Properties

Label 810.2.c.b.649.2
Level $810$
Weight $2$
Character 810.649
Analytic conductor $6.468$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(649,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 810.649
Dual form 810.2.c.b.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.00000 - 2.00000i) q^{5} -1.00000i q^{7} -1.00000i q^{8} +(2.00000 - 1.00000i) q^{10} -2.00000 q^{11} +6.00000i q^{13} +1.00000 q^{14} +1.00000 q^{16} -2.00000i q^{17} -6.00000 q^{19} +(1.00000 + 2.00000i) q^{20} -2.00000i q^{22} -1.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} -6.00000 q^{26} +1.00000i q^{28} -9.00000 q^{29} -2.00000 q^{31} +1.00000i q^{32} +2.00000 q^{34} +(-2.00000 + 1.00000i) q^{35} +2.00000i q^{37} -6.00000i q^{38} +(-2.00000 + 1.00000i) q^{40} -11.0000 q^{41} +4.00000i q^{43} +2.00000 q^{44} +1.00000 q^{46} -7.00000i q^{47} +6.00000 q^{49} +(-4.00000 - 3.00000i) q^{50} -6.00000i q^{52} +(2.00000 + 4.00000i) q^{55} -1.00000 q^{56} -9.00000i q^{58} +4.00000 q^{59} -7.00000 q^{61} -2.00000i q^{62} -1.00000 q^{64} +(12.0000 - 6.00000i) q^{65} -11.0000i q^{67} +2.00000i q^{68} +(-1.00000 - 2.00000i) q^{70} -6.00000 q^{71} +4.00000i q^{73} -2.00000 q^{74} +6.00000 q^{76} +2.00000i q^{77} +12.0000 q^{79} +(-1.00000 - 2.00000i) q^{80} -11.0000i q^{82} +11.0000i q^{83} +(-4.00000 + 2.00000i) q^{85} -4.00000 q^{86} +2.00000i q^{88} -1.00000 q^{89} +6.00000 q^{91} +1.00000i q^{92} +7.00000 q^{94} +(6.00000 + 12.0000i) q^{95} -8.00000i q^{97} +6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{5} + 4 q^{10} - 4 q^{11} + 2 q^{14} + 2 q^{16} - 12 q^{19} + 2 q^{20} - 6 q^{25} - 12 q^{26} - 18 q^{29} - 4 q^{31} + 4 q^{34} - 4 q^{35} - 4 q^{40} - 22 q^{41} + 4 q^{44} + 2 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
</
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 1.00000i 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 1.00000i 0.632456 0.316228i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 1.00000 + 2.00000i 0.223607 + 0.447214i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 1.00000i 0.208514i −0.994550 0.104257i \(-0.966753\pi\)
0.994550 0.104257i \(-0.0332465\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −2.00000 + 1.00000i −0.338062 + 0.169031i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 0 0
\(40\) −2.00000 + 1.00000i −0.316228 + 0.158114i
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 7.00000i 1.02105i −0.859861 0.510527i \(-0.829450\pi\)
0.859861 0.510527i \(-0.170550\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) −4.00000 3.00000i −0.565685 0.424264i
\(51\) 0 0
\(52\) 6.00000i 0.832050i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 2.00000 + 4.00000i 0.269680 + 0.539360i
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 9.00000i 1.18176i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 12.0000 6.00000i 1.48842 0.744208i
\(66\) 0 0
\(67\) 11.0000i 1.34386i −0.740613 0.671932i \(-0.765465\pi\)
0.740613 0.671932i \(-0.234535\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 0 0
\(70\) −1.00000 2.00000i −0.119523 0.239046i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) −1.00000 2.00000i −0.111803 0.223607i
\(81\) 0 0
\(82\) 11.0000i 1.21475i
\(83\) 11.0000i 1.20741i 0.797209 + 0.603703i \(0.206309\pi\)
−0.797209 + 0.603703i \(0.793691\pi\)
\(84\) 0 0
\(85\) −4.00000 + 2.00000i −0.433861 + 0.216930i
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 1.00000i 0.104257i
\(93\) 0 0
\(94\) 7.00000 0.721995
\(95\) 6.00000 + 12.0000i 0.615587 + 1.23117i
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 0 0
\(100\) 3.00000 4.00000i 0.300000 0.400000i
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) −4.00000 + 2.00000i −0.381385 + 0.190693i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 12.0000i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 0 0
\(115\) −2.00000 + 1.00000i −0.186501 + 0.0932505i
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 7.00000i 0.633750i
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 19.0000i 1.68598i −0.537931 0.842989i \(-0.680794\pi\)
0.537931 0.842989i \(-0.319206\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 6.00000 + 12.0000i 0.526235 + 1.05247i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 6.00000i 0.520266i
