131 + 0.343560i \(0.888367\pi\)
\(284\) 181.809 + 104.967i 0.640172 + 0.369604i
\(285\) 0 0
\(286\) −148.066 256.458i −0.517713 0.896706i
\(287\) −497.730 −1.73425
\(288\) 0 0
\(289\) −241.397 −0.835284
\(290\) −79.1669 + 126.757i −0.272989 + 0.437091i
\(291\) 0 0
\(292\) −3.65865 2.11232i −0.0125296 0.00723398i
\(293\) 113.717 196.963i 0.388112 0.672229i −0.604084 0.796921i \(-0.706461\pi\)
0.992196 + 0.124691i \(0.0397941\pi\)
\(294\) 0 0
\(295\) −110.267 + 176.551i −0.373785 + 0.598479i
\(296\) 60.9187i 0.205806i
\(297\) 0 0
\(298\) 20.0241i 0.0671950i
\(299\) −512.573 + 295.934i −1.71429 + 0.989747i
\(300\) 0 0
\(301\) 42.6985 73.9559i 0.141855 0.245701i
\(302\) −51.8579 + 89.8205i −0.171715 + 0.297419i
\(303\) 0 0
\(304\) 14.4853 + 25.0892i 0.0476490 + 0.0825304i
\(305\) −66.4731 + 35.3634i −0.217945 + 0.115946i
\(306\) 0 0
\(307\) 340.164i 1.10803i 0.832508 + 0.554013i \(0.186904\pi\)
−0.832508 + 0.554013i \(0.813096\pi\)
\(308\) 168.510 + 291.867i 0.547109 + 0.947621i
\(309\) 0 0
\(310\) 9.36981 270.046i 0.0302252 0.871115i
\(311\) −334.951 193.384i −1.07701 0.621815i −0.146925 0.989148i \(-0.546938\pi\)
−0.930089 + 0.367333i \(0.880271\pi\)
\(312\) 0 0
\(313\) −325.974 + 188.201i −1.04145 + 0.601282i −0.920244 0.391345i \(-0.872010\pi\)
−0.121207 + 0.992627i \(0.538677\pi\)
\(314\) 99.2002i 0.315924i
\(315\) 0 0
\(316\) −88.1909 −0.279085
\(317\) −177.700 307.785i −0.560566 0.970929i −0.997447 0.0714099i \(-0.977250\pi\)
0.436881 0.899519i \(-0.356083\pi\)
\(318\) 0 0
\(319\) −130.103 + 225.344i −0.407845 + 0.706408i
\(320\) −1.38705 + 39.9759i −0.00433453 + 0.124925i
\(321\) 0 0
\(322\) 583.345 336.794i 1.81163 1.04594i
\(323\) −49.9706 −0.154708
\(324\) 0 0
\(325\) −352.617 237.614i −1.08498 0.731121i
\(326\) 11.0957 6.40610i 0.0340359 0.0196506i
\(327\) 0 0
\(328\) −89.0751 51.4275i −0.271570 0.156791i
\(329\) 476.519 + 275.119i 1.44839 + 0.836227i
\(330\) 0 0
\(331\) 222.095 + 384.681i 0.670983 + 1.16218i 0.977626 + 0.210352i \(0.0674611\pi\)
−0.306642 + 0.951825i \(0.599206\pi\)
\(332\) −110.049 −0.331472
\(333\) 0 0
\(334\) −90.3015 −0.270364
\(335\) −340.663 + 545.446i −1.01691 + 1.62820i
\(336\) 0 0
\(337\) −352.547 203.543i −1.04613 0.603985i −0.124569 0.992211i \(-0.539755\pi\)
−0.921564 + 0.388226i \(0.873088\pi\)
\(338\) 85.0503 147.311i 0.251628 0.435832i
\(339\) 0 0
\(340\) −58.5192 36.5487i −0.172115 0.107496i
\(341\) 470.463i 1.37966i
\(342\) 0 0
\(343\) 1222.78i 3.56497i
\(344\) 15.2829 8.82357i 0.0444270 0.0256499i
\(345\) 0 0
\(346\) −19.7904 + 34.2779i −0.0571976 + 0.0990691i
\(347\) 244.706 423.843i 0.705204 1.22145i −0.261414 0.965227i \(-0.584189\pi\)
0.966618 0.256222i \(-0.0824777\pi\)
\(348\) 0 0
