Properties

Label 81.9.f.a.8.4
Level $81$
Weight $9$
Character 81.8
Analytic conductor $32.998$
Analytic rank $0$
Dimension $138$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(138\)
Relative dimension: \(23\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.4
Character \(\chi\) \(=\) 81.8
Dual form 81.9.f.a.71.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-25.1387 - 4.43262i) q^{2} +(371.742 + 135.303i) q^{4} +(546.503 + 651.297i) q^{5} +(-3663.86 + 1333.53i) q^{7} +(-3086.08 - 1781.75i) q^{8} +(-10851.4 - 18795.2i) q^{10} +(7165.64 - 8539.67i) q^{11} +(-6824.34 - 38702.7i) q^{13} +(98015.5 - 17282.8i) q^{14} +(-7898.09 - 6627.28i) q^{16} +(-109614. + 63285.8i) q^{17} +(-62328.9 + 107957. i) q^{19} +(115036. + 316059. i) q^{20} +(-217988. + 182913. i) q^{22} +(84577.6 - 232375. i) q^{23} +(-57691.0 + 327182. i) q^{25} +1.00318e6i q^{26} -1.54244e6 q^{28} +(177273. + 31258.0i) q^{29} +(557486. + 202908. i) q^{31} +(755557. + 900438. i) q^{32} +(3.03608e6 - 1.10504e6i) q^{34} +(-2.87084e6 - 1.65748e6i) q^{35} +(-229672. - 397803. i) q^{37} +(2.04540e6 - 2.43761e6i) q^{38} +(-526104. - 2.98368e6i) q^{40} +(981871. - 173130. i) q^{41} +(-2.11904e6 - 1.77809e6i) q^{43} +(3.81922e6 - 2.20503e6i) q^{44} +(-3.15620e6 + 5.46670e6i) q^{46} +(1.21462e6 + 3.33714e6i) q^{47} +(7.22944e6 - 6.06622e6i) q^{49} +(2.90055e6 - 7.96919e6i) q^{50} +(2.69971e6 - 1.53108e7i) q^{52} -6.97006e6i q^{53} +9.47791e6 q^{55} +(1.36830e7 + 2.41268e6i) q^{56} +(-4.31784e6 - 1.57157e6i) q^{58} +(7.66416e6 + 9.13379e6i) q^{59} +(-4.95543e6 + 1.80363e6i) q^{61} +(-1.31150e7 - 7.57197e6i) q^{62} +(-1.36827e7 - 2.36991e7i) q^{64} +(2.14775e7 - 2.55958e7i) q^{65} +(-5.51669e6 - 3.12867e7i) q^{67} +(-4.93110e7 + 8.69486e6i) q^{68} +(6.48220e7 + 5.43921e7i) q^{70} +(2.14530e7 - 1.23859e7i) q^{71} +(2.29304e6 - 3.97166e6i) q^{73} +(4.01033e6 + 1.10183e7i) q^{74} +(-3.77772e7 + 3.16988e7i) q^{76} +(-1.48659e7 + 4.08438e7i) q^{77} +(1.68902e6 - 9.57891e6i) q^{79} -8.76584e6i q^{80} -2.54503e7 q^{82} +(2.39486e7 + 4.22279e6i) q^{83} +(-1.01122e8 - 3.68056e7i) q^{85} +(4.53882e7 + 5.40916e7i) q^{86} +(-3.73292e7 + 1.35867e7i) q^{88} +(2.53853e7 + 1.46562e7i) q^{89} +(7.66148e7 + 1.32701e8i) q^{91} +(6.28822e7 - 7.49401e7i) q^{92} +(-1.57416e7 - 8.92752e7i) q^{94} +(-1.04375e8 + 1.84041e7i) q^{95} +(8.60715e7 + 7.22226e7i) q^{97} +(-2.08628e8 + 1.20451e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −25.1387 4.43262i −1.57117 0.277039i −0.680864 0.732410i \(-0.738396\pi\)
−0.890302 + 0.455371i \(0.849507\pi\)
\(3\) 0 0
\(4\) 371.742 + 135.303i 1.45212 + 0.528528i
\(5\) 546.503 + 651.297i 0.874405 + 1.04208i 0.998757 + 0.0498377i \(0.0158704\pi\)
−0.124352 + 0.992238i \(0.539685\pi\)
\(6\) 0 0
\(7\) −3663.86 + 1333.53i −1.52597 + 0.555408i −0.962631 0.270817i \(-0.912706\pi\)
−0.563340 + 0.826225i \(0.690484\pi\)
\(8\) −3086.08 1781.75i −0.753437 0.434997i
\(9\) 0 0
\(10\) −10851.4 18795.2i −1.08514 1.87952i
\(11\) 7165.64 8539.67i 0.489423 0.583271i −0.463648 0.886020i \(-0.653460\pi\)
0.953071 + 0.302748i \(0.0979042\pi\)
\(12\) 0 0
\(13\) −6824.34 38702.7i −0.238939 1.35509i −0.834158 0.551526i \(-0.814046\pi\)
0.595219 0.803564i \(-0.297065\pi\)
\(14\) 98015.5 17282.8i 2.55142 0.449885i
\(15\) 0 0
\(16\) −7898.09 6627.28i −0.120515 0.101124i
\(17\) −109614. + 63285.8i −1.31242 + 0.757723i −0.982496 0.186286i \(-0.940355\pi\)
−0.329920 + 0.944009i \(0.607022\pi\)
\(18\) 0 0
\(19\) −62328.9 + 107957.i −0.478272 + 0.828391i −0.999690 0.0249102i \(-0.992070\pi\)
0.521418 + 0.853302i \(0.325403\pi\)
\(20\) 115036. + 316059.i 0.718974 + 1.97537i
\(21\) 0 0
\(22\) −217988. + 182913.i −0.930553 + 0.780827i
\(23\) 84577.6 232375.i 0.302235 0.830383i −0.691876 0.722016i \(-0.743216\pi\)
0.994111 0.108367i \(-0.0345621\pi\)
\(24\) 0 0
\(25\) −57691.0 + 327182.i −0.147689 + 0.837586i
\(26\) 1.00318e6i 2.19527i
\(27\) 0 0
\(28\) −1.54244e6 −2.50944
\(29\) 177273. + 31258.0i 0.250640 + 0.0441946i 0.297556 0.954704i \(-0.403828\pi\)
−0.0469165 + 0.998899i \(0.514939\pi\)
\(30\) 0 0
\(31\) 557486. + 202908.i 0.603653 + 0.219712i 0.625724 0.780045i \(-0.284804\pi\)
−0.0220706 + 0.999756i \(0.507026\pi\)