\(134\) 11.0000 0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 2.00000 1.00000i 0.169031 0.0845154i
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 9.00000 + 18.0000i 0.747409 + 1.49482i
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 2.00000 + 4.00000i 0.160644 + 0.321288i
\(156\) 0 0
\(157\) 4.00000i 0.319235i 0.987179 + 0.159617i \(0.0510260\pi\)
−0.987179 + 0.159617i \(0.948974\pi\)
\(158\) 12.0000i 0.954669i
\(159\) 0 0
\(160\) 2.00000 1.00000i 0.158114 0.0790569i
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 11.0000 0.858956
\(165\) 0 0
\(166\) −11.0000 −0.853766
\(167\) 3.00000i 0.232147i −0.993241 0.116073i \(-0.962969\pi\)
0.993241 0.116073i \(-0.0370308\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) −2.00000 4.00000i −0.153393 0.306786i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 4.00000 + 3.00000i 0.302372 + 0.226779i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 1.00000i 0.0749532i
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 6.00000i 0.444750i
\(183\) 0 0
\(184\) −1.00000 −0.0737210
\(185\) 4.00000 2.00000i 0.294086 0.147043i
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 7.00000i 0.510527i
\(189\) 0 0
\(190\) −12.0000 + 6.00000i −0.870572 + 0.435286i
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i 0.932988 + 0.359908i \(0.117192\pi\)
−0.932988 + 0.359908i \(0.882808\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 4.00000 + 3.00000i 0.282843 + 0.212132i
\(201\) 0 0
\(202\) 2.00000i 0.140720i
\(203\) 9.00000i 0.631676i
\(204\) 0 0
\(205\) 11.0000 + 22.0000i 0.768273 + 1.53655i
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 18.0000 1.23917 0.619586 0.784929i \(-0.287301\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −3.00000 −0.205076
\(215\) 8.00000 4.00000i 0.545595 0.272798i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 7.00000i 0.474100i
\(219\) 0 0
\(220\) −2.00000 4.00000i −0.134840 0.269680i
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 23.0000i 1.54019i −0.637927 0.770097i \(-0.720208\pi\)
0.637927 0.770097i \(-0.279792\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 8.00000i 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) 7.00000 0.462573 0.231287 0.972886i \(-0.425707\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) −1.00000 2.00000i −0.0659380 0.131876i
\(231\) 0 0
\(232\) 9.00000i 0.590879i
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) −14.0000 + 7.00000i −0.913259 + 0.456630i
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 2.00000i 0.129641i
\(239\) −28.0000 −1.81117 −0.905585 0.424165i \(-0.860568\pi\)
−0.905585 + 0.424165i \(0.860568\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 7.00000 0.448129
\(245\) −6.00000 12.0000i −0.383326 0.766652i
\(246\) 0 0
\(247\) 36.0000i 2.29063i
\(248\) 2.00000i 0.127000i
\(249\) 0 0
\(250\) −2.00000 + 11.0000i −0.126491 + 0.695701i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 19.0000 1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) −12.0000 + 6.00000i −0.744208 + 0.372104i
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) 16.0000i 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) 11.0000i 0.671932i
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) 6.00000 8.00000i 0.361814 0.482418i
\(276\) 0 0
\(277\) 22.0000i 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 1.00000 + 2.00000i 0.0597614 + 0.119523i
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) 1.00000i 0.0594438i −0.999558 0.0297219i \(-0.990538\pi\)
0.999558 0.0297219i \(-0.00946217\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 11.0000i 0.649309i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) −18.0000 + 9.00000i −1.05700 + 0.528498i
\(291\) 0 0
\(292\) 4.00000i 0.234082i
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) −4.00000 8.00000i −0.232889 0.465778i
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 1.00000i 0.0579284i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 10.0000i 0.575435i
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) 7.00000 + 14.0000i 0.400819 + 0.801638i
\(306\) 0 0
\(307\) 9.00000i 0.513657i −0.966457 0.256829i \(-0.917322\pi\)
