Properties

Label 81.9.h.a
Level $81$
Weight $9$
Character orbit 81.h
Analytic conductor $32.998$
Analytic rank $0$
Dimension $1278$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(2,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.2");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.h (of order \(54\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(1278\)
Relative dimension: \(71\) over \(\Q(\zeta_{54})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{54}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 1278 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 274194 q^{18}+ \cdots - 967332078 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −31.4247 1.83028i −49.2077 64.3398i 729.893 + 85.3122i 55.5600 + 234.426i 1428.58 + 2111.92i 565.067 + 759.017i −14844.6 2617.50i −1718.21 + 6332.02i −1316.89 7468.45i
2.2 −29.6556 1.72724i 79.6167 + 14.9058i 622.200 + 72.7247i 40.0859 + 169.136i −2335.33 579.556i −896.647 1204.41i −10836.9 1910.84i 6116.64 + 2373.49i −896.631 5085.05i
2.3 −29.5522 1.72122i −2.99020 + 80.9448i 616.102 + 72.0120i −151.007 637.148i 227.691 2386.95i 2120.94 + 2848.92i −10620.2 1872.62i −6543.12 484.082i 3365.91 + 19089.0i
2.4 −29.1725 1.69911i −71.7738 + 37.5435i 593.879 + 69.4145i −2.78495 11.7506i 2157.61 973.288i −1224.85 1645.25i −9839.83 1735.03i 3741.97 5389.29i 61.2785 + 347.528i
2.5 −28.2144 1.64330i 18.1456 78.9414i 539.083 + 63.0097i −257.498 1086.47i −641.692 + 2197.46i −2491.18 3346.23i −7981.14 1407.29i −5902.47 2864.88i 5479.75 + 31077.2i
2.6 −27.5640 1.60542i 64.9324 48.4230i 502.927 + 58.7837i −129.334 545.702i −1867.53 + 1230.49i 2195.49 + 2949.06i −6807.35 1200.32i 1871.42 6288.44i 2688.87 + 15249.3i
2.7 −27.0854 1.57755i 43.2512 68.4860i 476.862 + 55.7372i 261.554 + 1103.58i −1279.52 + 1786.74i −405.970 545.312i −5987.98 1055.84i −2819.67 5924.20i −5343.34 30303.6i
2.8 −26.4374 1.53980i −51.8941 + 62.1933i 442.295 + 51.6969i 262.586 + 1107.94i 1467.71 1564.32i 923.730 + 1240.79i −4937.07 870.539i −1175.00 6454.93i −5236.09 29695.3i
2.9 −26.2584 1.52938i 7.96860 + 80.6071i 432.896 + 50.5983i −93.6433 395.112i −85.9642 2128.80i −2506.37 3366.65i −4658.54 821.427i −6434.00 + 1284.65i 1854.65 + 10518.2i
2.10 −25.1840 1.46680i −79.9667 12.8969i 377.813 + 44.1600i 70.3664 + 296.899i 1994.96 + 442.090i 323.959 + 435.153i −3090.15 544.877i 6228.34 + 2062.64i −1336.62 7580.33i
2.11 −25.0803 1.46076i 48.9585 + 64.5296i 372.621 + 43.5531i 140.643 + 593.421i −1133.63 1689.94i 969.865 + 1302.75i −2948.10 519.829i −1767.13 + 6318.54i −2660.53 15088.6i
2.12 −24.5500 1.42988i −78.3366 20.6003i 346.389 + 40.4871i −273.470 1153.86i 1893.71 + 617.750i 749.183 + 1006.33i −2246.16 396.059i 5712.25 + 3227.52i 5063.82 + 28718.4i
2.13 −22.2975 1.29868i −34.3614 73.3505i 241.222 + 28.1948i 3.79280 + 16.0031i 670.914 + 1680.15i −996.330 1338.30i 288.943 + 50.9484i −4199.59 + 5040.85i −63.7870 361.754i
2.14 −21.7243 1.26530i −14.9748 79.6037i 216.076 + 25.2557i 6.64933 + 28.0557i 224.595 + 1748.29i 2479.42 + 3330.44i 824.060 + 145.304i −6112.51 + 2384.10i −108.953 617.906i
2.15 −20.4271 1.18974i 77.1800 24.5813i 161.582 + 18.8862i −79.3009 334.597i −1605.81 + 410.300i −712.264 956.736i 1880.44 + 331.572i 5352.52 3794.37i 1221.80 + 6929.19i
2.16 −18.9741 1.10511i 32.1670 74.3390i 104.526 + 12.2173i 65.9484 + 278.258i −692.492 + 1374.97i −746.281 1002.43i 2821.90 + 497.577i −4491.57 4782.52i −943.803 5352.57i
2.17 −18.7332 1.09109i −57.9381 + 56.6055i 95.4740 + 11.1593i −119.240 503.113i 1147.13 997.187i −78.6555 105.653i 2954.49 + 520.956i 152.639 6559.22i 1684.81 + 9555.04i
2.18 −18.4528 1.07475i 67.5589 + 44.6855i 85.0808 + 9.94452i −199.438 841.495i −1198.62 897.181i 110.076 + 147.857i 3100.74 + 546.744i 2567.41 + 6037.81i 2775.79 + 15742.3i
2.19 −18.4357 1.07376i −75.3885 29.6239i 84.4526 + 9.87110i 216.946 + 915.368i 1358.03 + 627.086i −2638.29 3543.84i 3109.37 + 548.266i 4805.85 + 4466.60i −3016.67 17108.4i
2.20 −17.8510 1.03970i 17.7984 + 79.0204i 63.3069 + 7.39952i 179.679 + 758.126i −235.561 1429.09i −2206.31 2963.59i 3385.65 + 596.982i −5927.43 + 2812.87i −2419.22 13720.1i
See next 80 embeddings (of 1278 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.71
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
81.h odd 54 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.9.h.a 1278
81.h odd 54 1 inner 81.9.h.a 1278
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.9.h.a 1278 1.a even 1 1 trivial
81.9.h.a 1278 81.h odd 54 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{9}^{\mathrm{new}}(81, [\chi])\).