Properties

Label 810.2.i.b.379.2
Level $810$
Weight $2$
Character 810.379
Analytic conductor $6.468$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 379.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 810.379
Dual form 810.2.i.b.109.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-1.86603 - 1.23205i) q^{5} +(1.73205 + 1.00000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-1.86603 - 1.23205i) q^{5} +(1.73205 + 1.00000i) q^{7} +1.00000i q^{8} +(-1.00000 - 2.00000i) q^{10} +(1.00000 - 1.73205i) q^{11} +(5.19615 - 3.00000i) q^{13} +(1.00000 + 1.73205i) q^{14} +(-0.500000 + 0.866025i) q^{16} +2.00000i q^{17} +(0.133975 - 2.23205i) q^{20} +(1.73205 - 1.00000i) q^{22} +(3.46410 - 2.00000i) q^{23} +(1.96410 + 4.59808i) q^{25} +6.00000 q^{26} +2.00000i q^{28} +(4.00000 + 6.92820i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-1.00000 + 1.73205i) q^{34} +(-2.00000 - 4.00000i) q^{35} -2.00000i q^{37} +(1.23205 - 1.86603i) q^{40} +(1.00000 + 1.73205i) q^{41} +(3.46410 + 2.00000i) q^{43} +2.00000 q^{44} +4.00000 q^{46} +(6.92820 + 4.00000i) q^{47} +(-1.50000 - 2.59808i) q^{49} +(-0.598076 + 4.96410i) q^{50} +(5.19615 + 3.00000i) q^{52} -6.00000i q^{53} +(-4.00000 + 2.00000i) q^{55} +(-1.00000 + 1.73205i) q^{56} +(-5.00000 - 8.66025i) q^{59} +(-1.00000 + 1.73205i) q^{61} +8.00000i q^{62} -1.00000 q^{64} +(-13.3923 - 0.803848i) q^{65} +(6.92820 - 4.00000i) q^{67} +(-1.73205 + 1.00000i) q^{68} +(0.267949 - 4.46410i) q^{70} -12.0000 q^{71} -4.00000i q^{73} +(1.00000 - 1.73205i) q^{74} +(3.46410 - 2.00000i) q^{77} +(2.00000 - 1.00000i) q^{80} +2.00000i q^{82} +(-3.46410 - 2.00000i) q^{83} +(2.46410 - 3.73205i) q^{85} +(2.00000 + 3.46410i) q^{86} +(1.73205 + 1.00000i) q^{88} -10.0000 q^{89} +12.0000 q^{91} +(3.46410 + 2.00000i) q^{92} +(4.00000 + 6.92820i) q^{94} +(-6.92820 - 4.00000i) q^{97} -3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 4q^{5} + O(q^{10}) \) \( 4q + 2q^{4} - 4q^{5} - 4q^{10} + 4q^{11} + 4q^{14} - 2q^{16} + 4q^{20} - 6q^{25} + 24q^{26} + 16q^{31} - 4q^{34} - 8q^{35} - 2q^{40} + 4q^{41} + 8q^{44} + 16q^{46} - 6q^{49} + 8q^{50} - 16q^{55} - 4q^{56} - 20q^{59} - 4q^{61} - 4q^{64} - 12q^{65} + 8q^{70} - 48q^{71} + 4q^{74} + 8q^{80} - 4q^{85} + 8q^{86} - 40q^{89} + 48q^{91} + 16q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.86603 1.23205i −0.834512 0.550990i
\(6\) 0 0
\(7\) 1.73205 + 1.00000i 0.654654 + 0.377964i 0.790237 0.612801i \(-0.209957\pi\)
−0.135583 + 0.990766i \(0.543291\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.00000 2.00000i −0.316228 0.632456i
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 5.19615 3.00000i 1.44115 0.832050i 0.443227 0.896410i \(-0.353834\pi\)
0.997927 + 0.0643593i \(0.0205004\pi\)
\(14\) 1.00000 + 1.73205i 0.267261 + 0.462910i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0.133975 2.23205i 0.0299576 0.499102i
\(21\) 0 0
\(22\) 1.73205 1.00000i 0.369274 0.213201i
\(23\) 3.46410 2.00000i 0.722315 0.417029i −0.0932891 0.995639i \(-0.529738\pi\)
0.815604 + 0.578610i \(0.196405\pi\)
\(24\) 0 0
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 2.00000i 0.377964i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −1.00000 + 1.73205i −0.171499 + 0.297044i
\(35\) −2.00000 4.00000i −0.338062 0.676123i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.23205 1.86603i 0.194804 0.295045i
\(41\) 1.00000 + 1.73205i 0.156174 + 0.270501i 0.933486 0.358614i \(-0.116751\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(42\) 0 0
\(43\) 3.46410 + 2.00000i 0.528271 + 0.304997i 0.740312 0.672264i \(-0.234678\pi\)
−0.212041 + 0.977261i \(0.568011\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 6.92820 + 4.00000i 1.01058 + 0.583460i 0.911362 0.411606i \(-0.135032\pi\)
0.0992202 + 0.995066i \(0.468365\pi\)
\(48\) 0 0
