Properties

Label 810.3.j.a.539.1
Level $810$
Weight $3$
Character 810.539
Analytic conductor $22.071$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(269,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.269");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.81622204416.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 165x^{4} - 434x^{2} + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 539.1
Root \(1.43806 + 0.830265i\) of defining polynomial
Character \(\chi\) \(=\) 810.539
Dual form 810.3.j.a.269.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-4.24083 + 2.64865i) q^{5} +(-11.8534 + 6.84358i) q^{7} +2.82843 q^{8} +O(q^{10})\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-4.24083 + 2.64865i) q^{5} +(-11.8534 + 6.84358i) q^{7} +2.82843 q^{8} +(6.24264 + 3.32106i) q^{10} +(-10.6621 + 6.15576i) q^{11} +(-14.7295 - 8.50411i) q^{13} +(16.7633 + 9.67828i) q^{14} +(-2.00000 - 3.46410i) q^{16} +6.89949 q^{17} -7.24264 q^{19} +(-0.346763 - 9.99399i) q^{20} +(15.0785 + 8.70556i) q^{22} +(-17.3995 + 30.1368i) q^{23} +(10.9693 - 22.4650i) q^{25} +24.0532i q^{26} -27.3743i q^{28} +(18.3035 - 10.5675i) q^{29} +(19.1066 - 33.0936i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(-4.87868 - 8.45012i) q^{34} +(32.1421 - 60.4180i) q^{35} +21.5380i q^{37} +(5.12132 + 8.87039i) q^{38} +(-11.9949 + 7.49151i) q^{40} +(31.4928 + 18.1824i) q^{41} +(-5.40331 + 3.11960i) q^{43} -24.6230i q^{44} +49.2132 q^{46} +(20.1005 + 34.8151i) q^{47} +(69.1690 - 119.804i) q^{49} +(-35.2703 + 2.45051i) q^{50} +(29.4591 - 17.0082i) q^{52} +38.2721 q^{53} +(28.9117 - 54.3457i) q^{55} +(-33.5265 + 19.3566i) q^{56} +(-25.8851 - 14.9448i) q^{58} +(-36.0537 - 20.8156i) q^{59} +(7.52944 + 13.0414i) q^{61} -54.0416 q^{62} +8.00000 q^{64} +(84.9899 - 2.94891i) q^{65} +(-111.386 - 64.3089i) q^{67} +(-6.89949 + 11.9503i) q^{68} +(-96.7246 + 3.35607i) q^{70} +104.967i q^{71} -2.11232i q^{73} +(26.3786 - 15.2297i) q^{74} +(7.24264 - 12.5446i) q^{76} +(84.2548 - 145.934i) q^{77} +(22.0477 + 38.1878i) q^{79} +(17.6569 + 9.39338i) q^{80} -51.4275i q^{82} +(27.5122 + 47.6525i) q^{83} +(-29.2596 + 18.2743i) q^{85} +(7.64144 + 4.41179i) q^{86} +(-30.1569 + 17.4111i) q^{88} -68.1020i q^{89} +232.794 q^{91} +(-34.7990 - 60.2736i) q^{92} +(28.4264 - 49.2360i) q^{94} +(30.7148 - 19.1832i) q^{95} +(-87.6794 + 50.6217i) q^{97} -195.640 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 12 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 12 q^{5} + 16 q^{10} - 16 q^{16} - 24 q^{17} - 24 q^{19} - 24 q^{20} - 60 q^{23} + 12 q^{25} + 68 q^{31} - 56 q^{34} + 144 q^{35} + 24 q^{38} - 16 q^{40} + 224 q^{46} + 240 q^{47} + 180 q^{49} - 96 q^{50} + 408 q^{53} - 176 q^{55} + 196 q^{61} - 240 q^{62} + 64 q^{64} + 24 q^{65} + 24 q^{68} - 80 q^{70} + 24 q^{76} + 312 q^{77} - 180 q^{79} + 96 q^{80} - 108 q^{83} - 20 q^{85} + 912 q^{91} - 120 q^{92} - 112 q^{94} + 60 q^{95} - 1056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −4.24083 + 2.64865i −0.848166 + 0.529730i
\(6\) 0 0
\(7\) −11.8534 + 6.84358i −1.69335 + 0.977654i −0.741562 + 0.670885i \(0.765915\pi\)
−0.951784 + 0.306769i \(0.900752\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 6.24264 + 3.32106i 0.624264 + 0.332106i
\(11\) −10.6621 + 6.15576i −0.969281 + 0.559615i −0.899017 0.437914i \(-0.855718\pi\)
−0.0702641 + 0.997528i \(0.522384\pi\)
\(12\) 0 0
\(13\) −14.7295 8.50411i −1.13304 0.654162i −0.188344 0.982103i \(-0.560312\pi\)
−0.944698 + 0.327941i \(0.893645\pi\)
\(14\) 16.7633 + 9.67828i 1.19738 + 0.691306i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 6.89949 0.405853 0.202926 0.979194i \(-0.434955\pi\)
0.202926 + 0.979194i \(0.434955\pi\)
\(18\) 0 0
\(19\) −7.24264 −0.381192 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(20\) −0.346763 9.99399i −0.0173381 0.499699i
\(21\) 0 0
\(22\) 15.0785 + 8.70556i 0.685385 + 0.395707i
\(23\) −17.3995 + 30.1368i −0.756500 + 1.31030i 0.188125 + 0.982145i \(0.439759\pi\)
−0.944625 + 0.328151i \(0.893574\pi\)
\(24\) 0 0
\(25\) 10.9693 22.4650i 0.438773 0.898598i
\(26\) 24.0532i 0.925125i
\(27\) 0 0
\(28\) 27.3743i 0.977654i
\(29\) 18.3035 10.5675i 0.631156 0.364398i −0.150044 0.988679i \(-0.547941\pi\)
0.781200 + 0.624281i \(0.214608\pi\)
\(30\) 0 0
\(31\) 19.1066 33.0936i 0.616342 1.06754i −0.373805 0.927507i \(-0.621947\pi\)
0.990147 0.140029i \(-0.0447194\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −4.87868 8.45012i −0.143491 0.248533i
\(35\) 32.1421 60.4180i 0.918347 1.72623i
\(36\) 0 0
\(37\) 21.5380i 0.582108i 0.956707 + 0.291054i \(0.0940060\pi\)
−0.956707 + 0.291054i \(0.905994\pi\)
\(38\) 5.12132 + 8.87039i 0.134772 + 0.233431i
\(39\) 0 0
\(40\) −11.9949 + 7.49151i −0.299872 + 0.187288i
