Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,9,Mod(2,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.2");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.h (of order \(54\), degree \(18\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(32.9976674150\) |
Analytic rank: | \(0\) |
Dimension: | \(1278\) |
Relative dimension: | \(71\) over \(\Q(\zeta_{54})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{54}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −31.4247 | − | 1.83028i | −49.2077 | − | 64.3398i | 729.893 | + | 85.3122i | 55.5600 | + | 234.426i | 1428.58 | + | 2111.92i | 565.067 | + | 759.017i | −14844.6 | − | 2617.50i | −1718.21 | + | 6332.02i | −1316.89 | − | 7468.45i |
2.2 | −29.6556 | − | 1.72724i | 79.6167 | + | 14.9058i | 622.200 | + | 72.7247i | 40.0859 | + | 169.136i | −2335.33 | − | 579.556i | −896.647 | − | 1204.41i | −10836.9 | − | 1910.84i | 6116.64 | + | 2373.49i | −896.631 | − | 5085.05i |
2.3 | −29.5522 | − | 1.72122i | −2.99020 | + | 80.9448i | 616.102 | + | 72.0120i | −151.007 | − | 637.148i | 227.691 | − | 2386.95i | 2120.94 | + | 2848.92i | −10620.2 | − | 1872.62i | −6543.12 | − | 484.082i | 3365.91 | + | 19089.0i |
2.4 | −29.1725 | − | 1.69911i | −71.7738 | + | 37.5435i | 593.879 | + | 69.4145i | −2.78495 | − | 11.7506i | 2157.61 | − | 973.288i | −1224.85 | − | 1645.25i | −9839.83 | − | 1735.03i | 3741.97 | − | 5389.29i | 61.2785 | + | 347.528i |
2.5 | −28.2144 | − | 1.64330i | 18.1456 | − | 78.9414i | 539.083 | + | 63.0097i | −257.498 | − | 1086.47i | −641.692 | + | 2197.46i | −2491.18 | − | 3346.23i | −7981.14 | − | 1407.29i | −5902.47 | − | 2864.88i | 5479.75 | + | 31077.2i |
2.6 | −27.5640 | − | 1.60542i | 64.9324 | − | 48.4230i | 502.927 | + | 58.7837i | −129.334 | − | 545.702i | −1867.53 | + | 1230.49i | 2195.49 | + | 2949.06i | −6807.35 | − | 1200.32i | 1871.42 | − | 6288.44i | 2688.87 | + | 15249.3i |
2.7 | −27.0854 | − | 1.57755i | 43.2512 | − | 68.4860i | 476.862 | + | 55.7372i | 261.554 | + | 1103.58i | −1279.52 | + | 1786.74i | −405.970 | − | 545.312i | −5987.98 | − | 1055.84i | −2819.67 | − | 5924.20i | −5343.34 | − | 30303.6i |
2.8 | −26.4374 | − | 1.53980i | −51.8941 | + | 62.1933i | 442.295 | + | 51.6969i | 262.586 | + | 1107.94i | 1467.71 | − | 1564.32i | 923.730 | + | 1240.79i | −4937.07 | − | 870.539i | −1175.00 | − | 6454.93i | −5236.09 | − | 29695.3i |
2.9 | −26.2584 | − | 1.52938i | 7.96860 | + | 80.6071i | 432.896 | + | 50.5983i | −93.6433 | − | 395.112i | −85.9642 | − | 2128.80i | −2506.37 | − | 3366.65i | −4658.54 | − | 821.427i | −6434.00 | + | 1284.65i | 1854.65 | + | 10518.2i |
2.10 | −25.1840 | − | 1.46680i | −79.9667 | − | 12.8969i | 377.813 | + | 44.1600i | 70.3664 | + | 296.899i | 1994.96 | + | 442.090i | 323.959 | + | 435.153i | −3090.15 | − | 544.877i | 6228.34 | + | 2062.64i | −1336.62 | − | 7580.33i |