\(349\) −40.8970 70.8356i −0.117183 0.202967i 0.801467 0.598039i \(-0.204053\pi\)
−0.918650 + 0.395071i \(0.870720\pi\)
\(350\) 401.304 + 270.422i 1.14658 + 0.772634i
\(351\) 0 0
\(352\) 69.6445i 0.197854i
\(353\) 125.693 + 217.707i 0.356072 + 0.616735i 0.987301 0.158862i \(-0.0507824\pi\)
−0.631229 + 0.775597i \(0.717449\pi\)
\(354\) 0 0
\(355\) 524.521 + 18.1994i 1.47753 + 0.0512659i
\(356\) −117.956 68.1020i −0.331337 0.191298i
\(357\) 0 0
\(358\) 25.8004 14.8959i 0.0720682 0.0416086i
\(359\) 518.500i 1.44429i 0.691742 + 0.722145i \(0.256844\pi\)
−0.691742 + 0.722145i \(0.743156\pi\)
\(360\) 0 0
\(361\) −308.544 −0.854693
\(362\) −37.9031 65.6500i −0.104705 0.181354i
\(363\) 0 0
\(364\) −232.794 + 403.211i −0.639544 + 1.10772i
\(365\) −10.5553 0.366238i −0.0289185 0.00100339i
\(366\) 0 0
\(367\) −296.166 + 170.992i −0.806992 + 0.465917i −0.845910 0.533325i \(-0.820942\pi\)
0.0389180 + 0.999242i \(0.487609\pi\)
\(368\) 139.196 0.378250
\(369\) 0 0
\(370\) −71.5290 134.454i −0.193322 0.363389i
\(371\) 453.655 261.918i 1.22279 0.705978i
\(372\) 0 0
\(373\) 95.5252 + 55.1515i 0.256100 + 0.147859i 0.622554 0.782577i \(-0.286095\pi\)
−0.366454 + 0.930436i \(0.619428\pi\)
\(374\) −104.034 60.0640i −0.278165 0.160599i
\(375\) 0 0
\(376\) 56.8528 + 98.4720i 0.151204 + 0.261894i
\(377\) −359.470 −0.953502
\(378\) 0 0
\(379\) 324.345 0.855792 0.427896 0.903828i \(-0.359255\pi\)
0.427896 + 0.903828i \(0.359255\pi\)
\(380\) 61.4296 + 38.3664i 0.161657 + 0.100964i
\(381\) 0 0
\(382\) 273.147 + 157.701i 0.715044 + 0.412831i
\(383\) −286.240 + 495.782i −0.747363 + 1.29447i 0.201719 + 0.979443i \(0.435347\pi\)
−0.949082 + 0.315028i \(0.897986\pi\)
\(384\) 0 0
\(385\) 714.621 + 446.323i 1.85616 + 1.15928i
\(386\) 249.218i 0.645642i
\(387\) 0 0
\(388\) 202.487i 0.521873i
\(389\) 624.981 360.833i 1.60664 0.927592i 0.616520 0.787339i \(-0.288542\pi\)
0.990116 0.140253i \(-0.0447915\pi\)
\(390\) 0 0
\(391\) −120.048 + 207.929i −0.307027 + 0.531787i
\(392\) 195.640 338.858i 0.499081 0.864433i
\(393\) 0 0
\(394\) −196.283 339.972i −0.498180 0.862873i
\(395\) −194.647 + 103.551i −0.492777 + 0.262155i
\(396\) 0 0
\(397\) 379.321i 0.955468i 0.878505 + 0.477734i \(0.158542\pi\)
−0.878505 + 0.477734i \(0.841458\pi\)
\(398\) −50.6102 87.6594i −0.127161 0.220250i
\(399\) 0 0
\(400\) 43.8773 + 89.8598i 0.109693 + 0.224650i
\(401\) 303.952 + 175.487i 0.757985 + 0.437623i 0.828572 0.559883i \(-0.189154\pi\)
−0.0705866 + 0.997506i \(0.522487\pi\)
\(402\) 0 0
\(403\) 562.863 324.969i 1.39668 0.806375i
\(404\) 30.4593i 0.0753944i
\(405\) 0 0
\(406\) 409.103 1.00764
\(407\) −132.583 229.640i −0.325756 0.564227i
\(408\) 0 0
\(409\) 266.713 461.961i 0.652111 1.12949i −0.330499 0.943806i \(-0.607217\pi\)