\(41\) 31.4928 + 18.1824i 0.768117 + 0.443473i 0.832203 0.554472i \(-0.187080\pi\)
−0.0640853 + 0.997944i \(0.520413\pi\)
\(42\) 0 0
\(43\) −5.40331 + 3.11960i −0.125658 + 0.0725489i −0.561512 0.827469i \(-0.689780\pi\)
0.435853 + 0.900018i \(0.356447\pi\)
\(44\) 24.6230i 0.559615i
\(45\) 0 0
\(46\) 49.2132 1.06985
\(47\) 20.1005 + 34.8151i 0.427670 + 0.740747i 0.996666 0.0815940i \(-0.0260011\pi\)
−0.568995 + 0.822341i \(0.692668\pi\)
\(48\) 0 0
\(49\) 69.1690 119.804i 1.41161 2.44499i
\(50\) −35.2703 + 2.45051i −0.705406 + 0.0490102i
\(51\) 0 0
\(52\) 29.4591 17.0082i 0.566521 0.327081i
\(53\) 38.2721 0.722115 0.361057 0.932544i \(-0.382416\pi\)
0.361057 + 0.932544i \(0.382416\pi\)
\(54\) 0 0
\(55\) 28.9117 54.3457i 0.525667 0.988103i
\(56\) −33.5265 + 19.3566i −0.598688 + 0.345653i
\(57\) 0 0
\(58\) −25.8851 14.9448i −0.446295 0.257668i
\(59\) −36.0537 20.8156i −0.611080 0.352807i 0.162308 0.986740i \(-0.448106\pi\)
−0.773388 + 0.633933i \(0.781440\pi\)
\(60\) 0 0
\(61\) 7.52944 + 13.0414i 0.123433 + 0.213793i 0.921119 0.389280i \(-0.127276\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(62\) −54.0416 −0.871639
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 84.9899 2.94891i 1.30754 0.0453678i
\(66\) 0 0
\(67\) −111.386 64.3089i −1.66248 0.959834i −0.971525 0.236937i \(-0.923856\pi\)
−0.690956 0.722897i \(-0.742810\pi\)
\(68\) −6.89949 + 11.9503i −0.101463 + 0.175739i
\(69\) 0 0
\(70\) −96.7246 + 3.35607i −1.38178 + 0.0479438i
\(71\) 104.967i 1.47841i 0.673478 + 0.739207i \(0.264800\pi\)
−0.673478 + 0.739207i \(0.735200\pi\)
\(72\) 0 0
\(73\) 2.11232i 0.0289359i −0.999895 0.0144680i \(-0.995395\pi\)
0.999895 0.0144680i \(-0.00460546\pi\)
\(74\) 26.3786 15.2297i 0.356467 0.205806i
\(75\) 0 0
\(76\) 7.24264 12.5446i 0.0952979 0.165061i
\(77\) 84.2548 145.934i 1.09422 1.89524i
\(78\) 0 0
\(79\) 22.0477 + 38.1878i 0.279085 + 0.483390i 0.971158 0.238438i \(-0.0766355\pi\)
−0.692072 + 0.721828i \(0.743302\pi\)
\(80\) 17.6569 + 9.39338i 0.220711 + 0.117417i
\(81\) 0 0
\(82\) 51.4275i 0.627165i
\(83\) 27.5122 + 47.6525i 0.331472 + 0.574127i 0.982801 0.184669i \(-0.0591214\pi\)
−0.651329 + 0.758796i \(0.725788\pi\)
\(84\) 0 0
\(85\) −29.2596 + 18.2743i −0.344231 + 0.214992i
\(86\) 7.64144 + 4.41179i 0.0888539 + 0.0512998i
\(87\) 0 0
\(88\) −30.1569 + 17.4111i −0.342693 + 0.197854i
\(89\) 68.1020i 0.765191i −0.923916 0.382595i \(-0.875030\pi\)
0.923916 0.382595i \(-0.124970\pi\)
\(90\) 0 0
\(91\) 232.794 2.55818
\(92\) −34.7990 60.2736i −0.378250 0.655148i
\(93\) 0 0
\(94\) 28.4264 49.2360i 0.302409 0.523787i
\(95\) 30.7148 19.1832i 0.323314 0.201929i
\(96\) 0 0
\(97\) −87.6794 + 50.6217i −0.903911 + 0.521873i −0.878467 0.477803i \(-0.841433\pi\)
−0.0254441 + 0.999676i \(0.508100\pi\)
\(98\) −195.640 −1.99632
\(99\) 0 0
\(100\) 27.9411 + 41.4644i 0.279411 + 0.414644i
\(101\) 13.1893 7.61484i 0.130587 0.0753944i −0.433283 0.901258i \(-0.642645\pi\)
0.563870 + 0.825863i \(0.309312\pi\)
\(102\) 0 0
\(103\) 66.7640 + 38.5462i 0.648194 + 0.374235i 0.787764 0.615977i \(-0.211239\pi\)
−0.139570 + 0.990212i \(0.544572\pi\)
\(104\) −41.6614 24.0532i −0.400591 0.231281i
\(105\) 0 0
\(106\) −27.0624 46.8735i −0.255306 0.442203i
\(107\) −78.4264 −0.732957 −0.366479 0.930427i \(-0.619437\pi\)
−0.366479 + 0.930427i \(0.619437\pi\)
\(108\) 0 0
\(109\) −146.279 −1.34201 −0.671006 0.741452i \(-0.734137\pi\)
−0.671006 + 0.741452i \(0.734137\pi\)
\(110\) −87.0033 + 3.01876i −0.790939 + 0.0274433i
\(111\) 0 0
\(112\) 47.4137 + 27.3743i 0.423336 + 0.244413i
\(113\) −27.2132 + 47.1347i −0.240825 + 0.417121i −0.960949 0.276724i \(-0.910751\pi\)
0.720125 + 0.693845i \(0.244085\pi\)
\(114\) 0 0
\(115\) −6.03350 173.890i −0.0524652 1.51209i
\(116\) 42.2702i 0.364398i
\(117\) 0 0
\(118\) 58.8755i 0.498945i
\(119\) −81.7826 + 47.2172i −0.687249 + 0.396783i
\(120\) 0 0
\(121\) 15.2868 26.4775i 0.126337 0.218822i
\(122\) 10.6482 18.4433i 0.0872806 0.151174i
\(123\) 0 0
\(124\) 38.2132 + 66.1872i 0.308171 + 0.533768i
\(125\) 12.9828 + 124.324i 0.103862 + 0.994592i
\(126\) 0 0
\(127\) 159.215i 1.25366i −0.779154 0.626832i \(-0.784351\pi\)
0.779154 0.626832i \(-0.215649\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −63.7086 102.006i −0.490066 0.784660i
\(131\) −95.5252 55.1515i −0.729200 0.421004i 0.0889293 0.996038i \(-0.471655\pi\)
−0.818130 + 0.575034i \(0.804989\pi\)
\(132\) 0 0
\(133\) 85.8501 49.5656i 0.645489 0.372673i
\(134\) 181.893i 1.35741i
\(135\) 0 0
\(136\) 19.5147 0.143491
\(137\) −108.959 188.723i −0.795324 1.37754i −0.922633 0.385679i \(-0.873967\pi\)
0.127309 0.991863i \(-0.459366\pi\)
\(138\) 0 0
\(139\) 53.1249 92.0150i 0.382193 0.661979i −0.609182 0.793030i \(-0.708502\pi\)