\(32\) 755557. + 900438.i 0.720555 + 0.858724i
\(33\) 0 0
\(34\) 3.03608e6 1.10504e6i 2.27194 0.826919i
\(35\) −2.87084e6 1.65748e6i −1.91310 1.10453i
\(36\) 0 0
\(37\) −229672. 397803.i −0.122546 0.212257i 0.798225 0.602360i \(-0.205773\pi\)
−0.920771 + 0.390103i \(0.872439\pi\)
\(38\) 2.04540e6 2.43761e6i 0.980941 1.16904i
\(39\) 0 0
\(40\) −526104. 2.98368e6i −0.205509 1.16550i
\(41\) 981871. 173130.i 0.347471 0.0612686i 0.00281108 0.999996i \(-0.499105\pi\)
0.344660 + 0.938727i \(0.387994\pi\)
\(42\) 0 0
\(43\) −2.11904e6 1.77809e6i −0.619820 0.520091i 0.277927 0.960602i \(-0.410353\pi\)
−0.897747 + 0.440512i \(0.854797\pi\)
\(44\) 3.81922e6 2.20503e6i 1.01898 0.588306i
\(45\) 0 0
\(46\) −3.15620e6 + 5.46670e6i −0.704909 + 1.22094i
\(47\) 1.21462e6 + 3.33714e6i 0.248914 + 0.683885i 0.999727 + 0.0233703i \(0.00743968\pi\)
−0.750813 + 0.660515i \(0.770338\pi\)
\(48\) 0 0
\(49\) 7.22944e6 6.06622e6i 1.25407 1.05229i
\(50\) 2.90055e6 7.96919e6i 0.464088 1.27507i
\(51\) 0 0
\(52\) 2.69971e6 1.53108e7i 0.369235 2.09404i
\(53\) 6.97006e6i 0.883350i −0.897175 0.441675i \(-0.854384\pi\)
0.897175 0.441675i \(-0.145616\pi\)
\(54\) 0 0
\(55\) 9.47791e6 1.03577
\(56\) 1.36830e7 + 2.41268e6i 1.39132 + 0.245328i
\(57\) 0 0
\(58\) −4.31784e6 1.57157e6i −0.381553 0.138874i
\(59\) 7.66416e6 + 9.13379e6i 0.632494 + 0.753777i 0.983165 0.182722i \(-0.0584908\pi\)
−0.350671 + 0.936499i \(0.614046\pi\)
\(60\) 0 0
\(61\) −4.95543e6 + 1.80363e6i −0.357900 + 0.130265i −0.514711 0.857364i \(-0.672101\pi\)
0.156811 + 0.987629i \(0.449879\pi\)
\(62\) −1.31150e7 7.57197e6i −0.887571 0.512439i
\(63\) 0 0
\(64\) −1.36827e7 2.36991e7i −0.815551 1.41258i
\(65\) 2.14775e7 2.55958e7i 1.20318 1.43389i
\(66\) 0 0
\(67\) −5.51669e6 3.12867e7i −0.273766 1.55260i −0.742854 0.669453i \(-0.766528\pi\)
0.469088 0.883151i \(-0.344583\pi\)
\(68\) −4.93110e7 + 8.69486e6i −2.30626 + 0.406656i
\(69\) 0 0
\(70\) 6.48220e7 + 5.43921e7i 2.69979 + 2.26540i
\(71\) 2.14530e7 1.23859e7i 0.844217 0.487409i −0.0144782 0.999895i \(-0.504609\pi\)
0.858696 + 0.512486i \(0.171275\pi\)
\(72\) 0 0
\(73\) 2.29304e6 3.97166e6i 0.0807459 0.139856i −0.822825 0.568295i \(-0.807603\pi\)
0.903571 + 0.428439i \(0.140936\pi\)
\(74\) 4.01033e6 + 1.10183e7i 0.133737 + 0.367441i
\(75\) 0 0
\(76\) −3.77772e7 + 3.16988e7i −1.13234 + 0.950143i
\(77\) −1.48659e7 + 4.08438e7i −0.422891 + 1.16188i
\(78\) 0 0
\(79\) 1.68902e6 9.57891e6i 0.0433637 0.245928i −0.955419 0.295253i \(-0.904596\pi\)
0.998783 + 0.0493253i \(0.0157071\pi\)
\(80\) 8.76584e6i 0.214010i
\(81\) 0 0
\(82\) −2.54503e7 −0.562909
\(83\) 2.39486e7 + 4.22279e6i 0.504625 + 0.0889789i 0.420165 0.907448i \(-0.361972\pi\)
0.0844600 + 0.996427i \(0.473083\pi\)
\(84\) 0 0
\(85\) −1.01122e8 3.68056e7i −1.93719 0.705079i
\(86\) 4.53882e7 + 5.40916e7i 0.829754 + 0.988863i
\(87\) 0 0
\(88\) −3.73292e7 + 1.35867e7i −0.622470 + 0.226561i
\(89\) 2.53853e7 + 1.46562e7i 0.404597 + 0.233594i 0.688466 0.725269i \(-0.258285\pi\)
−0.283869 + 0.958863i \(0.591618\pi\)
\(90\) 0 0
\(91\) 7.66148e7 + 1.32701e8i 1.11724 + 1.93512i
\(92\) 6.28822e7 7.49401e7i 0.877761 1.04608i
\(93\) 0 0
\(94\) −1.57416e7 8.92752e7i −0.201622 1.14346i
\(95\) −1.04375e8 + 1.84041e7i −1.28145 + 0.225954i
\(96\) 0 0
\(97\) 8.60715e7 + 7.22226e7i 0.972238 + 0.815805i 0.982900 0.184139i \(-0.0589495\pi\)
−0.0106623 + 0.999943i \(0.503394\pi\)
\(98\) −2.08628e8 + 1.20451e8i −2.26187 + 1.30589i
\(99\) 0 0
\(100\) −6.57150e7 + 1.13822e8i −0.657150 + 1.13822i
\(101\) 1.90295e7 + 5.22830e7i 0.182869 + 0.502430i 0.996925 0.0783568i \(-0.0249673\pi\)
−0.814056 + 0.580787i \(0.802745\pi\)
\(102\) 0 0
\(103\) 1.00395e8 8.42412e7i 0.891995 0.748473i −0.0766144 0.997061i \(-0.524411\pi\)
0.968609 + 0.248588i \(0.0799666\pi\)
\(104\) −4.78981e7 + 1.31599e8i −0.409435 + 1.12491i
\(105\) 0 0
\(106\) −3.08956e7 + 1.75218e8i −0.244722 + 1.38789i
\(107\) 1.08497e8i 0.827717i −0.910341 0.413858i \(-0.864181\pi\)
0.910341 0.413858i \(-0.135819\pi\)
\(108\) 0 0
\(109\) −1.06383e8 −0.753642 −0.376821 0.926286i \(-0.622983\pi\)
−0.376821 + 0.926286i \(0.622983\pi\)
\(110\) −2.38262e8 4.20120e7i −1.62736 0.286948i
\(111\) 0 0
\(112\) 3.77752e7 + 1.37490e7i 0.240068 + 0.0873776i