0.982610 0.185682i \(-0.0594495\pi\)
\(410\) −256.983 8.91658i −0.626788 0.0217478i
\(411\) 0 0
\(412\) 133.528 77.0924i 0.324097 0.187118i
\(413\) 569.813 1.37969
\(414\) 0 0
\(415\) −242.889 + 129.216i −0.585276 + 0.311364i
\(416\) −83.3229 + 48.1065i −0.200295 + 0.115641i
\(417\) 0 0
\(418\) 109.208 + 63.0513i 0.261263 + 0.150840i
\(419\) 207.634 + 119.878i 0.495547 + 0.286104i 0.726873 0.686772i \(-0.240973\pi\)
−0.231326 + 0.972876i \(0.574306\pi\)
\(420\) 0 0
\(421\) −212.471 368.010i −0.504681 0.874133i −0.999985 0.00541323i \(-0.998277\pi\)
0.495305 0.868719i \(-0.335056\pi\)
\(422\) 451.831 1.07069
\(423\) 0 0
\(424\) 108.250 0.255306
\(425\) −172.073 11.9552i −0.404877 0.0281300i
\(426\) 0 0
\(427\) 178.499 + 103.057i 0.418031 + 0.241350i
\(428\) 78.4264 135.839i 0.183239 0.317380i
\(429\) 0 0
\(430\) 23.3705 37.4193i 0.0543501 0.0870216i
\(431\) 544.039i 1.26227i −0.775673 0.631135i \(-0.782589\pi\)
0.775673 0.631135i \(-0.217411\pi\)
\(432\) 0 0
\(433\) 602.735i 1.39200i 0.718043 + 0.695999i \(0.245038\pi\)
−0.718043 + 0.695999i \(0.754962\pi\)
\(434\) −640.578 + 369.838i −1.47599 + 0.852161i
\(435\) 0 0
\(436\) 146.279 253.363i 0.335503 0.581108i
\(437\) 126.018 218.270i 0.288371 0.499474i
\(438\) 0 0
\(439\) −201.143 348.390i −0.458185 0.793600i 0.540680 0.841228i \(-0.318167\pi\)
−0.998865 + 0.0476287i \(0.984834\pi\)
\(440\) 81.7746 + 153.713i 0.185851 + 0.349347i
\(441\) 0 0
\(442\) 165.955i 0.375464i
\(443\) −219.257 379.765i −0.494938 0.857257i 0.505045 0.863093i \(-0.331476\pi\)
−0.999983 + 0.00583572i \(0.998142\pi\)
\(444\) 0 0
\(445\) −340.305 11.8076i −0.764730 0.0265340i
\(446\) −198.946 114.861i −0.446067 0.257537i
\(447\) 0 0
\(448\) 94.8274 54.7486i 0.211668 0.122207i
\(449\) 670.866i 1.49413i 0.664749 + 0.747067i \(0.268538\pi\)
−0.664749 + 0.747067i \(0.731462\pi\)
\(450\) 0 0
\(451\) −447.706 −0.992695
\(452\) −54.4264 94.2693i −0.120412 0.208560i
\(453\) 0 0
\(454\) −170.482 + 295.283i −0.375510 + 0.650403i
\(455\) −40.3621 + 1163.27i −0.0887080 + 2.55664i
\(456\) 0 0
\(457\) −601.913 + 347.514i −1.31710 + 0.760425i −0.983260 0.182206i \(-0.941676\pi\)
−0.333835 + 0.942632i \(0.608343\pi\)
\(458\) 144.561 0.315636
\(459\) 0 0
\(460\) 307.220 163.440i 0.667870 0.355304i
\(461\) 11.3352 6.54436i 0.0245882 0.0141960i −0.487656 0.873036i \(-0.662148\pi\)
0.512244 + 0.858840i \(0.328814\pi\)
\(462\) 0 0
\(463\) 202.894 + 117.141i 0.438215 + 0.253004i 0.702840 0.711348i \(-0.251915\pi\)
−0.264625 + 0.964351i \(0.585248\pi\)
\(464\) 73.2141 + 42.2702i 0.157789 + 0.0910995i
\(465\) 0 0
\(466\) −171.095 296.346i −0.367158 0.635936i
\(467\) −742.882 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(468\) 0 0