0.991376 + 0.131052i \(0.0418355\pi\)
\(140\) 72.5049 + 116.090i 0.517892 + 0.829213i
\(141\) 0 0
\(142\) 128.558 74.2232i 0.905340 0.522698i
\(143\) 209.397 1.46431
\(144\) 0 0
\(145\) −49.6325 + 93.2948i −0.342293 + 0.643413i
\(146\) −2.58706 + 1.49364i −0.0177196 + 0.0102304i
\(147\) 0 0
\(148\) −37.3049 21.5380i −0.252060 0.145527i
\(149\) −12.2622 7.07960i −0.0822968 0.0475141i 0.458287 0.888804i \(-0.348463\pi\)
−0.540584 + 0.841290i \(0.681797\pi\)
\(150\) 0 0
\(151\) −36.6690 63.5127i −0.242841 0.420614i 0.718681 0.695340i \(-0.244746\pi\)
−0.961522 + 0.274726i \(0.911413\pi\)
\(152\) −20.4853 −0.134772
\(153\) 0 0
\(154\) −238.309 −1.54746
\(155\) 6.62546 + 190.951i 0.0427449 + 1.23194i
\(156\) 0 0
\(157\) 60.7475 + 35.0726i 0.386927 + 0.223392i 0.680828 0.732444i \(-0.261620\pi\)
−0.293901 + 0.955836i \(0.594954\pi\)
\(158\) 31.1802 54.0057i 0.197343 0.341808i
\(159\) 0 0
\(160\) −0.980793 28.2673i −0.00612996 0.176670i
\(161\) 476.299i 2.95838i
\(162\) 0 0
\(163\) 9.05959i 0.0555803i −0.999614 0.0277902i \(-0.991153\pi\)
0.999614 0.0277902i \(-0.00884702\pi\)
\(164\) −62.9856 + 36.3648i −0.384059 + 0.221736i
\(165\) 0 0
\(166\) 38.9081 67.3908i 0.234386 0.405969i
\(167\) 31.9264 55.2982i 0.191176 0.331127i −0.754464 0.656341i \(-0.772103\pi\)
0.945640 + 0.325215i \(0.105437\pi\)
\(168\) 0 0
\(169\) 60.1396 + 104.165i 0.355856 + 0.616360i
\(170\) 43.0711 + 22.9136i 0.253359 + 0.134786i
\(171\) 0 0
\(172\) 12.4784i 0.0725489i
\(173\) −13.9939 24.2382i −0.0808896 0.140105i 0.822743 0.568414i \(-0.192443\pi\)
−0.903632 + 0.428309i \(0.859109\pi\)
\(174\) 0 0
\(175\) 23.7167 + 341.356i 0.135524 + 1.95060i
\(176\) 42.6484 + 24.6230i 0.242320 + 0.139904i
\(177\) 0 0
\(178\) −83.4075 + 48.1554i −0.468582 + 0.270536i
\(179\) 21.0660i 0.117687i −0.998267 0.0588435i \(-0.981259\pi\)
0.998267 0.0588435i \(-0.0187413\pi\)
\(180\) 0 0
\(181\) 53.6030 0.296149 0.148075 0.988976i \(-0.452692\pi\)
0.148075 + 0.988976i \(0.452692\pi\)
\(182\) −164.610 285.113i −0.904452 1.56656i
\(183\) 0 0
\(184\) −49.2132 + 85.2398i −0.267463 + 0.463260i
\(185\) −57.0466 91.3391i −0.308360 0.493725i
\(186\) 0 0
\(187\) −73.5630 + 42.4716i −0.393385 + 0.227121i
\(188\) −80.4020 −0.427670
\(189\) 0 0
\(190\) −45.2132 24.0532i −0.237964 0.126596i
\(191\) 193.144 111.512i 1.01123 0.583831i 0.0996752 0.995020i \(-0.468220\pi\)
0.911550 + 0.411189i \(0.134886\pi\)
\(192\) 0 0
\(193\) −152.614 88.1118i −0.790746 0.456538i 0.0494788 0.998775i \(-0.484244\pi\)
−0.840225 + 0.542237i \(0.817577\pi\)
\(194\) 123.997 + 71.5899i 0.639162 + 0.369020i
\(195\) 0 0
\(196\) 138.338 + 239.609i 0.705807 + 1.22249i
\(197\) 277.586 1.40906 0.704532 0.709672i \(-0.251157\pi\)
0.704532 + 0.709672i \(0.251157\pi\)
\(198\) 0 0
\(199\) 71.5736 0.359666 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(200\) 31.0259 63.5405i 0.155130 0.317702i
\(201\) 0 0
\(202\) −18.6525 10.7690i −0.0923389 0.0533119i
\(203\) −144.640 + 250.523i −0.712510 + 1.23410i
\(204\) 0 0
\(205\) −181.714 + 6.30497i −0.886412 + 0.0307560i
\(206\) 109.025i 0.529248i
\(207\) 0 0
\(208\) 68.0328i 0.327081i
\(209\) 77.2217 44.5840i 0.369482 0.213320i
\(210\) 0 0
\(211\) −159.746 + 276.689i −0.757091 + 1.31132i 0.187237 + 0.982315i \(0.440047\pi\)
−0.944328 + 0.329005i \(0.893287\pi\)
\(212\) −38.2721 + 66.2892i −0.180529 + 0.312685i
\(213\) 0 0
\(214\) 55.4558 + 96.0523i 0.259139 + 0.448843i
\(215\) 14.6518 27.5412i 0.0681479 0.128099i
\(216\) 0 0
\(217\) 523.030i 2.41028i
\(218\) 103.435 + 179.155i 0.474473 + 0.821811i
\(219\) 0 0
\(220\) 65.2178 + 104.422i 0.296445 + 0.474646i
\(221\) −101.626 58.6740i −0.459848 0.265493i
\(222\) 0 0
\(223\) −140.676 + 81.2193i −0.630834 + 0.364212i −0.781075 0.624437i \(-0.785328\pi\)
0.150241 + 0.988649i \(0.451995\pi\)
\(224\) 77.4262i 0.345653i
\(225\) 0 0
\(226\) 76.9706 0.340578
\(227\) −120.549 208.797i −0.531052 0.919809i −0.999343 0.0362347i \(-0.988464\pi\)
0.468291 0.883574i \(-0.344870\pi\)
\(228\) 0 0
\(229\) −51.1102 + 88.5254i −0.223189 + 0.386574i −0.955774 0.294101i \(-0.904980\pi\)
0.732586 + 0.680675i \(0.238313\pi\)
\(230\) −208.705 + 130.349i −0.907413 + 0.566733i
\(231\) 0 0
\(232\) 51.7702 29.8895i 0.223147 0.128834i
\(233\) 241.966 1.03848 0.519239 0.854629i \(-0.326215\pi\)
0.519239 + 0.854629i \(0.326215\pi\)
\(234\) 0 0
\(235\) −177.456 94.4058i −0.755131 0.401727i
\(236\) 72.1075 41.6313i 0.305540 0.176404i
\(237\) 0 0
\(238\) 115.658 + 66.7752i 0.485958 + 0.280568i
\(239\) 325.157 + 187.729i 1.36049 + 0.785478i 0.989689 0.143235i \(-0.0457505\pi\)
0.370799 + 0.928713i \(0.379084\pi\)
\(240\) 0 0
\(241\) 159.140 + 275.638i 0.660330 + 1.14373i 0.980529 + 0.196375i \(0.0629171\pi\)