\(113\) −1.07489e8 1.28100e8i −0.659248 0.785661i 0.328030 0.944667i \(-0.393615\pi\)
−0.987278 + 0.159007i \(0.949171\pi\)
\(114\) 0 0
\(115\) 1.97567e8 7.19086e7i 1.12960 0.411140i
\(116\) 6.16705e7 + 3.56055e7i 0.340601 + 0.196646i
\(117\) 0 0
\(118\) −1.52180e8 2.63583e8i −0.784927 1.35953i
\(119\) 3.17217e8 3.78045e8i 1.58186 1.88519i
\(120\) 0 0
\(121\) 1.56434e7 + 8.87179e7i 0.0729774 + 0.413875i
\(122\) 1.32568e8 2.33753e7i 0.598409 0.105516i
\(123\) 0 0
\(124\) 1.79787e8 + 1.50859e8i 0.760452 + 0.638095i
\(125\) 4.29968e7 2.48242e7i 0.176115 0.101680i
\(126\) 0 0
\(127\) 2.29807e8 3.98037e8i 0.883381 1.53006i 0.0358234 0.999358i \(-0.488595\pi\)
0.847558 0.530703i \(-0.178072\pi\)
\(128\) 1.35997e8 + 3.73648e8i 0.506628 + 1.39195i
\(129\) 0 0
\(130\) −6.53371e8 + 5.48244e8i −2.28763 + 1.91955i
\(131\) 1.27572e8 3.50502e8i 0.433183 1.19016i −0.510664 0.859780i \(-0.670601\pi\)
0.943848 0.330381i \(-0.107177\pi\)
\(132\) 0 0
\(133\) 8.44000e7 4.78656e8i 0.269734 1.52974i
\(134\) 8.10959e8i 2.51524i
\(135\) 0 0
\(136\) 4.51037e8 1.31843
\(137\) −7.16013e7 1.26252e7i −0.203254 0.0358391i 0.0710942 0.997470i \(-0.477351\pi\)
−0.274348 + 0.961630i \(0.588462\pi\)
\(138\) 0 0
\(139\) 6.06880e8 + 2.20886e8i 1.62571 + 0.591711i 0.984458 0.175617i \(-0.0561922\pi\)
0.641254 + 0.767329i \(0.278414\pi\)
\(140\) −8.42950e8 1.00459e9i −2.19427 2.61503i
\(141\) 0 0
\(142\) −5.94201e8 + 2.16271e8i −1.46144 + 0.531919i
\(143\) −3.79409e8 2.19052e8i −0.907327 0.523846i
\(144\) 0 0
\(145\) 7.65220e7 + 1.32540e8i 0.173107 + 0.299830i
\(146\) −7.52489e7 + 8.96781e7i −0.165611 + 0.197367i
\(147\) 0 0
\(148\) −3.15547e7 1.78956e8i −0.0657684 0.372991i
\(149\) −8.44613e6 + 1.48928e6i −0.0171361 + 0.00302156i −0.182210 0.983260i \(-0.558325\pi\)
0.165074 + 0.986281i \(0.447214\pi\)
\(150\) 0 0
\(151\) −1.49154e8 1.25155e8i −0.286898 0.240736i 0.487968 0.872862i \(-0.337738\pi\)
−0.774866 + 0.632125i \(0.782183\pi\)
\(152\) 3.84703e8 2.22109e8i 0.720695 0.416094i
\(153\) 0 0
\(154\) 5.54754e8 9.60862e8i 0.986320 1.70836i
\(155\) 1.72515e8 + 4.73980e8i 0.298881 + 0.821170i
\(156\) 0 0
\(157\) −6.99474e8 + 5.86928e8i −1.15126 + 0.966020i −0.999748 0.0224353i \(-0.992858\pi\)
−0.151510 + 0.988456i \(0.548414\pi\)
\(158\) −8.49194e7 + 2.33314e8i −0.136263 + 0.374380i
\(159\) 0 0
\(160\) −1.73538e8 + 9.84185e8i −0.264798 + 1.50175i
\(161\) 9.64177e8i 1.43500i
\(162\) 0 0
\(163\) 1.26949e8 0.179837 0.0899183 0.995949i \(-0.471339\pi\)
0.0899183 + 0.995949i \(0.471339\pi\)
\(164\) 3.88428e8 + 6.84904e7i 0.536952 + 0.0946791i
\(165\) 0 0
\(166\) −5.83318e8 2.12311e8i −0.768198 0.279601i
\(167\) 8.12252e8 + 9.68005e8i 1.04430 + 1.24455i 0.968915 + 0.247393i \(0.0795739\pi\)
0.0753843 + 0.997155i \(0.475982\pi\)
\(168\) 0 0
\(169\) −6.84794e8 + 2.49244e8i −0.839485 + 0.305547i
\(170\) 2.37894e9 + 1.37348e9i 2.84831 + 1.64447i
\(171\) 0 0
\(172\) −5.47157e8 9.47703e8i −0.625170 1.08283i
\(173\) 2.95566e8 3.52242e8i 0.329966 0.393239i −0.575398 0.817873i \(-0.695153\pi\)
0.905365 + 0.424635i \(0.139597\pi\)
\(174\) 0 0
\(175\) −2.24937e8 1.27568e9i −0.239833 1.36016i
\(176\) −1.13190e8 + 1.99584e7i −0.117966 + 0.0208006i
\(177\) 0 0
\(178\) −5.73187e8 4.80961e8i −0.570974 0.479104i
\(179\) 1.30805e9 7.55204e8i 1.27413 0.735618i 0.298365 0.954452i \(-0.403559\pi\)
0.975762 + 0.218834i \(0.0702254\pi\)
\(180\) 0 0
\(181\) 5.45421e8 9.44697e8i 0.508180 0.880193i −0.491775 0.870722i \(-0.663652\pi\)
0.999955 0.00947115i \(-0.00301481\pi\)
\(182\) −1.33778e9 3.67552e9i −1.21927 3.34991i
\(183\) 0 0
\(184\) −6.75047e8 + 5.66432e8i −0.588929 + 0.494170i
\(185\) 1.33572e8 3.66986e8i 0.114032 0.313301i
\(186\) 0 0
\(187\) −2.45016e8 + 1.38955e9i −0.200368 + 1.13634i
\(188\) 1.40490e9i 1.12464i
\(189\) 0 0
\(190\) 2.70542e9 2.07597
\(191\) −1.12748e9 1.98806e8i −0.847182 0.149381i −0.266827 0.963745i \(-0.585975\pi\)
−0.580355 + 0.814364i \(0.697086\pi\)
\(192\) 0 0
\(193\) 2.83300e8 + 1.03113e8i 0.204182 + 0.0743163i 0.442087 0.896972i \(-0.354238\pi\)
−0.237905 + 0.971289i \(0.576461\pi\)
\(194\) −1.84359e9 2.19710e9i −1.30154 1.55111i
\(195\) 0 0
\(196\) 3.50827e9 1.27691e9i 2.37722 0.865236i