\(49\) −1.50000 2.59808i −0.214286 0.371154i
\(50\) −0.598076 + 4.96410i −0.0845807 + 0.702030i
\(51\) 0 0
\(52\) 5.19615 + 3.00000i 0.720577 + 0.416025i
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) −4.00000 + 2.00000i −0.539360 + 0.269680i
\(56\) −1.00000 + 1.73205i −0.133631 + 0.231455i
\(57\) 0 0
\(58\) 0 0
\(59\) −5.00000 8.66025i −0.650945 1.12747i −0.982894 0.184172i \(-0.941040\pi\)
0.331949 0.943297i \(-0.392294\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −13.3923 0.803848i −1.66111 0.0997050i
\(66\) 0 0
\(67\) 6.92820 4.00000i 0.846415 0.488678i −0.0130248 0.999915i \(-0.504146\pi\)
0.859440 + 0.511237i \(0.170813\pi\)
\(68\) −1.73205 + 1.00000i −0.210042 + 0.121268i
\(69\) 0 0
\(70\) 0.267949 4.46410i 0.0320261 0.533562i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) 0 0
\(76\) 0 0
\(77\) 3.46410 2.00000i 0.394771 0.227921i
\(78\) 0 0
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) 2.00000 1.00000i 0.223607 0.111803i
\(81\) 0 0
\(82\) 2.00000i 0.220863i
\(83\) −3.46410 2.00000i −0.380235 0.219529i 0.297686 0.954664i \(-0.403785\pi\)
−0.677920 + 0.735135i \(0.737119\pi\)
\(84\) 0 0
\(85\) 2.46410 3.73205i 0.267269 0.404798i
\(86\) 2.00000 + 3.46410i 0.215666 + 0.373544i
\(87\) 0 0
\(88\) 1.73205 + 1.00000i 0.184637 + 0.106600i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 3.46410 + 2.00000i 0.361158 + 0.208514i
\(93\) 0 0
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) 0 0
\(96\) 0 0
\(97\) −6.92820 4.00000i −0.703452 0.406138i 0.105180 0.994453i \(-0.466458\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) −4.00000 + 6.92820i −0.398015 + 0.689382i −0.993481 0.113998i \(-0.963634\pi\)
0.595466 + 0.803380i \(0.296967\pi\)
\(102\) 0 0
\(103\) −12.1244 + 7.00000i −1.19465 + 0.689730i −0.959357 0.282194i \(-0.908938\pi\)
−0.235291 + 0.971925i \(0.575604\pi\)
\(104\) 3.00000 + 5.19615i 0.294174 + 0.509525i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −4.46410 0.267949i −0.425635 0.0255480i
\(111\) 0 0
\(112\) −1.73205 + 1.00000i −0.163663 + 0.0944911i
\(113\) −5.19615 + 3.00000i −0.488813 + 0.282216i −0.724082 0.689714i \(-0.757736\pi\)
0.235269 + 0.971930i \(0.424403\pi\)
\(114\) 0 0
\(115\) −8.92820 0.535898i −0.832559 0.0499728i
\(116\) 0 0
\(117\) 0 0
\(118\) 10.0000i 0.920575i
\(119\) −2.00000 + 3.46410i −0.183340 + 0.317554i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −1.73205 + 1.00000i −0.156813 + 0.0905357i
\(123\) 0 0
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −11.1962 7.39230i −0.981968 0.648348i
\(131\) −9.00000 15.5885i −0.786334 1.36197i −0.928199 0.372084i \(-0.878643\pi\)
0.141865 0.989886i \(-0.454690\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 15.5885 + 9.00000i 1.33181 + 0.768922i 0.985577 0.169226i \(-0.0541268\pi\)
0.346235 + 0.938148i \(0.387460\pi\)
\(138\) 0 0
\(139\) −10.0000 17.3205i −0.848189 1.46911i −0.882823 0.469706i \(-0.844360\pi\)
0.0346338 0.999400i \(-0.488974\pi\)
\(140\) 2.46410 3.73205i 0.208255 0.315416i
\(141\) 0 0
\(142\) −10.3923 6.00000i −0.872103 0.503509i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 2.00000 3.46410i 0.165521 0.286691i
\(147\) 0 0
\(148\) 1.73205 1.00000i 0.142374 0.0821995i
\(149\) 10.0000 + 17.3205i 0.819232 + 1.41895i 0.906249 + 0.422744i \(0.138933\pi\)
−0.0870170 + 0.996207i \(0.527733\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 1.07180 17.8564i 0.0860888 1.43426i
\(156\) 0 0
\(157\) −19.0526 + 11.0000i −1.52056 + 0.877896i −0.520854 + 0.853646i \(0.674386\pi\)
−0.999706 + 0.0242497i \(0.992280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.23205 + 0.133975i 0.176459 + 0.0105916i
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) −1.00000 + 1.73205i −0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −2.00000 3.46410i −0.155230 0.268866i