0.966457 0.256829i \(-0.0826776\pi\)
\(308\) 2.00000i 0.113961i
\(309\) 0 0
\(310\) −4.00000 + 2.00000i −0.227185 + 0.113592i
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i 0.783210 + 0.621757i \(0.213581\pi\)
−0.783210 + 0.621757i \(0.786419\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 2.00000i 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 1.00000 + 2.00000i 0.0559017 + 0.111803i
\(321\) 0 0
\(322\) 1.00000i 0.0557278i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −24.0000 18.0000i −1.33128 0.998460i
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 11.0000i 0.607373i
\(329\) −7.00000 −0.385922
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 11.0000i 0.603703i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) −22.0000 + 11.0000i −1.20199 + 0.600994i
\(336\) 0 0
\(337\) 8.00000i 0.435788i 0.975972 + 0.217894i \(0.0699187\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(338\) 23.0000i 1.25104i
\(339\) 0 0
\(340\) 4.00000 2.00000i 0.216930 0.108465i
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −4.00000 −0.215041
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) −3.00000 + 4.00000i −0.160357 + 0.213809i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 16.0000i 0.851594i 0.904819 + 0.425797i \(0.140006\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 6.00000 + 12.0000i 0.318447 + 0.636894i
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) 2.00000i 0.105703i
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 13.0000i 0.683265i
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 8.00000 4.00000i 0.418739 0.209370i
\(366\) 0 0
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 2.00000 + 4.00000i 0.103975 + 0.207950i
\(371\) 0 0
\(372\) 0 0
\(373\) 12.0000i 0.621336i −0.950518 0.310668i \(-0.899447\pi\)
0.950518 0.310668i \(-0.100553\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −7.00000 −0.360997
\(377\) 54.0000i 2.78114i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −6.00000 12.0000i −0.307794 0.615587i
\(381\) 0 0
\(382\) 6.00000i 0.306987i
\(383\) 32.0000i 1.63512i −0.575841 0.817562i \(-0.695325\pi\)
0.575841 0.817562i \(-0.304675\pi\)
\(384\) 0 0
\(385\) 4.00000 2.00000i 0.203859 0.101929i
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) −19.0000 −0.963338 −0.481669 0.876353i \(-0.659969\pi\)
−0.481669 + 0.876353i \(0.659969\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 6.00000i 0.303046i
\(393\) 0 0
\(394\) −8.00000 −0.403034
\(395\) −12.0000 24.0000i −0.603786 1.20757i
\(396\) 0 0
\(397\) 4.00000i 0.200754i −0.994949 0.100377i \(-0.967995\pi\)
0.994949 0.100377i \(-0.0320049\pi\)
\(398\) 18.0000i 0.902258i
\(399\) 0 0
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) −22.0000 + 11.0000i −1.08650 + 0.543251i
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 22.0000 11.0000i 1.07994 0.539969i
\(416\) −6.00000 −0.294174
\(417\) 0 0
\(418\) 12.0000i 0.586939i
\(419\) −34.0000 −1.66101 −0.830504 0.557012i \(-0.811948\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 18.0000i 0.876226i
\(423\) 0 0
\(424\) 0 0
\(425\) 8.00000 + 6.00000i 0.388057 + 0.291043i
\(426\) 0 0
\(427\) 7.00000i 0.338754i
\(428\) 3.00000i 0.145010i
\(429\) 0 0
\(430\) 4.00000 + 8.00000i 0.192897 + 0.385794i
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 7.00000 0.335239
\(437\) 6.00000i 0.287019i
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 4.00000 2.00000i 0.190693 0.0953463i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 9.00000i 0.427603i 0.976877 + 0.213801i \(0.0685846\pi\)
−0.976877 + 0.213801i \(0.931415\pi\)
\(444\) 0 0
\(445\) 1.00000 + 2.00000i 0.0474045 + 0.0948091i
\(446\) 23.0000 1.08908
\(447\) 0 0
\(448\) 1.00000i 0.0472456i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) 12.0000i 0.564433i
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) −6.00000 12.0000i −0.281284 0.562569i
\(456\) 0 0
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 7.00000i 0.327089i
\(459\) 0 0
\(460\) 2.00000 1.00000i 0.0932505 0.0466252i
\(461\) −21.0000 −0.978068 −0.489034 0.872265i \(-0.662651\pi\)
−0.489034 + 0.872265i \(0.662651\pi\)
\(462\) 0 0
\(463\) 36.0000i 1.67306i −0.547920 0.836531i \(-0.684580\pi\)