−0.320198 + 0.947350i \(0.603750\pi\)
\(242\) −43.2376 −0.178668
\(243\) 0 0
\(244\) −30.1177 −0.123433
\(245\) 23.9853 + 691.274i 0.0978990 + 2.82153i
\(246\) 0 0
\(247\) 106.681 + 61.5922i 0.431906 + 0.249361i
\(248\) 54.0416 93.6028i 0.217910 0.377431i
\(249\) 0 0
\(250\) 143.085 103.811i 0.572340 0.415244i
\(251\) 85.5417i 0.340804i 0.985375 + 0.170402i \(0.0545066\pi\)
−0.985375 + 0.170402i \(0.945493\pi\)
\(252\) 0 0
\(253\) 428.429i 1.69339i
\(254\) −194.998 + 112.582i −0.767709 + 0.443237i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 107.114 185.526i 0.416785 0.721893i −0.578829 0.815449i \(-0.696490\pi\)
0.995614 + 0.0935562i \(0.0298235\pi\)
\(258\) 0 0
\(259\) −147.397 255.299i −0.569100 0.985711i
\(260\) −79.8823 + 150.156i −0.307239 + 0.577522i
\(261\) 0 0
\(262\) 155.992i 0.595389i
\(263\) 53.4386 + 92.5584i 0.203189 + 0.351933i 0.949554 0.313603i \(-0.101536\pi\)
−0.746365 + 0.665536i \(0.768203\pi\)
\(264\) 0 0
\(265\) −162.305 + 101.369i −0.612473 + 0.382526i
\(266\) −121.410 70.0963i −0.456430 0.263520i
\(267\) 0 0
\(268\) 222.772 128.618i 0.831241 0.479917i
\(269\) 365.927i 1.36032i 0.733062 + 0.680161i \(0.238090\pi\)
−0.733062 + 0.680161i \(0.761910\pi\)
\(270\) 0 0
\(271\) −92.8894 −0.342765 −0.171383 0.985205i \(-0.554823\pi\)
−0.171383 + 0.985205i \(0.554823\pi\)
\(272\) −13.7990 23.9006i −0.0507316 0.0878697i
\(273\) 0 0
\(274\) −154.092 + 266.895i −0.562379 + 0.974069i
\(275\) 21.3331 + 307.048i 0.0775747 + 1.11654i
\(276\) 0 0
\(277\) 195.841 113.069i 0.707006 0.408190i −0.102946 0.994687i \(-0.532827\pi\)
0.809951 + 0.586497i \(0.199493\pi\)
\(278\) −150.260 −0.540503
\(279\) 0 0
\(280\) 90.9117 170.888i 0.324685 0.610314i
\(281\) −54.9106 + 31.7026i −0.195411 + 0.112821i −0.594513 0.804086i \(-0.702655\pi\)
0.399102 + 0.916907i \(0.369322\pi\)
\(282\) 0 0
\(283\) 314.459 + 181.553i 1.11116 + 0.641531i 0.939131 0.343560i \(-0.111633\pi\)
0.172033 + 0.985091i \(0.444966\pi\)
\(284\) −181.809 104.967i −0.640172 0.369604i
\(285\) 0 0
\(286\) −148.066 256.458i −0.517713 0.896706i
\(287\) −497.730 −1.73425
\(288\) 0 0
\(289\) −241.397 −0.835284
\(290\) 149.358 5.18229i 0.515027 0.0178700i
\(291\) 0 0
\(292\) 3.65865 + 2.11232i 0.0125296 + 0.00723398i
\(293\) 113.717 196.963i 0.388112 0.672229i −0.604084 0.796921i \(-0.706461\pi\)
0.992196 + 0.124691i \(0.0397941\pi\)
\(294\) 0 0
\(295\) 208.031 7.21808i 0.705190 0.0244681i
\(296\) 60.9187i 0.205806i
\(297\) 0 0
\(298\) 20.0241i 0.0671950i
\(299\) 512.573 295.934i 1.71429 0.989747i
\(300\) 0 0
\(301\) 42.6985 73.9559i 0.141855 0.245701i
\(302\) −51.8579 + 89.8205i −0.171715 + 0.297419i
\(303\) 0 0
\(304\) 14.4853 + 25.0892i 0.0476490 + 0.0825304i
\(305\) −66.4731 35.3634i −0.217945 0.115946i
\(306\) 0 0
\(307\) 340.164i 1.10803i −0.832508 0.554013i \(-0.813096\pi\)
0.832508 0.554013i \(-0.186904\pi\)
\(308\) 168.510 + 291.867i 0.547109 + 0.947621i
\(309\) 0 0
\(310\) 229.181 143.137i 0.739295 0.461733i
\(311\) 334.951 + 193.384i 1.07701 + 0.621815i 0.930089 0.367333i \(-0.119729\pi\)
0.146925 + 0.989148i \(0.453062\pi\)
\(312\) 0 0
\(313\) 325.974 188.201i 1.04145 0.601282i 0.121207 0.992627i \(-0.461323\pi\)
0.920244 + 0.391345i \(0.127990\pi\)
\(314\) 99.2002i 0.315924i
\(315\) 0 0
\(316\) −88.1909 −0.279085
\(317\) −177.700 307.785i −0.560566 0.970929i −0.997447 0.0714099i \(-0.977250\pi\)
0.436881 0.899519i \(-0.356083\pi\)
\(318\) 0 0
\(319\) −130.103 + 225.344i −0.407845 + 0.706408i
\(320\) −33.9267 + 21.1892i −0.106021 + 0.0662162i
\(321\) 0 0
\(322\) −583.345 + 336.794i −1.81163 + 1.04594i
\(323\) −49.9706 −0.154708
\(324\) 0 0
\(325\) −352.617 + 237.614i −1.08498 + 0.731121i
\(326\) −11.0957 + 6.40610i −0.0340359 + 0.0196506i
\(327\) 0 0
\(328\) 89.0751 + 51.4275i 0.271570 + 0.156791i
\(329\) −476.519 275.119i −1.44839 0.836227i
\(330\) 0 0
\(331\) 222.095 + 384.681i 0.670983 + 1.16218i 0.977626 + 0.210352i \(0.0674611\pi\)
−0.306642 + 0.951825i \(0.599206\pi\)
\(332\) −110.049 −0.331472
\(333\) 0 0
\(334\) −90.3015 −0.270364
\(335\) 642.702 22.2999i 1.91851 0.0665669i
\(336\) 0 0
\(337\) 352.547 + 203.543i 1.04613 + 0.603985i 0.921564 0.388226i \(-0.126912\pi\)
0.124569 + 0.992211i \(0.460245\pi\)
\(338\) 85.0503 147.311i 0.251628 0.435832i
\(339\) 0 0
\(340\) −2.39249 68.9535i −0.00703673 0.202804i
\(341\) 470.463i 1.37966i
\(342\) 0 0
\(343\) 1222.78i 3.56497i
\(344\) −15.2829 + 8.82357i −0.0444270 + 0.0256499i
\(345\) 0 0
\(346\) −19.7904 + 34.2779i −0.0571976 + 0.0990691i
\(347\) 244.706 423.843i 0.705204 1.22145i −0.261414 0.965227i \(-0.584189\pi\)
0.966618 0.256222i \(-0.0824777\pi\)
\(348\) 0 0
\(349\) −40.8970 70.8356i −0.117183 0.202967i 0.801467 0.598039i \(-0.204053\pi\)