\(167\) 10.3923 6.00000i 0.804181 0.464294i −0.0407502 0.999169i \(-0.512975\pi\)
0.844931 + 0.534875i \(0.179641\pi\)
\(168\) 0 0
\(169\) 11.5000 19.9186i 0.884615 1.53220i
\(170\) 4.00000 2.00000i 0.306786 0.153393i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) −12.1244 7.00000i −0.921798 0.532200i −0.0375896 0.999293i \(-0.511968\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(174\) 0 0
\(175\) −1.19615 + 9.92820i −0.0904206 + 0.750502i
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −8.66025 5.00000i −0.649113 0.374766i
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 10.3923 + 6.00000i 0.770329 + 0.444750i
\(183\) 0 0
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) −2.46410 + 3.73205i −0.181164 + 0.274386i
\(186\) 0 0
\(187\) 3.46410 + 2.00000i 0.253320 + 0.146254i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) −3.46410 + 2.00000i −0.249351 + 0.143963i −0.619467 0.785022i \(-0.712651\pi\)
0.370116 + 0.928986i \(0.379318\pi\)
\(194\) −4.00000 6.92820i −0.287183 0.497416i
\(195\) 0 0
\(196\) 1.50000 2.59808i 0.107143 0.185577i
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −4.59808 + 1.96410i −0.325133 + 0.138883i
\(201\) 0 0
\(202\) −6.92820 + 4.00000i −0.487467 + 0.281439i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.267949 4.46410i 0.0187144 0.311786i
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 0 0
\(210\) 0 0
\(211\) −6.00000 10.3923i −0.413057 0.715436i 0.582165 0.813070i \(-0.302206\pi\)
−0.995222 + 0.0976347i \(0.968872\pi\)
\(212\) 5.19615 3.00000i 0.356873 0.206041i
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) −4.00000 8.00000i −0.272798 0.545595i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) −8.66025 5.00000i −0.586546 0.338643i
\(219\) 0 0
\(220\) −3.73205 2.46410i −0.251615 0.166130i
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) −22.5167 13.0000i −1.50783 0.870544i −0.999959 0.00910984i \(-0.997100\pi\)
−0.507869 0.861435i \(-0.669566\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 24.2487 + 14.0000i 1.60944 + 0.929213i 0.989494 + 0.144571i \(0.0461801\pi\)
0.619949 + 0.784642i \(0.287153\pi\)
\(228\) 0 0
\(229\) −5.00000 8.66025i −0.330409 0.572286i 0.652183 0.758062i \(-0.273853\pi\)
−0.982592 + 0.185776i \(0.940520\pi\)
\(230\) −7.46410 4.92820i −0.492168 0.324956i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) −8.00000 16.0000i −0.521862 1.04372i
\(236\) 5.00000 8.66025i 0.325472 0.563735i
\(237\) 0 0
\(238\) −3.46410 + 2.00000i −0.224544 + 0.129641i
\(239\) −10.0000 17.3205i −0.646846 1.12037i −0.983872 0.178875i \(-0.942754\pi\)
0.337026 0.941495i \(-0.390579\pi\)
\(240\) 0 0
\(241\) −11.0000 + 19.0526i −0.708572 + 1.22728i 0.256814 + 0.966461i \(0.417327\pi\)
−0.965387 + 0.260822i \(0.916006\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −0.401924 + 6.69615i −0.0256780 + 0.427801i
\(246\) 0 0
\(247\) 0 0
\(248\) −6.92820 + 4.00000i −0.439941 + 0.254000i
\(249\) 0 0
\(250\) 7.23205 8.52628i 0.457395 0.539249i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 1.00000 1.73205i 0.0627456 0.108679i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −15.5885 + 9.00000i −0.972381 + 0.561405i −0.899961 0.435970i \(-0.856405\pi\)
−0.0724199 + 0.997374i \(0.523072\pi\)
\(258\) 0 0
\(259\) 2.00000 3.46410i 0.124274 0.215249i
\(260\) −6.00000 12.0000i −0.372104 0.744208i
\(261\) 0 0
\(262\) 18.0000i 1.11204i
\(263\) −3.46410 2.00000i −0.213606 0.123325i 0.389380 0.921077i \(-0.372689\pi\)
−0.602986 + 0.797752i \(0.706023\pi\)
\(264\) 0 0
\(265\) −7.39230 + 11.1962i −0.454106 + 0.687774i
\(266\) 0 0
\(267\) 0 0
\(268\) 6.92820 + 4.00000i 0.423207 + 0.244339i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −1.73205 1.00000i −0.105021 0.0606339i
\(273\) 0 0