0.547920 0.836531i \(-0.315420\pi\)
\(464\) −9.00000 −0.417815
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) −7.00000 14.0000i −0.322886 0.645772i
\(471\) 0 0
\(472\) 4.00000i 0.184115i
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 18.0000 24.0000i 0.825897 1.10120i
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 28.0000i 1.28069i
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 1.00000i 0.0455488i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) −16.0000 + 8.00000i −0.726523 + 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 7.00000i 0.316875i
\(489\) 0 0
\(490\) 12.0000 6.00000i 0.542105 0.271052i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 18.0000i 0.810679i
\(494\) 36.0000 1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 6.00000i 0.269137i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) −11.0000 2.00000i −0.491935 0.0894427i
\(501\) 0 0
\(502\) 18.0000i 0.803379i
\(503\) 27.0000i 1.20387i −0.798545 0.601935i \(-0.794397\pi\)
0.798545 0.601935i \(-0.205603\pi\)
\(504\) 0 0
\(505\) −2.00000 4.00000i −0.0889988 0.177998i
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) 19.0000i 0.842989i
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 16.0000 8.00000i 0.705044 0.352522i
\(516\) 0 0
\(517\) 14.0000i 0.615719i
\(518\) 2.00000i 0.0878750i
\(519\) 0 0
\(520\) −6.00000 12.0000i −0.263117 0.526235i
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i 0.773300 + 0.634041i \(0.218605\pi\)
−0.773300 + 0.634041i \(0.781395\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 4.00000i 0.174243i
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 6.00000i 0.260133i
\(533\) 66.0000i 2.85878i
\(534\) 0 0
\(535\) 6.00000 3.00000i 0.259403 0.129701i
\(536\) −11.0000 −0.475128
\(537\) 0 0
\(538\) 3.00000i 0.129339i
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 14.0000i 0.601351i
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 7.00000 + 14.0000i 0.299847 + 0.599694i
\(546\) 0 0
\(547\) 35.0000i 1.49649i 0.663421 + 0.748246i \(0.269104\pi\)
−0.663421 + 0.748246i \(0.730896\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 8.00000 + 6.00000i 0.341121 + 0.255841i
\(551\) 54.0000 2.30048
\(552\) 0 0
\(553\) 12.0000i 0.510292i
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) −2.00000 + 1.00000i −0.0845154 + 0.0422577i
\(561\) 0 0
\(562\) 3.00000i 0.126547i
\(563\) 37.0000i 1.55936i 0.626176 + 0.779682i \(0.284619\pi\)
−0.626176 + 0.779682i \(0.715381\pi\)
\(564\) 0 0
\(565\) −24.0000 + 12.0000i −1.00969 + 0.504844i
\(566\) 1.00000 0.0420331
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 12.0000i 0.501745i
\(573\) 0 0
\(574\) −11.0000 −0.459131
\(575\) 4.00000 + 3.00000i 0.166812 + 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) −9.00000 18.0000i −0.373705 0.747409i
\(581\) 11.0000 0.456357
\(582\) 0 0
\(583\) 0 0
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 3.00000i 0.123823i 0.998082 + 0.0619116i \(0.0197197\pi\)
−0.998082 + 0.0619116i \(0.980280\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 8.00000 4.00000i 0.329355 0.164677i
\(591\) 0 0
\(592\) 2.00000i 0.0821995i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 0 0
\(595\) 2.00000 + 4.00000i 0.0819920 + 0.163984i
\(596\) −1.00000 −0.0409616
\(597\) 0 0
\(598\) 6.00000i 0.245358i
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 7.00000 + 14.0000i 0.284590 + 0.569181i
\(606\) 0 0
\(607\) 1.00000i 0.0405887i 0.999794 + 0.0202944i \(0.00646034\pi\)
−0.999794 + 0.0202944i \(0.993540\pi\)
\(608\) 6.00000i 0.243332i
\(609\) 0 0
\(610\) −14.0000 + 7.00000i −0.566843 + 0.283422i
\(611\) 42.0000 1.69914
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 9.00000 0.363210
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) 32.0000i 1.28827i −0.764911 0.644136i \(-0.777217\pi\)
0.764911 0.644136i \(-0.222783\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) −2.00000 4.00000i −0.0803219 0.160644i
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) 1.00000i 0.0400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 12.0000i 0.477334i
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) −38.0000 + 19.0000i −1.50798 + 0.753992i
\(636\) 0 0