−0.918650 + 0.395071i \(0.870720\pi\)
\(350\) 401.304 270.422i 1.14658 0.772634i
\(351\) 0 0
\(352\) 69.6445i 0.197854i
\(353\) 125.693 + 217.707i 0.356072 + 0.616735i 0.987301 0.158862i \(-0.0507824\pi\)
−0.631229 + 0.775597i \(0.717449\pi\)
\(354\) 0 0
\(355\) −278.022 445.149i −0.783160 1.25394i
\(356\) 117.956 + 68.1020i 0.331337 + 0.191298i
\(357\) 0 0
\(358\) −25.8004 + 14.8959i −0.0720682 + 0.0416086i
\(359\) 518.500i 1.44429i −0.691742 0.722145i \(-0.743156\pi\)
0.691742 0.722145i \(-0.256844\pi\)
\(360\) 0 0
\(361\) −308.544 −0.854693
\(362\) −37.9031 65.6500i −0.104705 0.181354i
\(363\) 0 0
\(364\) −232.794 + 403.211i −0.639544 + 1.10772i
\(365\) 5.59480 + 8.95801i 0.0153282 + 0.0245425i
\(366\) 0 0
\(367\) 296.166 170.992i 0.806992 0.465917i −0.0389180 0.999242i \(-0.512391\pi\)
0.845910 + 0.533325i \(0.179058\pi\)
\(368\) 139.196 0.378250
\(369\) 0 0
\(370\) −71.5290 + 134.454i −0.193322 + 0.363389i
\(371\) −453.655 + 261.918i −1.22279 + 0.705978i
\(372\) 0 0
\(373\) −95.5252 55.1515i −0.256100 0.147859i 0.366454 0.930436i \(-0.380572\pi\)
−0.622554 + 0.782577i \(0.713905\pi\)
\(374\) 104.034 + 60.0640i 0.278165 + 0.160599i
\(375\) 0 0
\(376\) 56.8528 + 98.4720i 0.151204 + 0.261894i
\(377\) −359.470 −0.953502
\(378\) 0 0
\(379\) 324.345 0.855792 0.427896 0.903828i \(-0.359255\pi\)
0.427896 + 0.903828i \(0.359255\pi\)
\(380\) 2.51148 + 72.3828i 0.00660915 + 0.190481i
\(381\) 0 0
\(382\) −273.147 157.701i −0.715044 0.412831i
\(383\) −286.240 + 495.782i −0.747363 + 1.29447i 0.201719 + 0.979443i \(0.435347\pi\)
−0.949082 + 0.315028i \(0.897986\pi\)
\(384\) 0 0
\(385\) 29.2164 + 842.042i 0.0758869 + 2.18712i
\(386\) 249.218i 0.645642i
\(387\) 0 0
\(388\) 202.487i 0.521873i
\(389\) −624.981 + 360.833i −1.60664 + 0.927592i −0.616520 + 0.787339i \(0.711458\pi\)
−0.990116 + 0.140253i \(0.955208\pi\)
\(390\) 0 0
\(391\) −120.048 + 207.929i −0.307027 + 0.531787i
\(392\) 195.640 338.858i 0.499081 0.864433i
\(393\) 0 0
\(394\) −196.283 339.972i −0.498180 0.862873i
\(395\) −194.647 103.551i −0.492777 0.262155i
\(396\) 0 0
\(397\) 379.321i 0.955468i −0.878505 0.477734i \(-0.841458\pi\)
0.878505 0.477734i \(-0.158542\pi\)
\(398\) −50.6102 87.6594i −0.127161 0.220250i
\(399\) 0 0
\(400\) −99.7595 + 6.93108i −0.249399 + 0.0173277i
\(401\) −303.952 175.487i −0.757985 0.437623i 0.0705866 0.997506i \(-0.477513\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(402\) 0 0
\(403\) −562.863 + 324.969i −1.39668 + 0.806375i
\(404\) 30.4593i 0.0753944i
\(405\) 0 0
\(406\) 409.103 1.00764
\(407\) −132.583 229.640i −0.325756 0.564227i
\(408\) 0 0
\(409\) 266.713 461.961i 0.652111 1.12949i −0.330499 0.943806i \(-0.607217\pi\)
0.982610 0.185682i \(-0.0594495\pi\)
\(410\) 136.214 + 218.096i 0.332228 + 0.531940i
\(411\) 0 0
\(412\) −133.528 + 77.0924i −0.324097 + 0.187118i
\(413\) 569.813 1.37969
\(414\) 0 0
\(415\) −242.889 129.216i −0.585276 0.311364i
\(416\) 83.3229 48.1065i 0.200295 0.115641i
\(417\) 0 0
\(418\) −109.208 63.0513i −0.261263 0.150840i
\(419\) −207.634 119.878i −0.495547 0.286104i 0.231326 0.972876i \(-0.425694\pi\)
−0.726873 + 0.686772i \(0.759027\pi\)
\(420\) 0 0
\(421\) −212.471 368.010i −0.504681 0.874133i −0.999985 0.00541323i \(-0.998277\pi\)
0.495305 0.868719i \(-0.335056\pi\)
\(422\) 451.831 1.07069
\(423\) 0 0
\(424\) 108.250 0.255306
\(425\) 75.6827 154.997i 0.178077 0.364698i
\(426\) 0 0
\(427\) −178.499 103.057i −0.418031 0.241350i
\(428\) 78.4264 135.839i 0.183239 0.317380i
\(429\) 0 0
\(430\) −44.0913 + 1.52984i −0.102538 + 0.00355777i
\(431\) 544.039i 1.26227i 0.775673 + 0.631135i \(0.217411\pi\)
−0.775673 + 0.631135i \(0.782589\pi\)
\(432\) 0 0
\(433\) 602.735i 1.39200i −0.718043 0.695999i \(-0.754962\pi\)
0.718043 0.695999i \(-0.245038\pi\)
\(434\) 640.578 369.838i 1.47599 0.852161i
\(435\) 0 0
\(436\) 146.279 253.363i 0.335503 0.581108i
\(437\) 126.018 218.270i 0.288371 0.499474i
\(438\) 0 0
\(439\) −201.143 348.390i −0.458185 0.793600i 0.540680 0.841228i \(-0.318167\pi\)
−0.998865 + 0.0476287i \(0.984834\pi\)
\(440\) 81.7746 153.713i 0.185851 0.349347i
\(441\) 0 0
\(442\) 165.955i 0.375464i
\(443\) −219.257 379.765i −0.494938 0.857257i 0.505045 0.863093i \(-0.331476\pi\)
−0.999983 + 0.00583572i \(0.998142\pi\)
\(444\) 0 0
\(445\) 180.378 + 288.809i 0.405344 + 0.649009i
\(446\) 198.946 + 114.861i 0.446067 + 0.257537i
\(447\) 0 0
\(448\) −94.8274 + 54.7486i −0.211668 + 0.122207i
\(449\) 670.866i 1.49413i −0.664749 0.747067i \(-0.731462\pi\)
0.664749 0.747067i \(-0.268538\pi\)
\(450\) 0 0
\(451\) −447.706 −0.992695
\(452\) −54.4264 94.2693i −0.120412 0.208560i
\(453\) 0 0
\(454\) −170.482 + 295.283i −0.375510 + 0.650403i
\(455\) −987.240 + 616.589i −2.16976 + 1.35514i
\(456\) 0 0