\(274\) 9.00000 + 15.5885i 0.543710 + 0.941733i
\(275\) 9.92820 + 1.19615i 0.598693 + 0.0721307i
\(276\) 0 0
\(277\) 1.73205 + 1.00000i 0.104069 + 0.0600842i 0.551131 0.834419i \(-0.314196\pi\)
−0.447062 + 0.894503i \(0.647530\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) 4.00000 2.00000i 0.239046 0.119523i
\(281\) −9.00000 + 15.5885i −0.536895 + 0.929929i 0.462174 + 0.886789i \(0.347070\pi\)
−0.999069 + 0.0431402i \(0.986264\pi\)
\(282\) 0 0
\(283\) 13.8564 8.00000i 0.823678 0.475551i −0.0280052 0.999608i \(-0.508916\pi\)
0.851683 + 0.524057i \(0.175582\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) 6.00000 10.3923i 0.354787 0.614510i
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 3.46410 2.00000i 0.202721 0.117041i
\(293\) −5.19615 + 3.00000i −0.303562 + 0.175262i −0.644042 0.764990i \(-0.722744\pi\)
0.340480 + 0.940252i \(0.389411\pi\)
\(294\) 0 0
\(295\) −1.33975 + 22.3205i −0.0780030 + 1.29955i
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 20.0000i 1.15857i
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) 4.00000 + 6.92820i 0.230556 + 0.399335i
\(302\) 6.92820 4.00000i 0.398673 0.230174i
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 2.00000i 0.229039 0.114520i
\(306\) 0 0
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 3.46410 + 2.00000i 0.197386 + 0.113961i
\(309\) 0 0
\(310\) 9.85641 14.9282i 0.559806 0.847865i
\(311\) 6.00000 + 10.3923i 0.340229 + 0.589294i 0.984475 0.175525i \(-0.0561621\pi\)
−0.644246 + 0.764818i \(0.722829\pi\)
\(312\) 0 0
\(313\) 3.46410 + 2.00000i 0.195803 + 0.113047i 0.594696 0.803951i \(-0.297272\pi\)
−0.398894 + 0.916997i \(0.630606\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 0 0
\(317\) −1.73205 1.00000i −0.0972817 0.0561656i 0.450570 0.892741i \(-0.351221\pi\)
−0.547852 + 0.836576i \(0.684554\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.86603 + 1.23205i 0.104314 + 0.0688737i
\(321\) 0 0
\(322\) 6.92820 + 4.00000i 0.386094 + 0.222911i
\(323\) 0 0
\(324\) 0 0
\(325\) 24.0000 + 18.0000i 1.33128 + 0.998460i
\(326\) −8.00000 + 13.8564i −0.443079 + 0.767435i
\(327\) 0 0
\(328\) −1.73205 + 1.00000i −0.0956365 + 0.0552158i
\(329\) 8.00000 + 13.8564i 0.441054 + 0.763928i
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −17.8564 1.07180i −0.975600 0.0585585i
\(336\) 0 0
\(337\) 24.2487 14.0000i 1.32091 0.762629i 0.337037 0.941491i \(-0.390575\pi\)
0.983874 + 0.178863i \(0.0572418\pi\)
\(338\) 19.9186 11.5000i 1.08343 0.625518i
\(339\) 0 0
\(340\) 4.46410 + 0.267949i 0.242100 + 0.0145316i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) −2.00000 + 3.46410i −0.107833 + 0.186772i
\(345\) 0 0
\(346\) −7.00000 12.1244i −0.376322 0.651809i
\(347\) 10.3923 6.00000i 0.557888 0.322097i −0.194409 0.980921i \(-0.562279\pi\)
0.752297 + 0.658824i \(0.228946\pi\)
\(348\) 0 0
\(349\) 5.00000 8.66025i 0.267644 0.463573i −0.700609 0.713545i \(-0.747088\pi\)
0.968253 + 0.249973i \(0.0804216\pi\)
\(350\) −6.00000 + 8.00000i −0.320713 + 0.427618i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) −12.1244 7.00000i −0.645314 0.372572i 0.141344 0.989960i \(-0.454858\pi\)
−0.786659 + 0.617388i \(0.788191\pi\)
\(354\) 0 0
\(355\) 22.3923 + 14.7846i 1.18846 + 0.784686i
\(356\) −5.00000 8.66025i −0.264999 0.458993i
\(357\) 0 0
\(358\) 8.66025 + 5.00000i 0.457709 + 0.264258i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 1.73205 + 1.00000i 0.0910346 + 0.0525588i
\(363\) 0 0
\(364\) 6.00000 + 10.3923i 0.314485 + 0.544705i
\(365\) −4.92820 + 7.46410i −0.257954 + 0.390689i
\(366\) 0 0
\(367\) 1.73205 + 1.00000i 0.0904123 + 0.0521996i 0.544524 0.838745i \(-0.316710\pi\)
−0.454112 + 0.890945i \(0.650043\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) −4.00000 + 2.00000i −0.207950 + 0.103975i