\(197\) −3.88205e6 2.24130e6i −0.00257749 0.00148811i 0.498711 0.866769i \(-0.333807\pi\)
−0.501288 + 0.865280i \(0.667140\pi\)
\(198\) 0 0
\(199\) −8.90147e8 1.54178e9i −0.567609 0.983128i −0.996802 0.0799151i \(-0.974535\pi\)
0.429192 0.903213i \(-0.358798\pi\)
\(200\) 7.60995e8 9.06918e8i 0.475622 0.566824i
\(201\) 0 0
\(202\) −2.46624e8 1.39868e9i −0.148126 0.840062i
\(203\) −6.91186e8 + 1.21875e8i −0.407015 + 0.0717678i
\(204\) 0 0
\(205\) 6.49355e8 + 5.44874e8i 0.367677 + 0.308518i
\(206\) −2.89720e9 + 1.67270e9i −1.60883 + 0.928857i
\(207\) 0 0
\(208\) −2.02595e8 + 3.50904e8i −0.108237 + 0.187472i
\(209\) 4.75290e8 + 1.30585e9i 0.249100 + 0.684396i
\(210\) 0 0
\(211\) −8.22862e6 + 6.90463e6i −0.00415142 + 0.00348346i −0.644861 0.764300i \(-0.723085\pi\)
0.640710 + 0.767783i \(0.278640\pi\)
\(212\) 9.43071e8 2.59107e9i 0.466875 1.28273i
\(213\) 0 0
\(214\) −4.80925e8 + 2.72746e9i −0.229310 + 1.30048i
\(215\) 2.35186e9i 1.10067i
\(216\) 0 0
\(217\) −2.31314e9 −1.04319
\(218\) 2.67432e9 + 4.71555e8i 1.18410 + 0.208788i
\(219\) 0 0
\(220\) 3.52334e9 + 1.28239e9i 1.50406 + 0.547432i
\(221\) 3.19738e9 + 3.81049e9i 1.34037 + 1.59739i
\(222\) 0 0
\(223\) 1.40723e9 5.12190e8i 0.569044 0.207115i −0.0414439 0.999141i \(-0.513196\pi\)
0.610488 + 0.792026i \(0.290974\pi\)
\(224\) −3.96902e9 2.29151e9i −1.57649 0.910186i
\(225\) 0 0
\(226\) 2.13430e9 + 3.69672e9i 0.818129 + 1.41704i
\(227\) −3.27780e8 + 3.90632e8i −0.123446 + 0.147118i −0.824228 0.566258i \(-0.808390\pi\)
0.700781 + 0.713376i \(0.252835\pi\)
\(228\) 0 0
\(229\) −6.73079e8 3.81722e9i −0.244751 1.38805i −0.821070 0.570827i \(-0.806623\pi\)
0.576319 0.817225i \(-0.304488\pi\)
\(230\) −5.28532e9 + 9.31945e8i −1.88869 + 0.333026i
\(231\) 0 0
\(232\) −4.91384e8 4.12320e8i −0.169617 0.142325i
\(233\) −3.57343e9 + 2.06312e9i −1.21244 + 0.700004i −0.963291 0.268460i \(-0.913485\pi\)
−0.249152 + 0.968464i \(0.580152\pi\)
\(234\) 0 0
\(235\) −1.50968e9 + 2.61484e9i −0.495009 + 0.857380i
\(236\) 1.61326e9 + 4.43240e9i 0.520064 + 1.42886i
\(237\) 0 0
\(238\) −9.65014e9 + 8.09743e9i −3.00764 + 2.52371i
\(239\) −3.57255e8 + 9.81550e8i −0.109493 + 0.300830i −0.982323 0.187195i \(-0.940060\pi\)
0.872830 + 0.488025i \(0.162283\pi\)
\(240\) 0 0
\(241\) 2.50680e8 1.42168e9i 0.0743109 0.421438i −0.924844 0.380345i \(-0.875805\pi\)
0.999155 0.0410924i \(-0.0130838\pi\)
\(242\) 2.29959e9i 0.670485i
\(243\) 0 0
\(244\) −2.08618e9 −0.588562
\(245\) 7.90183e9 + 1.39331e9i 2.19312 + 0.386707i
\(246\) 0 0
\(247\) 4.60358e9 + 1.67556e9i 1.23682 + 0.450167i
\(248\) −1.35891e9 1.61949e9i −0.359241 0.428126i
\(249\) 0 0
\(250\) −1.19092e9 + 4.33459e8i −0.304875 + 0.110966i
\(251\) 5.61404e8 + 3.24127e8i 0.141443 + 0.0816619i 0.569051 0.822302i \(-0.307311\pi\)
−0.427609 + 0.903964i \(0.640644\pi\)
\(252\) 0 0
\(253\) −1.37836e9 2.38738e9i −0.336418 0.582693i
\(254\) −7.54138e9 + 8.98747e9i −1.81182 + 2.15925i
\(255\) 0 0
\(256\) −5.46039e8 3.09674e9i −0.127135 0.721016i
\(257\) −1.80140e8 + 3.17636e7i −0.0412932 + 0.00728110i −0.194257 0.980951i \(-0.562229\pi\)
0.152963 + 0.988232i \(0.451118\pi\)
\(258\) 0 0
\(259\) 1.37197e9 + 1.15122e9i 0.304892 + 0.255834i
\(260\) 1.14473e10 6.60909e9i 2.50501 1.44627i
\(261\) 0 0
\(262\) −4.76064e9 + 8.24568e9i −1.01032 + 1.74993i
\(263\) −3.06731e9 8.42736e9i −0.641112 1.76144i −0.648203 0.761467i \(-0.724479\pi\)
0.00709088 0.999975i \(-0.497743\pi\)
\(264\) 0 0
\(265\) 4.53958e9 3.80916e9i 0.920518 0.772406i
\(266\) −4.24340e9 + 1.16587e10i −0.847594 + 2.32874i
\(267\) 0 0
\(268\) 2.18240e9 1.23770e10i 0.423054 2.39926i
\(269\) 6.71344e9i 1.28214i 0.767482 + 0.641071i \(0.221510\pi\)
−0.767482 + 0.641071i \(0.778490\pi\)
\(270\) 0 0
\(271\) −8.11138e9 −1.50390 −0.751948 0.659223i \(-0.770885\pi\)
−0.751948 + 0.659223i \(0.770885\pi\)
\(272\) 1.28516e9 + 2.26608e8i 0.234790 + 0.0413999i
\(273\) 0 0
\(274\) 1.74400e9 + 6.34763e8i 0.309417 + 0.112618i
\(275\) 2.38063e9 + 2.83713e9i 0.416257 + 0.496076i
\(276\) 0 0
\(277\) −8.39877e9 + 3.05690e9i −1.42658 + 0.519234i −0.935950 0.352133i \(-0.885456\pi\)
−0.490632 + 0.871367i \(0.663234\pi\)
\(278\) −1.42770e10 8.24286e9i −2.39034 1.38006i
\(279\) 0 0