\(457\) 601.913 347.514i 1.31710 0.760425i 0.333835 0.942632i \(-0.391657\pi\)
0.983260 + 0.182206i \(0.0583238\pi\)
\(458\) 144.561 0.315636
\(459\) 0 0
\(460\) 307.220 + 163.440i 0.667870 + 0.355304i
\(461\) −11.3352 + 6.54436i −0.0245882 + 0.0141960i −0.512244 0.858840i \(-0.671186\pi\)
0.487656 + 0.873036i \(0.337852\pi\)
\(462\) 0 0
\(463\) −202.894 117.141i −0.438215 0.253004i 0.264625 0.964351i \(-0.414752\pi\)
−0.702840 + 0.711348i \(0.748085\pi\)
\(464\) −73.2141 42.2702i −0.157789 0.0910995i
\(465\) 0 0
\(466\) −171.095 296.346i −0.367158 0.635936i
\(467\) −742.882 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(468\) 0 0
\(469\) 1760.41 3.75354
\(470\) 9.85722 + 284.093i 0.0209728 + 0.604453i
\(471\) 0 0
\(472\) −101.975 58.8755i −0.216049 0.124736i
\(473\) 38.4071 66.5230i 0.0811989 0.140641i
\(474\) 0 0
\(475\) −79.4468 + 162.706i −0.167256 + 0.342538i
\(476\) 188.869i 0.396783i
\(477\) 0 0
\(478\) 530.978i 1.11083i
\(479\) −387.469 + 223.705i −0.808913 + 0.467026i −0.846578 0.532264i \(-0.821341\pi\)
0.0376655 + 0.999290i \(0.488008\pi\)
\(480\) 0 0
\(481\) 183.161 317.245i 0.380793 0.659553i
\(482\) 225.057 389.811i 0.466924 0.808736i
\(483\) 0 0
\(484\) 30.5736 + 52.9550i 0.0631686 + 0.109411i
\(485\) 237.754 446.910i 0.490215 0.921464i
\(486\) 0 0
\(487\) 50.3166i 0.103319i −0.998665 0.0516597i \(-0.983549\pi\)
0.998665 0.0516597i \(-0.0164511\pi\)
\(488\) 21.2965 + 36.8866i 0.0436403 + 0.0755872i
\(489\) 0 0
\(490\) 829.675 518.181i 1.69321 1.05751i
\(491\) 684.707 + 395.316i 1.39452 + 0.805124i 0.993811 0.111084i \(-0.0354322\pi\)
0.400704 + 0.916208i \(0.368766\pi\)
\(492\) 0 0
\(493\) 126.285 72.9107i 0.256156 0.147892i
\(494\) 174.209i 0.352650i
\(495\) 0 0
\(496\) −152.853 −0.308171
\(497\) −718.352 1244.22i −1.44538 2.50347i
\(498\) 0 0
\(499\) 300.195 519.953i 0.601593 1.04199i −0.390987 0.920396i \(-0.627866\pi\)
0.992580 0.121593i \(-0.0388004\pi\)
\(500\) −228.318 101.837i −0.456636 0.203674i
\(501\) 0 0
\(502\) 104.767 60.4871i 0.208699 0.120492i
\(503\) −433.368 −0.861566 −0.430783 0.902456i \(-0.641763\pi\)
−0.430783 + 0.902456i \(0.641763\pi\)
\(504\) 0 0
\(505\) −35.7645 + 67.2270i −0.0708208 + 0.133123i
\(506\) −524.716 + 302.945i −1.03699 + 0.598705i
\(507\) 0 0
\(508\) 275.769 + 159.215i 0.542852 + 0.313416i
\(509\) 832.870 + 480.857i 1.63629 + 0.944710i 0.982096 + 0.188380i \(0.0603235\pi\)
0.654190 + 0.756331i \(0.273010\pi\)
\(510\) 0 0
\(511\) 14.4558 + 25.0383i 0.0282893 + 0.0489985i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −302.963 −0.589423
\(515\) −385.230 + 13.3664i −0.748020 + 0.0259542i
\(516\) 0 0
\(517\) −428.627 247.468i −0.829065 0.478661i
\(518\) −208.451 + 361.047i −0.402415 + 0.697003i
\(519\) 0 0
\(520\) 240.388 8.34077i 0.462284 0.0160399i
\(521\) 5.90542i 0.0113348i −0.999984 0.00566739i \(-0.998196\pi\)
0.999984 0.00566739i \(-0.00180400\pi\)
\(522\) 0 0
\(523\) 165.846i 0.317104i −0.987351 0.158552i \(-0.949317\pi\)
0.987351 0.158552i \(-0.0506826\pi\)
\(524\) 191.050 110.303i 0.364600 0.210502i
\(525\) 0 0
\(526\) 75.5736 130.897i 0.143676 0.248854i
\(527\) 131.826 228.329i 0.250144 0.433262i
\(528\) 0 0
\(529\) −340.985 590.603i −0.644584 1.11645i
\(530\) 238.919 + 127.104i 0.450790 + 0.239819i
\(531\) 0 0
\(532\) 198.262i 0.372673i
\(533\) −309.250 535.636i −0.580206 1.00495i
\(534\) 0 0
\(535\) 332.593 207.724i 0.621670 0.388269i
\(536\) −315.048 181.893i −0.587776 0.339353i
\(537\) 0 0
\(538\) 448.167 258.749i 0.833024 0.480947i
\(539\) 1703.15i 3.15984i
\(540\) 0 0
\(541\) 216.985 0.401081 0.200541 0.979685i \(-0.435730\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(542\) 65.6827 + 113.766i 0.121186 + 0.209900i
\(543\) 0 0
\(544\) −19.5147 + 33.8005i −0.0358726 + 0.0621332i
\(545\) 620.346 387.442i 1.13825 0.710903i
\(546\) 0 0
\(547\) −87.1611 + 50.3225i −0.159344 + 0.0919973i −0.577552 0.816354i \(-0.695992\pi\)
0.418208 + 0.908351i \(0.362658\pi\)
\(548\) 435.838 0.795324
\(549\) 0 0
\(550\) 360.971 243.243i 0.656310 0.442260i
\(551\) −132.566 + 76.5369i −0.240591 + 0.138906i
\(552\) 0 0
\(553\) −522.682 301.771i −0.945175 0.545697i
\(554\) −276.960 159.903i −0.499928 0.288634i
\(555\) 0 0
\(556\) 106.250 + 184.030i 0.191097 + 0.330989i
\(557\) 116.662 0.209447 0.104723 0.994501i \(-0.466604\pi\)
0.104723 + 0.994501i \(0.466604\pi\)
\(558\) 0 0
\(559\) 106.118 0.189835
\(560\) −273.578 + 9.49239i −0.488533 + 0.0169507i
\(561\) 0 0
\(562\) 77.6553 + 44.8343i 0.138177 + 0.0797763i
\(563\) −266.953 + 462.377i −0.474162 + 0.821273i −0.999562 0.0295822i \(-0.990582\pi\)
0.525400 + 0.850855i \(0.323916\pi\)
\(564\) 0 0
\(565\) −9.43653 271.968i −0.0167018 0.481360i
\(566\) 513.510i 0.907262i
\(567\) 0 0