\(371\) 6.00000 10.3923i 0.311504 0.539542i
\(372\) 0 0
\(373\) 5.19615 3.00000i 0.269047 0.155334i −0.359408 0.933181i \(-0.617021\pi\)
0.628454 + 0.777847i \(0.283688\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) 0 0
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.3923 6.00000i 0.531717 0.306987i
\(383\) −13.8564 + 8.00000i −0.708029 + 0.408781i −0.810331 0.585973i \(-0.800713\pi\)
0.102302 + 0.994753i \(0.467379\pi\)
\(384\) 0 0
\(385\) −8.92820 0.535898i −0.455023 0.0273119i
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) −10.0000 + 17.3205i −0.507020 + 0.878185i 0.492947 + 0.870059i \(0.335920\pi\)
−0.999967 + 0.00812520i \(0.997414\pi\)
\(390\) 0 0
\(391\) 4.00000 + 6.92820i 0.202289 + 0.350374i
\(392\) 2.59808 1.50000i 0.131223 0.0757614i
\(393\) 0 0
\(394\) −11.0000 + 19.0526i −0.554172 + 0.959854i
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000i 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.96410 0.598076i −0.248205 0.0299038i
\(401\) 11.0000 + 19.0526i 0.549314 + 0.951439i 0.998322 + 0.0579116i \(0.0184442\pi\)
−0.449008 + 0.893528i \(0.648223\pi\)
\(402\) 0 0
\(403\) 41.5692 + 24.0000i 2.07071 + 1.19553i
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) 0 0
\(407\) −3.46410 2.00000i −0.171709 0.0991363i
\(408\) 0 0
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) 2.46410 3.73205i 0.121693 0.184313i
\(411\) 0 0
\(412\) −12.1244 7.00000i −0.597324 0.344865i
\(413\) 20.0000i 0.984136i
\(414\) 0 0
\(415\) 4.00000 + 8.00000i 0.196352 + 0.392705i
\(416\) −3.00000 + 5.19615i −0.147087 + 0.254762i
\(417\) 0 0
\(418\) 0 0
\(419\) 5.00000 + 8.66025i 0.244266 + 0.423081i 0.961925 0.273314i \(-0.0881197\pi\)
−0.717659 + 0.696395i \(0.754786\pi\)
\(420\) 0 0
\(421\) −11.0000 + 19.0526i −0.536107 + 0.928565i 0.463002 + 0.886357i \(0.346772\pi\)
−0.999109 + 0.0422075i \(0.986561\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −9.19615 + 3.92820i −0.446079 + 0.190546i
\(426\) 0 0
\(427\) −3.46410 + 2.00000i −0.167640 + 0.0967868i
\(428\) −10.3923 + 6.00000i −0.502331 + 0.290021i
\(429\) 0 0
\(430\) 0.535898 8.92820i 0.0258433 0.430556i
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i −0.995370 0.0961139i \(-0.969359\pi\)
0.995370 0.0961139i \(-0.0306413\pi\)
\(434\) −8.00000 + 13.8564i −0.384012 + 0.665129i
\(435\) 0 0
\(436\) −5.00000 8.66025i −0.239457 0.414751i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) −2.00000 4.00000i −0.0953463 0.190693i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 31.1769 + 18.0000i 1.48126 + 0.855206i 0.999774 0.0212481i \(-0.00676401\pi\)
0.481486 + 0.876454i \(0.340097\pi\)
\(444\) 0 0
\(445\) 18.6603 + 12.3205i 0.884581 + 0.584048i
\(446\) −13.0000 22.5167i −0.615568 1.06619i
\(447\) 0 0
\(448\) −1.73205 1.00000i −0.0818317 0.0472456i
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) −5.19615 3.00000i −0.244406 0.141108i
\(453\) 0 0
\(454\) 14.0000 + 24.2487i 0.657053 + 1.13805i
\(455\) −22.3923 14.7846i −1.04977 0.693113i
\(456\) 0 0
\(457\) 27.7128 + 16.0000i 1.29635 + 0.748448i 0.979772 0.200118i \(-0.0641325\pi\)
0.316579 + 0.948566i \(0.397466\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 0 0
\(460\) −4.00000 8.00000i −0.186501 0.373002i
\(461\) 6.00000 10.3923i 0.279448 0.484018i −0.691800 0.722089i \(-0.743182\pi\)
0.971248 + 0.238071i \(0.0765153\pi\)
\(462\) 0 0
\(463\) 5.19615 3.00000i 0.241486 0.139422i −0.374374 0.927278i \(-0.622142\pi\)
0.615859 + 0.787856i \(0.288809\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −7.00000 + 12.1244i −0.324269 + 0.561650i
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 1.07180 17.8564i 0.0494383 0.823655i
\(471\) 0 0
\(472\) 8.66025 5.00000i 0.398621 0.230144i
\(473\) 6.92820 4.00000i 0.318559 0.183920i
\(474\) 0 0
\(475\) 0 0