\(469\) 1760.41 3.75354
\(470\) 241.103 + 150.583i 0.512986 + 0.320390i
\(471\) 0 0
\(472\) 101.975 + 58.8755i 0.216049 + 0.124736i
\(473\) 38.4071 66.5230i 0.0811989 0.140641i
\(474\) 0 0
\(475\) 180.631 + 12.5498i 0.380275 + 0.0264207i
\(476\) 188.869i 0.396783i
\(477\) 0 0
\(478\) 530.978i 1.11083i
\(479\) 387.469 223.705i 0.808913 0.467026i −0.0376655 0.999290i \(-0.511992\pi\)
0.846578 + 0.532264i \(0.178659\pi\)
\(480\) 0 0
\(481\) 183.161 317.245i 0.380793 0.659553i
\(482\) 225.057 389.811i 0.466924 0.808736i
\(483\) 0 0
\(484\) 30.5736 + 52.9550i 0.0631686 + 0.109411i
\(485\) 237.754 + 446.910i 0.490215 + 0.921464i
\(486\) 0 0
\(487\) 50.3166i 0.103319i 0.998665 + 0.0516597i \(0.0164511\pi\)
−0.998665 + 0.0516597i \(0.983549\pi\)
\(488\) 21.2965 + 36.8866i 0.0436403 + 0.0755872i
\(489\) 0 0
\(490\) 33.9203 977.610i 0.0692250 1.99512i
\(491\) −684.707 395.316i −1.39452 0.805124i −0.400704 0.916208i \(-0.631234\pi\)
−0.993811 + 0.111084i \(0.964568\pi\)
\(492\) 0 0
\(493\) −126.285 + 72.9107i −0.256156 + 0.147892i
\(494\) 174.209i 0.352650i
\(495\) 0 0
\(496\) −152.853 −0.308171
\(497\) −718.352 1244.22i −1.44538 2.50347i
\(498\) 0 0
\(499\) 300.195 519.953i 0.601593 1.04199i −0.390987 0.920396i \(-0.627866\pi\)
0.992580 0.121593i \(-0.0388004\pi\)
\(500\) 202.353 + 146.811i 0.404705 + 0.293622i
\(501\) 0 0
\(502\) −104.767 + 60.4871i −0.208699 + 0.120492i
\(503\) −433.368 −0.861566 −0.430783 0.902456i \(-0.641763\pi\)
−0.430783 + 0.902456i \(0.641763\pi\)
\(504\) 0 0
\(505\) −35.7645 67.2270i −0.0708208 0.133123i
\(506\) 524.716 302.945i 1.03699 0.598705i
\(507\) 0 0
\(508\) −275.769 159.215i −0.542852 0.313416i
\(509\) −832.870 480.857i −1.63629 0.944710i −0.982096 0.188380i \(-0.939676\pi\)
−0.654190 0.756331i \(-0.726990\pi\)
\(510\) 0 0
\(511\) 14.4558 + 25.0383i 0.0282893 + 0.0489985i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −302.963 −0.589423
\(515\) 204.191 326.936i 0.396487 0.634827i
\(516\) 0 0
\(517\) 428.627 + 247.468i 0.829065 + 0.478661i
\(518\) −208.451 + 361.047i −0.402415 + 0.697003i
\(519\) 0 0
\(520\) −127.417 + 204.012i −0.245033 + 0.392330i
\(521\) 5.90542i 0.0113348i 0.999984 + 0.00566739i \(0.00180400\pi\)
−0.999984 + 0.00566739i \(0.998196\pi\)
\(522\) 0 0
\(523\) 165.846i 0.317104i 0.987351 + 0.158552i \(0.0506826\pi\)
−0.987351 + 0.158552i \(0.949317\pi\)
\(524\) −191.050 + 110.303i −0.364600 + 0.210502i
\(525\) 0 0
\(526\) 75.5736 130.897i 0.143676 0.248854i
\(527\) 131.826 228.329i 0.250144 0.433262i
\(528\) 0 0
\(529\) −340.985 590.603i −0.644584 1.11645i
\(530\) 238.919 127.104i 0.450790 0.239819i
\(531\) 0 0
\(532\) 198.262i 0.372673i
\(533\) −309.250 535.636i −0.580206 1.00495i
\(534\) 0 0