\(280\) 5.90642e9 + 1.02302e10i 0.960931 + 1.66438i
\(281\) 6.85448e9 8.16885e9i 1.09938 1.31019i 0.152612 0.988286i \(-0.451231\pi\)
0.946771 0.321908i \(-0.104324\pi\)
\(282\) 0 0
\(283\) −1.27797e9 7.24775e9i −0.199240 1.12995i −0.906250 0.422742i \(-0.861068\pi\)
0.707010 0.707203i \(-0.250043\pi\)
\(284\) 9.65083e9 1.70170e9i 1.48351 0.261583i
\(285\) 0 0
\(286\) 8.56687e9 + 7.18845e9i 1.28044 + 1.07441i
\(287\) −3.36656e9 + 1.94368e9i −0.496202 + 0.286483i
\(288\) 0 0
\(289\) 4.52231e9 7.83286e9i 0.648289 1.12287i
\(290\) −1.33616e9 3.67107e9i −0.188915 0.519040i
\(291\) 0 0
\(292\) 1.38980e9 1.16618e9i 0.191170 0.160411i
\(293\) −4.58166e8 + 1.25880e9i −0.0621659 + 0.170799i −0.966887 0.255205i \(-0.917857\pi\)
0.904721 + 0.426005i \(0.140079\pi\)
\(294\) 0 0
\(295\) −1.76032e9 + 9.98329e9i −0.232437 + 1.31821i
\(296\) 1.63687e9i 0.213229i
\(297\) 0 0
\(298\) 2.18926e8 0.0277608
\(299\) −9.57074e9 1.68758e9i −1.19746 0.211144i
\(300\) 0 0
\(301\) 1.01350e10 + 3.68884e9i 1.23469 + 0.449390i
\(302\) 3.19477e9 + 3.80738e9i 0.384072 + 0.457719i
\(303\) 0 0
\(304\) 1.20774e9 4.39581e8i 0.141410 0.0514689i
\(305\) −3.88286e9 2.24177e9i −0.448696 0.259055i
\(306\) 0 0
\(307\) 1.71939e9 + 2.97808e9i 0.193563 + 0.335261i 0.946428 0.322914i \(-0.104662\pi\)
−0.752866 + 0.658174i \(0.771329\pi\)
\(308\) −1.10526e10 + 1.31720e10i −1.22818 + 1.46368i
\(309\) 0 0
\(310\) −2.23581e9 1.26799e10i −0.242096 1.37300i
\(311\) 8.85574e9 1.56151e9i 0.946637 0.166918i 0.321041 0.947065i \(-0.395967\pi\)
0.625596 + 0.780148i \(0.284856\pi\)
\(312\) 0 0
\(313\) −1.97299e9 1.65553e9i −0.205564 0.172489i 0.534194 0.845362i \(-0.320615\pi\)
−0.739757 + 0.672874i \(0.765060\pi\)
\(314\) 2.01855e10 1.16541e10i 2.07644 1.19883i
\(315\) 0 0
\(316\) 1.92394e9 3.33236e9i 0.192949 0.334198i
\(317\) 1.17183e9 + 3.21958e9i 0.116045 + 0.318832i 0.984094 0.177646i \(-0.0568483\pi\)
−0.868049 + 0.496479i \(0.834626\pi\)
\(318\) 0 0
\(319\) 1.53721e9 1.28987e9i 0.148446 0.124561i
\(320\) 7.95753e9 2.18631e10i 0.758889 2.08503i
\(321\) 0 0
\(322\) 4.27383e9 2.42381e10i 0.397552 2.25463i
\(323\) 1.57781e10i 1.44959i
\(324\) 0 0
\(325\) 1.30565e10 1.17029
\(326\) −3.19132e9 5.62716e8i −0.282553 0.0498217i
\(327\) 0 0
\(328\) −3.33860e9 1.21515e9i −0.288449 0.104987i
\(329\) −8.90039e9 1.06071e10i −0.759671 0.905340i
\(330\) 0 0
\(331\) 1.73076e10 6.29946e9i 1.44187 0.524797i 0.501560 0.865123i \(-0.332760\pi\)
0.940307 + 0.340326i \(0.110538\pi\)
\(332\) 8.33137e9 + 4.81012e9i 0.685747 + 0.395916i
\(333\) 0 0
\(334\) −1.61281e10 2.79347e10i −1.29598 2.24470i
\(335\) 1.73621e10 2.06913e10i 1.37855 1.64289i
\(336\) 0 0
\(337\) −8.07216e8 4.57795e9i −0.0625850 0.354937i −0.999978 0.00666321i \(-0.997879\pi\)
0.937393 0.348274i \(-0.113232\pi\)
\(338\) 1.83196e10 3.23024e9i 1.40362 0.247496i
\(339\) 0 0
\(340\) −3.26116e10 2.73644e10i −2.44037 2.04772i
\(341\) 5.72752e9 3.30678e9i 0.423593 0.244562i
\(342\) 0 0
\(343\) −7.15965e9 + 1.24009e10i −0.517268 + 0.895934i
\(344\) 3.37142e9 + 9.26290e9i 0.240757 + 0.661475i
\(345\) 0 0
\(346\) −8.99148e9 + 7.54475e9i −0.627374 + 0.526430i
\(347\) −9.72752e9 + 2.67261e10i −0.670941 + 1.84339i −0.152450 + 0.988311i \(0.548716\pi\)
−0.518490 + 0.855083i \(0.673506\pi\)
\(348\) 0 0
\(349\) −2.37527e9 + 1.34708e10i −0.160107 + 0.908013i 0.793860 + 0.608101i \(0.208068\pi\)
−0.953967 + 0.299912i \(0.903043\pi\)
\(350\) 3.30660e10i 2.20348i
\(351\) 0 0
\(352\) 1.31035e10 0.853525
\(353\) −2.21431e10 3.90442e9i −1.42606 0.251453i −0.593255 0.805015i \(-0.702157\pi\)
−0.832808 + 0.553562i \(0.813268\pi\)
\(354\) 0 0
\(355\) 1.97910e10 + 7.20334e9i 1.24611 + 0.453545i
\(356\) 7.45377e9 + 8.88306e9i 0.464062 + 0.553048i
\(357\) 0 0
\(358\) −3.62302e10 + 1.31867e10i −2.20566 + 0.802794i
\(359\) −5.81312e8 3.35621e8i −0.0349970 0.0202056i 0.482399 0.875951i \(-0.339765\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(360\) 0 0
\(361\) 7.22003e8 + 1.25055e9i 0.0425118 + 0.0736327i
\(362\) −1.78986e10 + 2.13308e10i −1.04228 + 1.24214i
\(363\) 0 0
\(364\) 1.05261e10 + 5.96967e10i 0.599603 + 3.40052i
\(365\) 3.83989e9 6.77076e8i 0.216345 0.0381475i
\(366\) 0 0