\(568\) 296.893i 0.522698i
\(569\) 97.5590 56.3257i 0.171457 0.0989907i −0.411816 0.911267i \(-0.635105\pi\)
0.583273 + 0.812276i \(0.301772\pi\)
\(570\) 0 0
\(571\) 430.768 746.111i 0.754409 1.30668i −0.191258 0.981540i \(-0.561257\pi\)
0.945668 0.325135i \(-0.105410\pi\)
\(572\) −209.397 + 362.686i −0.366079 + 0.634067i
\(573\) 0 0
\(574\) 351.948 + 609.592i 0.613150 + 1.06201i
\(575\) 486.161 + 721.459i 0.845498 + 1.25471i
\(576\) 0 0
\(577\) 37.3256i 0.0646891i −0.999477 0.0323446i \(-0.989703\pi\)
0.999477 0.0323446i \(-0.0102974\pi\)
\(578\) 170.693 + 295.650i 0.295317 + 0.511505i
\(579\) 0 0
\(580\) −111.959 179.261i −0.193033 0.309070i
\(581\) −652.227 376.564i −1.12259 0.648130i
\(582\) 0 0
\(583\) −408.060 + 235.594i −0.699932 + 0.404106i
\(584\) 5.97455i 0.0102304i
\(585\) 0 0
\(586\) −321.640 −0.548873
\(587\) 269.051 + 466.011i 0.458350 + 0.793885i 0.998874 0.0474434i \(-0.0151074\pi\)
−0.540524 + 0.841328i \(0.681774\pi\)
\(588\) 0 0
\(589\) −138.382 + 239.685i −0.234944 + 0.406936i
\(590\) −155.941 249.681i −0.264306 0.423188i
\(591\) 0 0
\(592\) 74.6098 43.0760i 0.126030 0.0727635i
\(593\) −884.169 −1.49101 −0.745505 0.666500i \(-0.767792\pi\)
−0.745505 + 0.666500i \(0.767792\pi\)
\(594\) 0 0
\(595\) 221.765 416.854i 0.372713 0.700595i
\(596\) 24.5244 14.1592i 0.0411484 0.0237570i
\(597\) 0 0
\(598\) −724.888 418.514i −1.21219 0.699857i
\(599\) −38.7750 22.3868i −0.0647330 0.0373736i 0.467284 0.884107i \(-0.345232\pi\)
−0.532017 + 0.846734i \(0.678566\pi\)
\(600\) 0 0
\(601\) −197.287 341.711i −0.328264 0.568570i 0.653903 0.756578i \(-0.273130\pi\)
−0.982168 + 0.188008i \(0.939797\pi\)
\(602\) −120.770 −0.200614
\(603\) 0 0
\(604\) 146.676 0.242841
\(605\) 5.30089 + 152.776i 0.00876181 + 0.252522i
\(606\) 0 0
\(607\) 186.345 + 107.586i 0.306993 + 0.177243i 0.645580 0.763692i \(-0.276616\pi\)
−0.338587 + 0.940935i \(0.609949\pi\)
\(608\) 20.4853 35.4815i 0.0336929 0.0583578i
\(609\) 0 0
\(610\) 3.69241 + 106.418i 0.00605313 + 0.174456i
\(611\) 683.747i 1.11906i
\(612\) 0 0
\(613\) 333.937i 0.544758i −0.962190 0.272379i \(-0.912189\pi\)
0.962190 0.272379i \(-0.0878105\pi\)
\(614\) −416.614 + 240.532i −0.678525 + 0.391747i
\(615\) 0 0
\(616\) 238.309 412.763i 0.386865 0.670069i
\(617\) 32.7117 56.6584i 0.0530174 0.0918288i −0.838299 0.545211i \(-0.816449\pi\)
0.891316 + 0.453382i \(0.149783\pi\)
\(618\) 0 0
\(619\) 9.96342 + 17.2571i 0.0160960 + 0.0278791i 0.873961 0.485996i \(-0.161543\pi\)
−0.857865 + 0.513875i \(0.828210\pi\)
\(620\) −337.362 179.475i −0.544133 0.289477i
\(621\) 0 0
\(622\) 546.973i 0.879379i
\(623\) 466.061 + 807.241i 0.748091 + 1.29573i
\(624\) 0 0
\(625\) −384.348 492.850i −0.614957 0.788560i
\(626\) −460.997 266.157i −0.736417 0.425171i
\(627\) 0 0
\(628\) −121.495 + 70.1452i −0.193463 + 0.111696i
\(629\) 148.601i 0.236250i
\(630\) 0 0
\(631\) −210.625 −0.333796 −0.166898 0.985974i \(-0.553375\pi\)
−0.166898 + 0.985974i \(0.553375\pi\)
\(632\) 62.3604 + 108.011i 0.0986715 + 0.170904i
\(633\) 0 0
\(634\) −251.305 + 435.273i −0.396380 + 0.686551i
\(635\) 421.706 + 675.206i 0.664103 + 1.06332i
\(636\) 0 0
\(637\) −2037.66 + 1176.44i −3.19883 + 1.84685i
\(638\) 367.986 0.576780
\(639\) 0 0
\(640\) 49.9411 + 26.5685i 0.0780330 + 0.0415132i
\(641\) 1019.97 588.881i 1.59122 0.918692i 0.598122 0.801405i \(-0.295914\pi\)
0.993098 0.117287i \(-0.0374196\pi\)
\(642\) 0 0
\(643\) −32.5995 18.8213i −0.0506990 0.0292711i 0.474436 0.880290i \(-0.342652\pi\)
−0.525135 + 0.851019i \(0.675985\pi\)
\(644\) 824.974 + 476.299i 1.28102 + 0.739595i
\(645\) 0 0
\(646\) 35.3345 + 61.2012i 0.0546974 + 0.0947387i
\(647\) −695.382 −1.07478 −0.537389 0.843334i \(-0.680589\pi\)
−0.537389 + 0.843334i \(0.680589\pi\)
\(648\) 0 0
\(649\) 512.544 0.789744
\(650\) 540.355 + 263.848i 0.831315 + 0.405919i
\(651\) 0 0
\(652\) 15.6917 + 9.05959i 0.0240670 + 0.0138951i
\(653\) 462.148 800.464i 0.707731 1.22583i −0.257966 0.966154i \(-0.583052\pi\)
0.965697 0.259672i \(-0.0836144\pi\)
\(654\) 0 0
\(655\) 551.183 19.1245i 0.841501 0.0291977i
\(656\) 145.459i 0.221736i
\(657\) 0 0
\(658\) 778.153i 1.18260i
\(659\) −58.6043 + 33.8352i −0.0889291 + 0.0513433i −0.543805 0.839212i \(-0.683017\pi\)
0.454876 + 0.890555i \(0.349684\pi\)
\(660\) 0 0
\(661\) −516.434 + 894.489i −0.781291 + 1.35324i 0.149898 + 0.988701i \(0.452105\pi\)
−0.931190 + 0.364535i \(0.881228\pi\)
\(662\) 314.090 544.021i 0.474457 0.821783i
\(663\) 0 0
\(664\) 77.8162 + 134.782i 0.117193 + 0.202984i
\(665\) −232.794 + 437.586i −0.350066 + 0.658024i
\(666\) 0 0
\(667\) 735.480i 1.10267i
\(668\) 63.8528 + 110.596i 0.0955880 + 0.165563i
\(669\) 0 0
\(670\) −481.771 771.377i −0.719061 1.15131i
\(671\) −160.559 92.6988i −0.239283 0.138150i