\(535\) 13.5977 391.896i 0.0254162 0.732516i
\(536\) 315.048 + 181.893i 0.587776 + 0.339353i
\(537\) 0 0
\(538\) −448.167 + 258.749i −0.833024 + 0.480947i
\(539\) 1703.15i 3.15984i
\(540\) 0 0
\(541\) 216.985 0.401081 0.200541 0.979685i \(-0.435730\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(542\) 65.6827 + 113.766i 0.121186 + 0.209900i
\(543\) 0 0
\(544\) −19.5147 + 33.8005i −0.0358726 + 0.0621332i
\(545\) 25.3621 730.956i 0.0465360 1.34120i
\(546\) 0 0
\(547\) 87.1611 50.3225i 0.159344 0.0919973i −0.418208 0.908351i \(-0.637342\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(548\) 435.838 0.795324
\(549\) 0 0
\(550\) 360.971 + 243.243i 0.656310 + 0.442260i
\(551\) 132.566 76.5369i 0.240591 0.138906i
\(552\) 0 0
\(553\) 522.682 + 301.771i 0.945175 + 0.545697i
\(554\) 276.960 + 159.903i 0.499928 + 0.288634i
\(555\) 0 0
\(556\) 106.250 + 184.030i 0.191097 + 0.330989i
\(557\) 116.662 0.209447 0.104723 0.994501i \(-0.466604\pi\)
0.104723 + 0.994501i \(0.466604\pi\)
\(558\) 0 0
\(559\) 106.118 0.189835
\(560\) 145.010 232.180i 0.258946 0.414606i
\(561\) 0 0
\(562\) −77.6553 44.8343i −0.138177 0.0797763i
\(563\) −266.953 + 462.377i −0.474162 + 0.821273i −0.999562 0.0295822i \(-0.990582\pi\)
0.525400 + 0.850855i \(0.323916\pi\)
\(564\) 0 0
\(565\) −230.813 144.156i −0.408519 0.255144i
\(566\) 513.510i 0.907262i
\(567\) 0 0
\(568\) 296.893i 0.522698i
\(569\) −97.5590 + 56.3257i −0.171457 + 0.0989907i −0.583273 0.812276i \(-0.698228\pi\)
0.411816 + 0.911267i \(0.364895\pi\)
\(570\) 0 0
\(571\) 430.768 746.111i 0.754409 1.30668i −0.191258 0.981540i \(-0.561257\pi\)
0.945668 0.325135i \(-0.105410\pi\)
\(572\) −209.397 + 362.686i −0.366079 + 0.634067i
\(573\) 0 0
\(574\) 351.948 + 609.592i 0.613150 + 1.06201i
\(575\) 486.161 721.459i 0.845498 1.25471i
\(576\) 0 0
\(577\) 37.3256i 0.0646891i 0.999477 + 0.0323446i \(0.0102974\pi\)
−0.999477 + 0.0323446i \(0.989703\pi\)
\(578\) 170.693 + 295.650i 0.295317 + 0.511505i
\(579\) 0 0
\(580\) 211.224 + 7.32886i 0.364179 + 0.0126360i
\(581\) 652.227 + 376.564i 1.12259 + 0.648130i
\(582\) 0 0
\(583\) 408.060 235.594i 0.699932 0.404106i
\(584\) 5.97455i 0.0102304i
\(585\) 0 0
\(586\) −321.640 −0.548873
\(587\) 269.051 + 466.011i 0.458350 + 0.793885i 0.998874 0.0474434i \(-0.0151074\pi\)
−0.540524 + 0.841328i \(0.681774\pi\)
\(588\) 0 0
\(589\) −138.382 + 239.685i −0.234944 + 0.406936i
\(590\) 294.200 + 10.2079i 0.498645 + 0.0173015i
\(591\) 0 0
\(592\) −74.6098 + 43.0760i −0.126030 + 0.0727635i
\(593\) −884.169 −1.49101 −0.745505 0.666500i \(-0.767792\pi\)
−0.745505 + 0.666500i \(0.767792\pi\)
\(594\) 0 0
\(595\) 221.765 + 416.854i 0.372713 + 0.700595i
\(596\) −24.5244 + 14.1592i −0.0411484 + 0.0237570i
\(597\) 0 0