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 20.0000i 0.914779i
\(479\) −10.0000 + 17.3205i −0.456912 + 0.791394i −0.998796 0.0490589i \(-0.984378\pi\)
0.541884 + 0.840453i \(0.317711\pi\)
\(480\) 0 0
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) −19.0526 + 11.0000i −0.867820 + 0.501036i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 8.00000 + 16.0000i 0.363261 + 0.726523i
\(486\) 0 0
\(487\) 18.0000i 0.815658i 0.913058 + 0.407829i \(0.133714\pi\)
−0.913058 + 0.407829i \(0.866286\pi\)
\(488\) −1.73205 1.00000i −0.0784063 0.0452679i
\(489\) 0 0
\(490\) −3.69615 + 5.59808i −0.166975 + 0.252895i
\(491\) −9.00000 15.5885i −0.406164 0.703497i 0.588292 0.808649i \(-0.299801\pi\)
−0.994456 + 0.105151i \(0.966467\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −20.7846 12.0000i −0.932317 0.538274i
\(498\) 0 0
\(499\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(500\) 10.5263 3.76795i 0.470750 0.168508i
\(501\) 0 0
\(502\) 15.5885 + 9.00000i 0.695747 + 0.401690i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 16.0000 8.00000i 0.711991 0.355995i
\(506\) 4.00000 6.92820i 0.177822 0.307996i
\(507\) 0 0
\(508\) 1.73205 1.00000i 0.0768473 0.0443678i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 4.00000 6.92820i 0.176950 0.306486i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 31.2487 + 1.87564i 1.37698 + 0.0826508i
\(516\) 0 0
\(517\) 13.8564 8.00000i 0.609404 0.351840i
\(518\) 3.46410 2.00000i 0.152204 0.0878750i
\(519\) 0 0
\(520\) 0.803848 13.3923i 0.0352510 0.587291i
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 9.00000 15.5885i 0.393167 0.680985i
\(525\) 0 0
\(526\) −2.00000 3.46410i −0.0872041 0.151042i
\(527\) −13.8564 + 8.00000i −0.603595 + 0.348485i
\(528\) 0 0
\(529\) −3.50000 + 6.06218i −0.152174 + 0.263573i
\(530\) −12.0000 + 6.00000i −0.521247 + 0.260623i
\(531\) 0 0
\(532\) 0 0
\(533\) 10.3923 + 6.00000i 0.450141 + 0.259889i
\(534\) 0 0
\(535\) 14.7846 22.3923i 0.639194 0.968104i
\(536\) 4.00000 + 6.92820i 0.172774 + 0.299253i
\(537\) 0 0
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) −6.92820 4.00000i −0.297592 0.171815i
\(543\) 0 0
\(544\) −1.00000 1.73205i −0.0428746 0.0742611i
\(545\) 18.6603 + 12.3205i 0.799317 + 0.527753i
\(546\) 0 0
\(547\) −24.2487 14.0000i −1.03680 0.598597i −0.117875 0.993028i \(-0.537608\pi\)
−0.918925 + 0.394432i \(0.870941\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 8.00000 + 6.00000i 0.341121 + 0.255841i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) 10.0000 17.3205i 0.424094 0.734553i
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 4.46410 + 0.267949i 0.188643 + 0.0113229i
\(561\) 0 0
\(562\) −15.5885 + 9.00000i −0.657559 + 0.379642i
\(563\) 38.1051 22.0000i 1.60594 0.927189i 0.615673 0.788002i \(-0.288884\pi\)
0.990266 0.139188i \(-0.0444492\pi\)
\(564\) 0 0
\(565\) 13.3923 + 0.803848i 0.563418 + 0.0338181i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 12.0000i 0.503509i
\(569\) 5.00000 8.66025i 0.209611 0.363057i −0.741981 0.670421i \(-0.766114\pi\)
0.951592 + 0.307364i \(0.0994469\pi\)
\(570\) 0 0
\(571\) 4.00000 + 6.92820i 0.167395 + 0.289936i 0.937503 0.347977i \(-0.113131\pi\)
−0.770108 + 0.637913i \(0.779798\pi\)
\(572\) 10.3923 6.00000i 0.434524 0.250873i
\(573\) 0 0
\(574\) −2.00000 + 3.46410i −0.0834784 + 0.144589i
\(575\) 16.0000 + 12.0000i 0.667246 + 0.500435i
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) 11.2583 + 6.50000i 0.468285 + 0.270364i
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 6.92820i −0.165948 0.287430i
\(582\) 0 0
\(583\) −10.3923 6.00000i −0.430405 0.248495i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −10.3923 6.00000i −0.428936 0.247647i 0.269957 0.962872i \(-0.412990\pi\)
−0.698893 + 0.715226i \(0.746324\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.3205 + 18.6603i −0.507227 + 0.768231i