\(367\) −1.44482e8 1.21235e8i −0.00796436 0.00668289i 0.638797 0.769376i \(-0.279432\pi\)
−0.646761 + 0.762693i \(0.723877\pi\)
\(368\) −2.20802e9 + 1.27480e9i −0.120396 + 0.0695105i
\(369\) 0 0
\(370\) −4.98452e9 + 8.63345e9i −0.265960 + 0.460657i
\(371\) 9.29482e9 + 2.55373e10i 0.490620 + 1.34797i
\(372\) 0 0
\(373\) 1.47010e10 1.23356e10i 0.759470 0.637271i −0.178519 0.983937i \(-0.557130\pi\)
0.937989 + 0.346665i \(0.112686\pi\)
\(374\) 1.23187e10 3.38454e10i 0.629621 1.72987i
\(375\) 0 0
\(376\) 2.19753e9 1.24628e10i 0.109947 0.623541i
\(377\) 7.07426e9i 0.350199i
\(378\) 0 0
\(379\) −3.09946e10 −1.50221 −0.751103 0.660185i \(-0.770478\pi\)
−0.751103 + 0.660185i \(0.770478\pi\)
\(380\) −4.12907e10 7.28067e9i −1.98024 0.349170i
\(381\) 0 0
\(382\) 2.74622e10 + 9.99542e9i 1.28968 + 0.469405i
\(383\) 8.91482e9 + 1.06243e10i 0.414302 + 0.493746i 0.932325 0.361620i \(-0.117776\pi\)
−0.518023 + 0.855367i \(0.673332\pi\)
\(384\) 0 0
\(385\) −3.47257e10 + 1.26391e10i −1.58055 + 0.575273i
\(386\) −6.66473e9 3.84788e9i −0.300216 0.173330i
\(387\) 0 0
\(388\) 2.22245e10 + 3.84940e10i 0.980630 + 1.69850i
\(389\) −1.64333e10 + 1.95845e10i −0.717673 + 0.855290i −0.994402 0.105658i \(-0.966305\pi\)
0.276729 + 0.960948i \(0.410749\pi\)
\(390\) 0 0
\(391\) 5.43514e9 + 3.08242e10i 0.232543 + 1.31882i
\(392\) −3.31191e10 + 5.83979e9i −1.40260 + 0.247316i
\(393\) 0 0
\(394\) 8.76547e7 + 7.35510e7i 0.00363739 + 0.00305213i
\(395\) 7.16177e9 4.13485e9i 0.294193 0.169852i
\(396\) 0 0
\(397\) 1.40601e10 2.43528e10i 0.566012 0.980362i −0.430943 0.902379i \(-0.641819\pi\)
0.996955 0.0779823i \(-0.0248478\pi\)
\(398\) 1.55430e10 + 4.27040e10i 0.619444 + 1.70191i
\(399\) 0 0
\(400\) 2.62398e9 2.20178e9i 0.102499 0.0860069i
\(401\) 6.59080e9 1.81081e10i 0.254894 0.700317i −0.744568 0.667546i \(-0.767345\pi\)
0.999463 0.0327706i \(-0.0104331\pi\)
\(402\) 0 0
\(403\) 4.04864e9 2.29610e10i 0.153493 0.870502i
\(404\) 2.20106e10i 0.826239i
\(405\) 0 0
\(406\) 1.79157e10 0.659371
\(407\) −5.04286e9 8.89192e8i −0.183780 0.0324054i
\(408\) 0 0
\(409\) −4.65542e10 1.69444e10i −1.66367 0.605525i −0.672733 0.739885i \(-0.734880\pi\)
−0.990933 + 0.134360i \(0.957102\pi\)
\(410\) −1.39087e10 1.65757e10i −0.492211 0.586594i
\(411\) 0 0
\(412\) 4.87191e10 1.77323e10i 1.69087 0.615427i
\(413\) −4.02606e10 2.32445e10i −1.38382 0.798950i
\(414\) 0 0
\(415\) 1.03377e10 + 1.79055e10i 0.348524 + 0.603661i
\(416\) 2.96932e10 3.53870e10i 0.991480 1.18160i
\(417\) 0 0
\(418\) −6.15981e9 3.49340e10i −0.201773 1.14431i
\(419\) −1.30485e8 + 2.30080e7i −0.00423354 + 0.000746487i −0.175765 0.984432i \(-0.556240\pi\)
0.171531 + 0.985179i \(0.445129\pi\)
\(420\) 0 0
\(421\) −1.35983e10 1.14103e10i −0.432868 0.363220i 0.400164 0.916443i \(-0.368953\pi\)
−0.833033 + 0.553224i \(0.813397\pi\)
\(422\) 2.37462e8 1.37099e8i 0.00748763 0.00432298i
\(423\) 0 0
\(424\) −1.24189e10 + 2.15101e10i −0.384255 + 0.665549i
\(425\) −1.43822e10 3.95148e10i −0.440829 1.21117i
\(426\) 0 0
\(427\) 1.57508e10 1.32165e10i 0.473795 0.397561i
\(428\) 1.46800e10 4.03329e10i 0.437472 1.20194i
\(429\) 0 0
\(430\) −1.04249e10 + 5.91225e10i −0.304928 + 1.72933i
\(431\) 8.67445e9i 0.251381i 0.992069 + 0.125691i \(0.0401147\pi\)
−0.992069 + 0.125691i \(0.959885\pi\)
\(432\) 0 0
\(433\) −4.02004e10 −1.14361 −0.571807 0.820388i \(-0.693757\pi\)
−0.571807 + 0.820388i \(0.693757\pi\)
\(434\) 5.81491e10 + 1.02533e10i 1.63902 + 0.289004i
\(435\) 0 0
\(436\) −3.95470e10 1.43939e10i −1.09438 0.398321i
\(437\) 1.98148e10 + 2.36144e10i 0.543332 + 0.647517i
\(438\) 0 0
\(439\) 3.68034e10 1.33954e10i 0.990901 0.360659i 0.204832 0.978797i \(-0.434335\pi\)
0.786069 + 0.618138i \(0.212113\pi\)
\(440\) −2.92496e10 1.68872e10i −0.780385 0.450555i
\(441\) 0 0
\(442\) −6.34873e10 1.09963e11i −1.66340 2.88110i
\(443\) 1.64364e10 1.95882e10i 0.426768 0.508603i −0.509219 0.860637i \(-0.670066\pi\)
0.935987 + 0.352034i \(0.114510\pi\)
\(444\) 0 0
\(445\) 4.32761e9 + 2.45431e10i 0.110359 + 0.625877i
\(446\) −3.76462e10 + 6.63804e9i −0.951441 + 0.167765i
\(447\) 0 0
\(448\) 8.17349e10 + 6.85838e10i 2.02906 + 1.70259i
\(449\) 2.68255e8 1.54877e8i 0.00660028 0.00381067i −0.496696 0.867924i \(-0.665454\pi\)