\(598\) 724.888 + 418.514i 1.21219 + 0.699857i
\(599\) 38.7750 + 22.3868i 0.0647330 + 0.0373736i 0.532017 0.846734i \(-0.321434\pi\)
−0.467284 + 0.884107i \(0.654768\pi\)
\(600\) 0 0
\(601\) −197.287 341.711i −0.328264 0.568570i 0.653903 0.756578i \(-0.273130\pi\)
−0.982168 + 0.188008i \(0.939797\pi\)
\(602\) −120.770 −0.200614
\(603\) 0 0
\(604\) 146.676 0.242841
\(605\) 129.657 + 80.9787i 0.214310 + 0.133849i
\(606\) 0 0
\(607\) −186.345 107.586i −0.306993 0.177243i 0.338587 0.940935i \(-0.390051\pi\)
−0.645580 + 0.763692i \(0.723384\pi\)
\(608\) 20.4853 35.4815i 0.0336929 0.0583578i
\(609\) 0 0
\(610\) 90.3147 + 56.4069i 0.148057 + 0.0924703i
\(611\) 683.747i 1.11906i
\(612\) 0 0
\(613\) 333.937i 0.544758i 0.962190 + 0.272379i \(0.0878105\pi\)
−0.962190 + 0.272379i \(0.912189\pi\)
\(614\) 416.614 240.532i 0.678525 0.391747i
\(615\) 0 0
\(616\) 238.309 412.763i 0.386865 0.670069i
\(617\) 32.7117 56.6584i 0.0530174 0.0918288i −0.838299 0.545211i \(-0.816449\pi\)
0.891316 + 0.453382i \(0.149783\pi\)
\(618\) 0 0
\(619\) 9.96342 + 17.2571i 0.0160960 + 0.0278791i 0.873961 0.485996i \(-0.161543\pi\)
−0.857865 + 0.513875i \(0.828210\pi\)
\(620\) −337.362 + 179.475i −0.544133 + 0.289477i
\(621\) 0 0
\(622\) 546.973i 0.879379i
\(623\) 466.061 + 807.241i 0.748091 + 1.29573i
\(624\) 0 0
\(625\) 618.995 + 86.4302i 0.990392 + 0.138288i
\(626\) 460.997 + 266.157i 0.736417 + 0.425171i
\(627\) 0 0
\(628\) 121.495 70.1452i 0.193463 0.111696i
\(629\) 148.601i 0.236250i
\(630\) 0 0
\(631\) −210.625 −0.333796 −0.166898 0.985974i \(-0.553375\pi\)
−0.166898 + 0.985974i \(0.553375\pi\)
\(632\) 62.3604 + 108.011i 0.0986715 + 0.170904i
\(633\) 0 0
\(634\) −251.305 + 435.273i −0.396380 + 0.686551i
\(635\) −795.598 27.6050i −1.25291 0.0434724i
\(636\) 0 0
\(637\) 2037.66 1176.44i 3.19883 1.84685i
\(638\) 367.986 0.576780
\(639\) 0 0
\(640\) 49.9411 26.5685i 0.0780330 0.0415132i
\(641\) −1019.97 + 588.881i −1.59122 + 0.918692i −0.598122 + 0.801405i \(0.704086\pi\)
−0.993098 + 0.117287i \(0.962580\pi\)
\(642\) 0 0
\(643\) 32.5995 + 18.8213i 0.0506990 + 0.0292711i 0.525135 0.851019i \(-0.324015\pi\)
−0.474436 + 0.880290i \(0.657348\pi\)
\(644\) −824.974 476.299i −1.28102 0.739595i
\(645\) 0 0
\(646\) 35.3345 + 61.2012i 0.0546974 + 0.0947387i
\(647\) −695.382 −1.07478 −0.537389 0.843334i \(-0.680589\pi\)
−0.537389 + 0.843334i \(0.680589\pi\)
\(648\) 0 0
\(649\) 512.544 0.789744
\(650\) −41.6788 + 599.885i −0.0641212 + 0.922900i
\(651\) 0 0
\(652\) −15.6917 9.05959i −0.0240670 0.0138951i
\(653\) 462.148 800.464i 0.707731 1.22583i −0.257966 0.966154i \(-0.583052\pi\)
0.965697 0.259672i \(-0.0836144\pi\)
\(654\) 0 0
\(655\) −292.154 + 467.777i −0.446037 + 0.714163i