\(672\) 0 0
\(673\) −8.80797 + 5.08528i −0.0130876 + 0.00755614i −0.506530 0.862223i \(-0.669072\pi\)
0.493442 + 0.869779i \(0.335739\pi\)
\(674\) 575.707i 0.854164i
\(675\) 0 0
\(676\) −240.558 −0.355856
\(677\) −288.468 499.641i −0.426098 0.738023i 0.570425 0.821350i \(-0.306779\pi\)
−0.996522 + 0.0833273i \(0.973445\pi\)
\(678\) 0 0
\(679\) 692.867 1200.08i 1.02042 1.76742i
\(680\) −82.7586 + 51.6876i −0.121704 + 0.0760112i
\(681\) 0 0
\(682\) 576.197 332.667i 0.844863 0.487782i
\(683\) −526.009 −0.770145 −0.385073 0.922886i \(-0.625824\pi\)
−0.385073 + 0.922886i \(0.625824\pi\)
\(684\) 0 0
\(685\) 961.940 + 511.748i 1.40429 + 0.747078i
\(686\) 1497.60 864.639i 2.18309 1.26041i
\(687\) 0 0
\(688\) 21.6132 + 12.4784i 0.0314146 + 0.0181372i
\(689\) −563.730 325.470i −0.818186 0.472380i
\(690\) 0 0
\(691\) −211.452 366.245i −0.306008 0.530022i 0.671477 0.741025i \(-0.265660\pi\)
−0.977485 + 0.211003i \(0.932327\pi\)
\(692\) 55.9756 0.0808896
\(693\) 0 0
\(694\) −692.132 −0.997308
\(695\) 18.4217 + 530.929i 0.0265061 + 0.763927i
\(696\) 0 0
\(697\) 217.284 + 125.449i 0.311742 + 0.179985i
\(698\) −57.8370 + 100.177i −0.0828611 + 0.143520i
\(699\) 0 0
\(700\) −614.962 300.277i −0.878518 0.428968i
\(701\) 881.146i 1.25698i −0.777816 0.628492i \(-0.783672\pi\)
0.777816 0.628492i \(-0.216328\pi\)
\(702\) 0 0
\(703\) 155.992i 0.221895i
\(704\) −85.2967 + 49.2461i −0.121160 + 0.0699518i
\(705\) 0 0
\(706\) 177.757 307.885i 0.251781 0.436097i
\(707\) −104.225 + 180.524i −0.147419 + 0.255338i
\(708\) 0 0
\(709\) −50.7136 87.8386i −0.0715284 0.123891i 0.828043 0.560665i \(-0.189454\pi\)
−0.899571 + 0.436774i \(0.856121\pi\)
\(710\) −348.603 + 655.274i −0.490990 + 0.922921i
\(711\) 0 0
\(712\) 192.621i 0.270536i
\(713\) 664.890 + 1151.62i 0.932525 + 1.61518i
\(714\) 0 0
\(715\) −888.017 + 554.619i −1.24198 + 0.775691i
\(716\) 36.4873 + 21.0660i 0.0509599 + 0.0294217i
\(717\) 0 0
\(718\) −635.030 + 366.635i −0.884443 + 0.510634i
\(719\) 36.2956i 0.0504807i −0.999681 0.0252404i \(-0.991965\pi\)
0.999681 0.0252404i \(-0.00803511\pi\)
\(720\) 0 0
\(721\) −1055.18 −1.46349
\(722\) 218.174 + 377.888i 0.302180 + 0.523390i
\(723\) 0 0
\(724\) −53.6030 + 92.8432i −0.0740373 + 0.128236i
\(725\) −36.6223 527.107i −0.0505135 0.727044i
\(726\) 0 0
\(727\) 457.049 263.878i 0.628679 0.362968i −0.151561 0.988448i \(-0.548430\pi\)
0.780240 + 0.625480i \(0.215097\pi\)
\(728\) 658.441 0.904452
\(729\) 0 0
\(730\) 7.01515 13.1865i 0.00960980 0.0180637i
\(731\) −37.2801 + 21.5237i −0.0509988 + 0.0294442i
\(732\) 0 0
\(733\) 1130.97 + 652.966i 1.54293 + 0.890813i 0.998652 + 0.0519106i \(0.0165311\pi\)
0.544282 + 0.838902i \(0.316802\pi\)
\(734\) −418.842 241.819i −0.570630 0.329453i
\(735\) 0 0
\(736\) −98.4264 170.480i −0.133732 0.231630i
\(737\) 1583.48 2.14855
\(738\) 0 0
\(739\) 754.875 1.02148 0.510741 0.859735i \(-0.329371\pi\)
0.510741 + 0.859735i \(0.329371\pi\)
\(740\) 215.251 7.46858i 0.290879 0.0100927i
\(741\) 0 0
\(742\) 641.565 + 370.408i 0.864643 + 0.499202i
\(743\) −656.294 + 1136.73i −0.883302 + 1.52992i −0.0356548 + 0.999364i \(0.511352\pi\)
−0.847647 + 0.530560i \(0.821982\pi\)
\(744\) 0 0
\(745\) 70.7534 2.45494i 0.0949710 0.00329522i
\(746\) 155.992i 0.209105i
\(747\) 0 0
\(748\) 169.887i 0.227121i
\(749\) 929.621 536.717i 1.24115 0.716578i
\(750\) 0 0
\(751\) −616.216 + 1067.32i −0.820528 + 1.42120i 0.0847620 + 0.996401i \(0.472987\pi\)
−0.905290 + 0.424795i \(0.860346\pi\)
\(752\) 80.4020 139.260i 0.106918 0.185187i
\(753\) 0 0
\(754\) 254.184 + 440.259i 0.337114 + 0.583898i
\(755\) 323.730 + 172.223i 0.428781 + 0.228110i
\(756\) 0 0
\(757\) 401.164i 0.529939i −0.964257 0.264970i \(-0.914638\pi\)
0.964257 0.264970i \(-0.0853619\pi\)
\(758\) −229.347 397.240i −0.302568 0.524064i
\(759\) 0 0
\(760\) 86.8746 54.2583i 0.114309 0.0713925i
\(761\) 454.776 + 262.565i 0.597603 + 0.345027i 0.768098 0.640332i \(-0.221203\pi\)
−0.170495 + 0.985359i \(0.554537\pi\)
\(762\) 0 0
\(763\) 1733.91 1001.07i 2.27249 1.31202i
\(764\) 446.047i 0.583831i
\(765\) 0 0
\(766\) 809.609 1.05693
\(767\) 354.037 + 613.209i 0.461586 + 0.799491i
\(768\) 0 0
\(769\) 271.375 470.035i 0.352894 0.611229i −0.633862 0.773446i \(-0.718531\pi\)
0.986755 + 0.162217i \(0.0518645\pi\)
\(770\) 1010.63 631.196i 1.31250 0.819735i
\(771\) 0 0
\(772\) 305.228 176.224i 0.395373 0.228269i
\(773\) −522.640 −0.676119 −0.338059 0.941125i \(-0.609770\pi\)
−0.338059 + 0.941125i \(0.609770\pi\)
\(774\) 0 0
\(775\) −533.860 792.243i −0.688852 1.02225i
\(776\) −247.995 + 143.180i −0.319581 + 0.184510i
\(777\) 0 0
\(778\) 883.857 + 510.295i 1.13606 + 0.655906i
\(779\) −228.091 131.688i −0.292800 0.169048i
\(780\) 0 0
\(781\) −646.154 1119.17i