\(637\) 36.0000i 1.42637i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 13.0000 0.513469 0.256735 0.966482i \(-0.417353\pi\)
0.256735 + 0.966482i \(0.417353\pi\)
\(642\) 0 0
\(643\) 33.0000i 1.30139i 0.759338 + 0.650696i \(0.225523\pi\)
−0.759338 + 0.650696i \(0.774477\pi\)
\(644\) 1.00000 0.0394055
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) 33.0000i 1.29736i 0.761060 + 0.648682i \(0.224679\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) 18.0000 24.0000i 0.706018 0.941357i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 26.0000i 1.01746i 0.860927 + 0.508729i \(0.169885\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) −12.0000 24.0000i −0.468879 0.937758i
\(656\) −11.0000 −0.429478
\(657\) 0 0
\(658\) 7.00000i 0.272888i
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) 11.0000 0.426883
\(665\) 12.0000 6.00000i 0.465340 0.232670i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 3.00000i 0.116073i
\(669\) 0 0
\(670\) −11.0000 22.0000i −0.424967 0.849934i
\(671\) 14.0000 0.540464
\(672\) 0 0
\(673\) 6.00000i 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 2.00000 + 4.00000i 0.0766965 + 0.153393i
\(681\) 0 0
\(682\) 4.00000i 0.153168i
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 0 0
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 4.00000i 0.152057i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 16.0000 + 32.0000i 0.606915 + 1.21383i
\(696\) 0 0
\(697\) 22.0000i 0.833309i
\(698\) 11.0000i 0.416356i
\(699\) 0 0
\(700\) −4.00000 3.00000i −0.151186 0.113389i
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −16.0000 −0.602168
\(707\) 2.00000i 0.0752177i
\(708\) 0 0
\(709\) 27.0000 1.01401 0.507003 0.861944i \(-0.330753\pi\)
0.507003 + 0.861944i \(0.330753\pi\)
\(710\) −12.0000 + 6.00000i −0.450352 + 0.225176i
\(711\) 0 0
\(712\) 1.00000i 0.0374766i
\(713\) 2.00000i 0.0749006i
\(714\) 0 0
\(715\) −24.0000 + 12.0000i −0.897549 + 0.448775i
\(716\) 2.00000 0.0747435
\(717\) 0 0
\(718\) 30.0000i 1.11959i
\(719\) 44.0000 1.64092 0.820462 0.571702i \(-0.193717\pi\)
0.820462 + 0.571702i \(0.193717\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) 13.0000 0.483141
\(725\) 27.0000 36.0000i 1.00275 1.33701i
\(726\) 0 0
\(727\) 21.0000i 0.778847i 0.921059 + 0.389423i \(0.127326\pi\)
−0.921059 + 0.389423i \(0.872674\pi\)
\(728\) 6.00000i 0.222375i
\(729\) 0 0
\(730\) 4.00000 + 8.00000i 0.148047 + 0.296093i
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 4.00000i 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 22.0000i 0.810380i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −4.00000 + 2.00000i −0.147043 + 0.0735215i
\(741\) 0 0
\(742\) 0 0
\(743\) 15.0000i 0.550297i 0.961402 + 0.275148i \(0.0887270\pi\)
−0.961402 + 0.275148i \(0.911273\pi\)
\(744\) 0 0
\(745\) −1.00000 2.00000i −0.0366372 0.0732743i
\(746\) 12.0000 0.439351
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) 3.00000 0.109618
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) 7.00000i 0.255264i
\(753\) 0 0
\(754\) 54.0000 1.96656
\(755\) −10.0000 20.0000i −0.363937 0.727875i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 16.0000i 0.581146i
\(759\) 0 0
\(760\) 12.0000 6.00000i 0.435286 0.217643i
\(761\) −9.00000 −0.326250 −0.163125 0.986605i \(-0.552157\pi\)
−0.163125 + 0.986605i \(0.552157\pi\)
\(762\) 0 0
\(763\) 7.00000i 0.253417i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 24.0000i 0.866590i
\(768\) 0 0
\(769\) 15.0000 0.540914 0.270457 0.962732i \(-0.412825\pi\)
0.270457 + 0.962732i \(0.412825\pi\)
\(770\) 2.00000 + 4.00000i 0.0720750 + 0.144150i
\(771\) 0 0
\(772\) 10.0000i 0.359908i
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) 6.00000 8.00000i 0.215526 0.287368i
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 19.0000i 0.681183i
\(779\) 66.0000 2.36470
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 2.00000i 0.0715199i
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 8.00000 4.00000i 0.285532 0.142766i
\(786\) 0 0
\(787\) 44.0000i 1.56843i 0.620489 + 0.784215i \(0.286934\pi\)
−0.620489 + 0.784215i \(0.713066\pi\)
\(788\) 8.00000i 0.284988i
\(789\) 0 0
\(790\) 24.0000 12.0000i 0.853882 0.426941i
\(791\) −12.0000 −0.426671
\(792\) 0 0