\(656\) 145.459i 0.221736i
\(657\) 0 0
\(658\) 778.153i 1.18260i
\(659\) 58.6043 33.8352i 0.0889291 0.0513433i −0.454876 0.890555i \(-0.650316\pi\)
0.543805 + 0.839212i \(0.316983\pi\)
\(660\) 0 0
\(661\) −516.434 + 894.489i −0.781291 + 1.35324i 0.149898 + 0.988701i \(0.452105\pi\)
−0.931190 + 0.364535i \(0.881228\pi\)
\(662\) 314.090 544.021i 0.474457 0.821783i
\(663\) 0 0
\(664\) 77.8162 + 134.782i 0.117193 + 0.202984i
\(665\) −232.794 437.586i −0.350066 0.658024i
\(666\) 0 0
\(667\) 735.480i 1.10267i
\(668\) 63.8528 + 110.596i 0.0955880 + 0.165563i
\(669\) 0 0
\(670\) 908.918 + 31.5369i 1.35659 + 0.0470699i
\(671\) 160.559 + 92.6988i 0.239283 + 0.138150i
\(672\) 0 0
\(673\) 8.80797 5.08528i 0.0130876 0.00755614i −0.493442 0.869779i \(-0.664261\pi\)
0.506530 + 0.862223i \(0.330928\pi\)
\(674\) 575.707i 0.854164i
\(675\) 0 0
\(676\) −240.558 −0.355856
\(677\) −288.468 499.641i −0.426098 0.738023i 0.570425 0.821350i \(-0.306779\pi\)
−0.996522 + 0.0833273i \(0.973445\pi\)
\(678\) 0 0
\(679\) 692.867 1200.08i 1.02042 1.76742i
\(680\) −3.38349 + 97.5149i −0.00497572 + 0.143404i
\(681\) 0 0
\(682\) −576.197 + 332.667i −0.844863 + 0.487782i
\(683\) −526.009 −0.770145 −0.385073 0.922886i \(-0.625824\pi\)
−0.385073 + 0.922886i \(0.625824\pi\)
\(684\) 0 0
\(685\) 961.940 511.748i 1.40429 0.747078i
\(686\) −1497.60 + 864.639i −2.18309 + 1.26041i
\(687\) 0 0
\(688\) −21.6132 12.4784i −0.0314146 0.0181372i
\(689\) 563.730 + 325.470i 0.818186 + 0.472380i
\(690\) 0 0
\(691\) −211.452 366.245i −0.306008 0.530022i 0.671477 0.741025i \(-0.265660\pi\)
−0.977485 + 0.211003i \(0.932327\pi\)
\(692\) 55.9756 0.0808896
\(693\) 0 0
\(694\) −692.132 −0.997308
\(695\) 450.587 + 281.418i 0.648327 + 0.404919i
\(696\) 0 0
\(697\) −217.284 125.449i −0.311742 0.179985i
\(698\) −57.8370 + 100.177i −0.0828611 + 0.143520i
\(699\) 0 0
\(700\) 47.4334 682.712i 0.0677620 0.975302i
\(701\) 881.146i 1.25698i 0.777816 + 0.628492i \(0.216328\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(702\) 0 0
\(703\) 155.992i 0.221895i
\(704\) 85.2967 49.2461i 0.121160 0.0699518i
\(705\) 0 0
\(706\) 177.757 307.885i 0.251781 0.436097i
\(707\) −104.225 + 180.524i −0.147419 + 0.255338i
\(708\) 0 0
\(709\) −50.7136 87.8386i −0.0715284 0.123891i 0.828043 0.560665i \(-0.189454\pi\)
−0.899571 + 0.436774i \(0.856121\pi\)
\(710\) −348.603 655.274i −0.490990 0.922921i
\(711\) 0 0
\(712\) 192.621i 0.270536i
\(713\) 664.890 + 1151.62i 0.932525 + 1.61518i
\(714\) 0 0
\(715\) −36.3055 + 1046.36i −0.0507770 + 1.46343i
\(716\) −36.4873 21.0660i −0.0509599 0.0294217i
\(717\) 0 0
\(718\) 635.030 366.635i 0.884443 0.510634i
\(719\) 36.2956i 0.0504807i 0.999681 + 0.0252404i \(0.00803511\pi\)
−0.999681 + 0.0252404i \(0.991965\pi\)