0.503297 + 0.864114i \(0.332120\pi\)
\(450\) 0 0
\(451\) 5.55726e9 9.62545e9i 0.134324 0.232656i
\(452\) −2.26257e10 6.21637e10i −0.542062 1.48930i
\(453\) 0 0
\(454\) 9.97146e9 8.36705e9i 0.234712 0.196947i
\(455\) −4.45574e10 + 1.22420e11i −1.03962 + 2.85633i
\(456\) 0 0
\(457\) −1.30511e10 + 7.40165e10i −0.299214 + 1.69693i 0.350347 + 0.936620i \(0.386064\pi\)
−0.649562 + 0.760309i \(0.725048\pi\)
\(458\) 9.89434e10i 2.24866i
\(459\) 0 0
\(460\) 8.31736e10 1.85761
\(461\) 1.17413e10 + 2.07030e9i 0.259962 + 0.0458384i 0.302110 0.953273i \(-0.402309\pi\)
−0.0421478 + 0.999111i \(0.513420\pi\)
\(462\) 0 0
\(463\) −4.36052e10 1.58710e10i −0.948886 0.345366i −0.179217 0.983810i \(-0.557356\pi\)
−0.769669 + 0.638443i \(0.779579\pi\)
\(464\) −1.19296e9 1.42172e9i −0.0257368 0.0306719i
\(465\) 0 0
\(466\) 9.89762e10 3.60244e10i 2.09888 0.763929i
\(467\) −3.51264e10 2.02802e10i −0.738526 0.426388i 0.0830074 0.996549i \(-0.473547\pi\)
−0.821533 + 0.570161i \(0.806881\pi\)
\(468\) 0 0
\(469\) 6.19343e10 + 1.07273e11i 1.28009 + 2.21718i
\(470\) 4.95418e10 5.90417e10i 1.01527 1.20995i
\(471\) 0 0
\(472\) −7.37808e9 4.18432e10i −0.148654 0.843056i
\(473\) −3.03685e10 + 5.35479e9i −0.606708 + 0.106979i
\(474\) 0 0
\(475\) −3.17257e10 2.66210e10i −0.623213 0.522938i
\(476\) 1.69074e11 9.76147e10i 3.29343 1.90146i
\(477\) 0 0
\(478\) 1.33318e10 2.30913e10i 0.255373 0.442320i
\(479\) −1.09639e10 3.01231e10i −0.208269 0.572214i 0.790944 0.611889i \(-0.209590\pi\)
−0.999213 + 0.0396750i \(0.987368\pi\)
\(480\) 0 0
\(481\) −1.38287e10 + 1.16037e10i −0.258346 + 0.216778i
\(482\) −1.26035e10 + 3.46279e10i −0.233509 + 0.641562i
\(483\) 0 0
\(484\) −6.18851e9 + 3.50968e10i −0.112773 + 0.639567i
\(485\) 9.55281e10i 1.72649i
\(486\) 0 0
\(487\) −6.91591e10 −1.22951 −0.614757 0.788716i \(-0.710746\pi\)
−0.614757 + 0.788716i \(0.710746\pi\)
\(488\) 1.85064e10 + 3.26319e9i 0.326320 + 0.0575390i
\(489\) 0 0
\(490\) −1.92465e11 7.00516e10i −3.33863 1.21516i
\(491\) −9.90310e9 1.18021e10i −0.170391 0.203064i 0.674091 0.738648i \(-0.264536\pi\)
−0.844481 + 0.535585i \(0.820091\pi\)
\(492\) 0 0
\(493\) −2.14098e10 + 7.79253e9i −0.362431 + 0.131914i
\(494\) −1.08301e11 6.25273e10i −1.81854 1.04993i
\(495\) 0 0
\(496\) −3.05835e9 5.29721e9i −0.0505312 0.0875226i
\(497\) −6.20837e10 + 7.39884e10i −1.01754 + 1.21266i
\(498\) 0 0
\(499\) −8.68063e9 4.92303e10i −0.140007 0.794018i −0.971241 0.238097i \(-0.923477\pi\)
0.831235 0.555922i \(-0.187635\pi\)
\(500\) 1.93426e10 3.41061e9i 0.309481 0.0545698i
\(501\) 0 0
\(502\) −1.26762e10 1.06366e10i −0.199606 0.167490i
\(503\) 3.52695e10 2.03628e10i 0.550969 0.318102i −0.198544 0.980092i \(-0.563621\pi\)
0.749513 + 0.661990i \(0.230288\pi\)
\(504\) 0 0
\(505\) −2.36521e10 + 4.09667e10i −0.363668 + 0.629891i
\(506\) 2.40676e10 + 6.61253e10i 0.367140 + 1.00871i
\(507\) 0 0
\(508\) 1.39285e11 1.16874e11i 2.09145 1.75494i
\(509\) 1.69845e10 4.66645e10i 0.253035 0.695209i −0.746519 0.665364i \(-0.768276\pi\)
0.999555 0.0298452i \(-0.00950142\pi\)
\(510\) 0 0
\(511\) −3.10502e9 + 1.76095e10i −0.0455388 + 0.258263i
\(512\) 2.15246e10i 0.313224i
\(513\) 0 0
\(514\) 4.66928e9 0.0668955
\(515\) 1.09732e11 + 1.93487e10i 1.55993 + 0.275058i
\(516\) 0 0
\(517\) 3.72016e10 + 1.35403e10i 0.520715 + 0.189525i
\(518\) −2.93865e10 3.50215e10i −0.408159 0.486425i
\(519\) 0 0
\(520\) −1.11886e11 + 4.07233e10i −1.53026 + 0.556968i
\(521\) 1.21235e11 + 6.99950e10i 1.64542 + 0.949984i 0.978860 + 0.204532i \(0.0655674\pi\)
0.666560 + 0.745451i \(0.267766\pi\)
\(522\) 0 0
\(523\) −1.76459e10 3.05635e10i −0.235850 0.408504i 0.723669 0.690147i \(-0.242454\pi\)
−0.959519 + 0.281642i \(0.909121\pi\)
\(524\) 9.48482e10 1.13036e11i 1.25807 1.49931i
\(525\) 0 0
\(526\) 3.97527e10 + 2.25449e11i 0.519306 + 2.94513i
\(527\) −7.39497e10 + 1.30393e10i −0.958724 + 0.169049i
\(528\) 0 0
\(529\) 1.31449e10 + 1.10298e10i 0.167855 + 0.140847i
\(530\) −1.31004e11 + 7.56349e10i −1.66027 + 0.958559i
\(531\) 0 0
\(532\) 9.61387e10 1.66517e11i 1.20020 2.07880i
\(533\) −1.34012e10 3.68196e10i −0.166049 0.456216i
\(534\) 0 0
\(535\) 7.06637e10 5.92939e10i 0.862544 0.723760i
\(536\) −3.87201e10 + 1.06383e11i −0.469113 + 1.28888i