2.11 | −25.0803 | − | 1.46076i | 48.9585 | + | 64.5296i | 372.621 | + | 43.5531i | 140.643 | + | 593.421i | −1133.63 | − | 1689.94i | 969.865 | + | 1302.75i | −2948.10 | − | 519.829i | −1767.13 | + | 6318.54i | −2660.53 | − | 15088.6i |
2.12 | −24.5500 | − | 1.42988i | −78.3366 | − | 20.6003i | 346.389 | + | 40.4871i | −273.470 | − | 1153.86i | 1893.71 | + | 617.750i | 749.183 | + | 1006.33i | −2246.16 | − | 396.059i | 5712.25 | + | 3227.52i | 5063.82 | + | 28718.4i |
2.13 | −22.2975 | − | 1.29868i | −34.3614 | − | 73.3505i | 241.222 | + | 28.1948i | 3.79280 | + | 16.0031i | 670.914 | + | 1680.15i | −996.330 | − | 1338.30i | 288.943 | + | 50.9484i | −4199.59 | + | 5040.85i | −63.7870 | − | 361.754i |
2.14 | −21.7243 | − | 1.26530i | −14.9748 | − | 79.6037i | 216.076 | + | 25.2557i | 6.64933 | + | 28.0557i | 224.595 | + | 1748.29i | 2479.42 | + | 3330.44i | 824.060 | + | 145.304i | −6112.51 | + | 2384.10i | −108.953 | − | 617.906i |
2.15 | −20.4271 | − | 1.18974i | 77.1800 | − | 24.5813i | 161.582 | + | 18.8862i | −79.3009 | − | 334.597i | −1605.81 | + | 410.300i | −712.264 | − | 956.736i | 1880.44 | + | 331.572i | 5352.52 | − | 3794.37i | 1221.80 | + | 6929.19i |
2.16 | −18.9741 | − | 1.10511i | 32.1670 | − | 74.3390i | 104.526 | + | 12.2173i | 65.9484 | + | 278.258i | −692.492 | + | 1374.97i | −746.281 | − | 1002.43i | 2821.90 | + | 497.577i | −4491.57 | − | 4782.52i | −943.803 | − | 5352.57i |
2.17 | −18.7332 | − | 1.09109i | −57.9381 | + | 56.6055i | 95.4740 | + | 11.1593i | −119.240 | − | 503.113i | 1147.13 | − | 997.187i | −78.6555 | − | 105.653i | 2954.49 | + | 520.956i | 152.639 | − | 6559.22i | 1684.81 | + | 9555.04i |
2.18 | −18.4528 | − | 1.07475i | 67.5589 | + | 44.6855i | 85.0808 | + | 9.94452i | −199.438 | − | 841.495i | −1198.62 | − | 897.181i | 110.076 | + | 147.857i | 3100.74 | + | 546.744i | 2567.41 | + | 6037.81i | 2775.79 | + | 15742.3i |
2.19 | −18.4357 | − | 1.07376i | −75.3885 | − | 29.6239i | 84.4526 | + | 9.87110i | 216.946 | + | 915.368i | 1358.03 | + | 627.086i | −2638.29 | − | 3543.84i | 3109.37 | + | 548.266i | 4805.85 | + | 4466.60i | −3016.67 | − | 17108.4i |
2.20 | −17.8510 | − | 1.03970i | 17.7984 | + | 79.0204i | 63.3069 | + | 7.39952i | 179.679 | + | 758.126i | −235.561 | − | 1429.09i | −2206.31 | − | 2963.59i | 3385.65 | + | 596.982i | −5927.43 | + | 2812.87i | −2419.22 | − | 13720.1i |
See next 80 embeddings (of 1278 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.h | odd | 54 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 81.9.h.a | ✓ | 1278 |
81.h | odd | 54 | 1 | inner | 81.9.h.a | ✓ | 1278 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.9.h.a | ✓ | 1278 | 1.a | even | 1 | 1 | trivial |
81.9.h.a | ✓ | 1278 | 81.h | odd | 54 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{9}^{\mathrm{new}}(81, [\chi])\).