\(720\) 0 0
\(721\) −1055.18 −1.46349
\(722\) 218.174 + 377.888i 0.302180 + 0.523390i
\(723\) 0 0
\(724\) −53.6030 + 92.8432i −0.0740373 + 0.128236i
\(725\) 474.799 231.838i 0.654895 0.319776i
\(726\) 0 0
\(727\) −457.049 + 263.878i −0.628679 + 0.362968i −0.780240 0.625480i \(-0.784903\pi\)
0.151561 + 0.988448i \(0.451570\pi\)
\(728\) 658.441 0.904452
\(729\) 0 0
\(730\) 7.01515 + 13.1865i 0.00960980 + 0.0180637i
\(731\) 37.2801 21.5237i 0.0509988 0.0294442i
\(732\) 0 0
\(733\) −1130.97 652.966i −1.54293 0.890813i −0.998652 0.0519106i \(-0.983469\pi\)
−0.544282 0.838902i \(-0.683198\pi\)
\(734\) 418.842 + 241.819i 0.570630 + 0.329453i
\(735\) 0 0
\(736\) −98.4264 170.480i −0.133732 0.231630i
\(737\) 1583.48 2.14855
\(738\) 0 0
\(739\) 754.875 1.02148 0.510741 0.859735i \(-0.329371\pi\)
0.510741 + 0.859735i \(0.329371\pi\)
\(740\) −114.093 + 182.678i −0.154180 + 0.246862i
\(741\) 0 0
\(742\) −641.565 370.408i −0.864643 0.499202i
\(743\) −656.294 + 1136.73i −0.883302 + 1.52992i −0.0356548 + 0.999364i \(0.511352\pi\)
−0.847647 + 0.530560i \(0.821982\pi\)
\(744\) 0 0
\(745\) −37.5027 + 60.0468i −0.0503392 + 0.0805997i
\(746\) 155.992i 0.209105i
\(747\) 0 0
\(748\) 169.887i 0.227121i
\(749\) −929.621 + 536.717i −1.24115 + 0.716578i
\(750\) 0 0
\(751\) −616.216 + 1067.32i −0.820528 + 1.42120i 0.0847620 + 0.996401i \(0.472987\pi\)
−0.905290 + 0.424795i \(0.860346\pi\)
\(752\) 80.4020 139.260i 0.106918 0.185187i
\(753\) 0 0
\(754\) 254.184 + 440.259i 0.337114 + 0.583898i
\(755\) 323.730 172.223i 0.428781 0.228110i
\(756\) 0 0
\(757\) 401.164i 0.529939i 0.964257 + 0.264970i \(0.0853619\pi\)
−0.964257 + 0.264970i \(0.914638\pi\)
\(758\) −229.347 397.240i −0.302568 0.524064i
\(759\) 0 0
\(760\) 3.55177 102.365i 0.00467338 0.134691i
\(761\) −454.776 262.565i −0.597603 0.345027i 0.170495 0.985359i \(-0.445463\pi\)
−0.768098 + 0.640332i \(0.778797\pi\)
\(762\) 0 0
\(763\) −1733.91 + 1001.07i −2.27249 + 1.31202i
\(764\) 446.047i 0.583831i
\(765\) 0 0
\(766\) 809.609 1.05693
\(767\) 354.037 + 613.209i 0.461586 + 0.799491i
\(768\) 0 0
\(769\) 271.375 470.035i 0.352894 0.611229i −0.633862 0.773446i \(-0.718531\pi\)
0.986755 + 0.162217i \(0.0518645\pi\)
\(770\) 41.3183 1190.83i 0.0536601 1.54653i
\(771\) 0 0
\(772\) −305.228 + 176.224i −0.395373 + 0.228269i
\(773\) −522.640 −0.676119 −0.338059 0.941125i \(-0.609770\pi\)
−0.338059 + 0.941125i \(0.609770\pi\)
\(774\) 0 0
\(775\) −533.860 + 792.243i −0.688852 + 1.02225i
\(776\) 247.995 143.180i 0.319581 0.184510i
\(777\) 0 0
\(778\) −883.857 510.295i −1.13606 0.655906i
\(779\) 228.091 + 131.688i 0.292800 + 0.169048i
\(780\) 0 0
\(781\) −646.154 1119.17i −0.827342 1.43300i
\(782\) 339.546 0.434202
\(783\) 0 </