Defining parameters
Level: | \( N \) | = | \( 810 = 2 \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(104976\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(810))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 35856 | 8448 | 27408 |
Cusp forms | 34128 | 8448 | 25680 |
Eisenstein series | 1728 | 0 | 1728 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(810))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
810.3.b | \(\chi_{810}(809, \cdot)\) | 810.3.b.a | 8 | 1 |
810.3.b.b | 16 | |||
810.3.b.c | 24 | |||
810.3.d | \(\chi_{810}(161, \cdot)\) | 810.3.d.a | 8 | 1 |
810.3.d.b | 8 | |||
810.3.d.c | 16 | |||
810.3.g | \(\chi_{810}(163, \cdot)\) | 810.3.g.a | 2 | 2 |
810.3.g.b | 2 | |||
810.3.g.c | 2 | |||
810.3.g.d | 2 | |||
810.3.g.e | 8 | |||
810.3.g.f | 8 | |||
810.3.g.g | 12 | |||
810.3.g.h | 12 | |||
810.3.g.i | 12 | |||
810.3.g.j | 12 | |||
810.3.g.k | 12 | |||
810.3.g.l | 12 | |||
810.3.h | \(\chi_{810}(431, \cdot)\) | 810.3.h.a | 8 | 2 |
810.3.h.b | 8 | |||
810.3.h.c | 16 | |||
810.3.h.d | 16 | |||
810.3.h.e | 16 | |||
810.3.j | \(\chi_{810}(269, \cdot)\) | 810.3.j.a | 8 | 2 |
810.3.j.b | 8 | |||
810.3.j.c | 8 | |||
810.3.j.d | 8 | |||
810.3.j.e | 8 | |||
810.3.j.f | 8 | |||
810.3.j.g | 24 | |||
810.3.j.h | 24 | |||
810.3.l | \(\chi_{810}(217, \cdot)\) | n/a | 192 | 4 |
810.3.n | \(\chi_{810}(89, \cdot)\) | n/a | 216 | 6 |
810.3.o | \(\chi_{810}(71, \cdot)\) | n/a | 144 | 6 |
810.3.r | \(\chi_{810}(37, \cdot)\) | n/a | 432 | 12 |
810.3.t | \(\chi_{810}(29, \cdot)\) | n/a | 1944 | 18 |
810.3.u | \(\chi_{810}(11, \cdot)\) | n/a | 1296 | 18 |
810.3.x | \(\chi_{810}(7, \cdot)\) | n/a | 3888 | 36 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(810))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(810)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(405))\)\(^{\oplus 2}\)