\(591\) 0 0
\(592\) 1.73205 + 1.00000i 0.0711868 + 0.0410997i
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) 8.00000 4.00000i 0.327968 0.163984i
\(596\) −10.0000 + 17.3205i −0.409616 + 0.709476i
\(597\) 0 0
\(598\) 20.7846 12.0000i 0.849946 0.490716i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −1.00000 + 1.73205i −0.0407909 + 0.0706518i −0.885700 0.464258i \(-0.846321\pi\)
0.844909 + 0.534910i \(0.179654\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) 0.937822 15.6244i 0.0381279 0.635220i
\(606\) 0 0
\(607\) −19.0526 + 11.0000i −0.773320 + 0.446476i −0.834058 0.551678i \(-0.813988\pi\)
0.0607380 + 0.998154i \(0.480655\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 4.46410 + 0.267949i 0.180746 + 0.0108489i
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 26.0000i 1.05013i 0.851062 + 0.525065i \(0.175959\pi\)
−0.851062 + 0.525065i \(0.824041\pi\)
\(614\) 6.00000 10.3923i 0.242140 0.419399i
\(615\) 0 0
\(616\) 2.00000 + 3.46410i 0.0805823 + 0.139573i
\(617\) 1.73205 1.00000i 0.0697297 0.0402585i −0.464730 0.885453i \(-0.653849\pi\)
0.534460 + 0.845194i \(0.320515\pi\)
\(618\) 0 0
\(619\) 10.0000 17.3205i 0.401934 0.696170i −0.592025 0.805919i \(-0.701671\pi\)
0.993959 + 0.109749i \(0.0350048\pi\)
\(620\) 16.0000 8.00000i 0.642575 0.321288i
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) −17.3205 10.0000i −0.693932 0.400642i
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) 2.00000 + 3.46410i 0.0799361 + 0.138453i
\(627\) 0 0
\(628\) −19.0526 11.0000i −0.760280 0.438948i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.00000 1.73205i −0.0397151 0.0687885i
\(635\) −2.46410 + 3.73205i −0.0977849 + 0.148102i
\(636\) 0 0
\(637\) −15.5885 9.00000i −0.617637 0.356593i
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 + 2.00000i 0.0395285 + 0.0790569i
\(641\) 1.00000 1.73205i 0.0394976 0.0684119i −0.845601 0.533816i \(-0.820758\pi\)
0.885098 + 0.465404i \(0.154091\pi\)
\(642\) 0 0
\(643\) −20.7846 + 12.0000i −0.819665 + 0.473234i −0.850301 0.526297i \(-0.823580\pi\)
0.0306359 + 0.999531i \(0.490247\pi\)
\(644\) 4.00000 + 6.92820i 0.157622 + 0.273009i
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0000i 1.88707i −0.331266 0.943537i \(-0.607476\pi\)
0.331266 0.943537i \(-0.392524\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 11.7846 + 27.5885i 0.462230 + 1.08211i
\(651\) 0 0
\(652\) −13.8564 + 8.00000i −0.542659 + 0.313304i
\(653\) −22.5167 + 13.0000i −0.881145 + 0.508729i −0.871036 0.491220i \(-0.836551\pi\)
−0.0101092 + 0.999949i \(0.503218\pi\)
\(654\) 0 0
\(655\) −2.41154 + 40.1769i −0.0942268 + 1.56984i
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 16.0000i 0.623745i
\(659\) 25.0000 43.3013i 0.973862 1.68678i 0.290220 0.956960i \(-0.406271\pi\)
0.683641 0.729818i \(-0.260395\pi\)
\(660\) 0 0
\(661\) −1.00000 1.73205i −0.0388955 0.0673690i 0.845922 0.533306i \(-0.179051\pi\)
−0.884818 + 0.465937i \(0.845717\pi\)
\(662\) 6.92820 4.00000i 0.269272 0.155464i
\(663\) 0 0
\(664\) 2.00000 3.46410i 0.0776151 0.134433i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 10.3923 + 6.00000i 0.402090 + 0.232147i
\(669\) 0 0
\(670\) −14.9282 9.85641i −0.576727 0.380786i
\(671\) 2.00000 + 3.46410i 0.0772091 + 0.133730i
\(672\) 0 0
\(673\) −31.1769 18.0000i −1.20178 0.693849i −0.240831 0.970567i \(-0.577420\pi\)
−0.960951 + 0.276718i \(0.910753\pi\)
\(674\) 28.0000 1.07852
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −1.73205 1.00000i −0.0665681 0.0384331i 0.466347 0.884602i \(-0.345570\pi\)
−0.532915 + 0.846169i \(0.678903\pi\)
\(678\) 0 0
\(679\) −8.00000 13.8564i −0.307012 0.531760i
\(680\) 3.73205 + 2.46410i 0.143118 + 0.0944940i
\(681\) 0 0
\(682\) 13.8564 + 8.00000i 0.530589 + 0.306336i
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) −18.0000 36.0000i −0.687745 1.37549i
\(686\) 10.0000 17.3205i 0.381802 0.661300i
\(687\) 0 0
\(688\) −3.46410 + 2.00000i −0.132068 + 0.0762493i
\(689\) −18.0000 31.1769i −0.685745 1.18775i
\(690\) 0 0
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 14.0000i 0.532200i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −2.67949 + 44.6410i −0.101639 + 1.69333i
\(696\) 0 0
\(697\) −3.46410 + 2.00000i −0.131212 + 0.0757554i
\(698\) 8.66025 5.00000i 0.327795 0.189253i
\(699\) 0 0
\(700\) −9.19615 + 3.92820i −0.347582 + 0.148472i
\(701\) −32.0000 −1.20862 −0.604312 0.796748i \(-0.706552\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.00000 + 1.73205i −0.0376889 + 0.0652791i
\(705\) 0 0
\(706\) −7.00000 12.1244i −0.263448 0.456306i
\(707\) −13.8564 + 8.00000i −0.521124 + 0.300871i
\(708\) 0 0
\(709\) 15.0000 25.9808i 0.563337 0.975728i −0.433865 0.900978i \(-0.642851\pi\)
0.997202 0.0747503i \(-0.0238160\pi\)
\(710\) 12.0000 + 24.0000i 0.450352 + 0.900704i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) 27.7128 + 16.0000i 1.03785 + 0.599205i
\(714\) 0 0
\(715\) −14.7846 + 22.3923i −0.552913 + 0.837425i
\(716\) 5.00000 + 8.66025i 0.186859 + 0.323649i
\(717\) 0 0
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) −16.4545 9.50000i −0.612372 0.353553i
\(723\) 0 0
\(724\) 1.00000 + 1.73205i 0.0371647 + 0.0643712i
\(725\) 0 0
\(726\) 0 0
\(727\) −15.5885 9.00000i −0.578144 0.333792i 0.182252 0.983252i \(-0.441661\pi\)
−0.760395 + 0.649460i \(0.774995\pi\)
\(728\) 12.0000i 0.444750i
\(729\) 0 0
\(730\) −8.00000 + 4.00000i −0.296093 + 0.148047i
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 0 0
\(733\) −12.1244 + 7.00000i −0.447823 + 0.258551i −0.706910 0.707303i \(-0.749912\pi\)
0.259087 + 0.965854i \(0.416578\pi\)
\(734\) 1.00000 + 1.73205i 0.0369107 + 0.0639312i
\(735\) 0 0
\(736\) −2.00000 + 3.46410i −0.0737210 + 0.127688i
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −4.46410 0.267949i −0.164104 0.00985001i
\(741\) 0 0
\(742\) 10.3923 6.00000i 0.381514 0.220267i
\(743\) 20.7846 12.0000i 0.762513 0.440237i −0.0676840 0.997707i \(-0.521561\pi\)
0.830197 + 0.557470i \(0.188228\pi\)
\(744\) 0 0
\(745\) 2.67949 44.6410i 0.0981690 1.63552i
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) −12.0000 + 20.7846i −0.438470 + 0.759453i
\(750\) 0 0
\(751\) −16.0000 27.7128i −0.583848 1.01125i −0.995018 0.0996961i \(-0.968213\pi\)
0.411170 0.911559i \(-0.365120\pi\)
\(752\) −6.92820 + 4.00000i −0.252646 + 0.145865i
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 + 8.00000i −0.582300 + 0.291150i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) −17.3205 10.0000i −0.629109 0.363216i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) 0 0
\(763\) −17.3205 10.0000i −0.627044 0.362024i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) −51.9615 30.0000i −1.87622 1.08324i
\(768\) 0 0
\(769\) −15.0000 25.9808i −0.540914 0.936890i −0.998852 0.0479061i \(-0.984745\pi\)
0.457938 0.888984i \(-0.348588\pi\)
\(770\) −7.46410 4.92820i −0.268988 0.177600i
\(771\) 0 0
\(772\) −3.46410 2.00000i −0.124676 0.0719816i
\(773\) 54.0000i 1.94225i 0.238581 + 0.971123i \(0.423318\pi\)
−0.238581 + 0.971123i \(0.576682\pi\)
\(774\) 0 0
\(775\) −24.0000 + 32.0000i −0.862105 + 1.14947i
\(776\) 4.00000 6.92820i 0.143592 0.248708i
\(777\) 0 0
\(778\) −17.3205 + 10.0000i −0.620970 + 0.358517i
\(779\) 0 0
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 49.1051 + 2.94744i 1.75264 + 0.105199i
\(786\) 0 0
\(787\) −27.7128 + 16.0000i −0.987855 + 0.570338i −0.904632 0.426193i \(-0.859855\pi\)
−0.0832226 + 0.996531i \(0.526521\pi\)
\(788\) −19.0526 + 11.0000i −0.678719 + 0.391859i
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\)