\(537\) 0 0
\(538\) 2.97581e10 1.68767e11i 0.355203 2.01446i
\(539\) 1.05205e11i 1.24647i
\(540\) 0 0
\(541\) 1.20221e10 0.140343 0.0701714 0.997535i \(-0.477645\pi\)
0.0701714 + 0.997535i \(0.477645\pi\)
\(542\) 2.03909e11 + 3.59547e10i 2.36287 + 0.416638i
\(543\) 0 0
\(544\) −1.39805e11 5.08848e10i −1.59634 0.581021i
\(545\) −5.81385e10 6.92868e10i −0.658989 0.785352i
\(546\) 0 0
\(547\) −1.41913e10 + 5.16522e9i −0.158516 + 0.0576951i −0.420059 0.907497i \(-0.637991\pi\)
0.261543 + 0.965192i \(0.415769\pi\)
\(548\) −2.49090e10 1.43812e10i −0.276207 0.159468i
\(549\) 0 0
\(550\) −4.72700e10 8.18741e10i −0.516577 0.894738i
\(551\) −1.44237e10 + 1.71895e10i −0.156484 + 0.186491i
\(552\) 0 0
\(553\) 6.58548e9 + 3.73481e10i 0.0704185 + 0.399363i
\(554\) 2.24684e11 3.96178e10i 2.38525 0.420583i
\(555\) 0 0
\(556\) 1.95717e11 + 1.64226e11i 2.04799 + 1.71847i
\(557\) 1.29584e10 7.48156e9i 0.134627 0.0777269i −0.431174 0.902269i \(-0.641900\pi\)
0.565801 + 0.824542i \(0.308567\pi\)
\(558\) 0 0
\(559\) −5.43557e10 + 9.41469e10i −0.556670 + 0.964181i
\(560\) 1.16895e10 + 3.21168e10i 0.118863 + 0.326573i
\(561\) 0 0
\(562\) −2.08522e11 + 1.74971e11i −2.09029 + 1.75396i
\(563\) 1.44475e10 3.96943e10i 0.143800 0.395089i −0.846794 0.531921i \(-0.821470\pi\)
0.990594 + 0.136833i \(0.0436924\pi\)
\(564\) 0 0
\(565\) 2.46883e10 1.40014e11i 0.242268 1.37397i
\(566\) 1.87863e11i 1.83053i
\(567\) 0 0
\(568\) −8.82741e10 −0.848086
\(569\) −1.41148e11 2.48882e10i −1.34656 0.237435i −0.546553 0.837425i \(-0.684060\pi\)
−0.800008 + 0.599990i \(0.795171\pi\)
\(570\) 0 0
\(571\) 2.84027e10 + 1.03377e10i 0.267187 + 0.0972482i 0.472140 0.881524i \(-0.343482\pi\)
−0.204953 + 0.978772i \(0.565704\pi\)
\(572\) −1.11404e11 1.32766e11i −1.04068 1.24023i
\(573\) 0 0
\(574\) 9.32464e10 3.39389e10i 0.858983 0.312644i
\(575\) 7.11496e10 + 4.10782e10i 0.650880 + 0.375786i
\(576\) 0 0
\(577\) −1.41011e10 2.44238e10i −0.127218 0.220349i 0.795380 0.606112i \(-0.207272\pi\)
−0.922598 + 0.385763i \(0.873938\pi\)
\(578\) −1.48405e11 + 1.76862e11i −1.32965 + 1.58461i
\(579\) 0 0
\(580\) 1.05134e10 + 5.96244e10i 0.0929032 + 0.526880i
\(581\) −9.33756e10 + 1.64646e10i −0.819462 + 0.144493i
\(582\) 0 0
\(583\) −5.95220e10 4.99449e10i −0.515233 0.432332i
\(584\) −1.41530e10 + 8.17124e9i −0.121674 + 0.0702484i
\(585\) 0 0
\(586\) 1.70975e10 2.96137e10i 0.144991 0.251132i
\(587\) −5.88935e10 1.61809e11i −0.496038 1.36285i −0.895074 0.445918i \(-0.852877\pi\)
0.399036 0.916935i \(-0.369345\pi\)
\(588\) 0 0
\(589\) −5.66529e10 + 4.75374e10i −0.470718 + 0.394979i
\(590\) 8.85043e10 2.43164e11i 0.730393 2.00674i
\(591\) 0 0
\(592\) −8.22387e8 + 4.66399e9i −0.00669559 + 0.0379726i
\(593\) 5.60671e10i 0.453408i 0.973964 + 0.226704i \(0.0727950\pi\)
−0.973964 + 0.226704i \(0.927205\pi\)
\(594\) 0 0
\(595\) 4.19580e11 3.34770
\(596\) −3.34129e9 5.89160e8i −0.0264807 0.00466926i
\(597\) 0 0
\(598\) 2.33115e11 + 8.48470e10i 1.82291 + 0.663486i
\(599\) 8.07351e10 + 9.62163e10i 0.627126 + 0.747380i 0.982278 0.187429i \(-0.0600153\pi\)
−0.355152 + 0.934809i \(0.615571\pi\)
\(600\) 0 0
\(601\) −1.60390e11 + 5.83772e10i −1.22936 + 0.447451i −0.873379 0.487042i \(-0.838076\pi\)
−0.355983 + 0.934493i \(0.615854\pi\)
\(602\) −2.38429e11 1.37657e11i −1.81540 1.04812i
\(603\) 0 0
\(604\) −3.85131e10 6.67066e10i −0.289375 0.501212i
\(605\) −4.92326e10 + 5.86731e10i −0.367478 + 0.437943i
\(606\) 0 0
\(607\) −2.34693e10 1.33101e11i −0.172880 0.980452i −0.940562 0.339621i \(-0.889701\pi\)
0.767682 0.640831i \(-0.221410\pi\)
\(608\) −1.44301e11 + 2.54442e10i −1.05598 + 0.186198i
\(609\) 0 0
\(610\) 8.76729e10 + 7.35663e10i 0.633208 + 0.531324i
\(611\) 1.20867e11 6.97829e10i 0.867251 0.500707i
\(612\) 0 0
\(613\) 4.51983e10 7.82858e10i 0.320096 0.554423i −0.660411 0.750904i \(-0.729618\pi\)
0.980508 + 0.196481i \(0.0629514\pi\)
\(614\) −3.00226e10 8.24863e10i −0.211239 0.580375i
\(615\) 0 0
\(616\) 1.18651e11 9.95597e10i 0.824038 0.691450i
\(617\) 6.73455e10 1.85030e11i 0.464695 1.27674i −0.457223 0.889352i \(-0.651156\pi\)
0.921918 0.387386i \(-0.126622\pi\)
\(618\) 0 0
\(619\) −1.36246e10 + 7.72687e10i −0.0928025 + 0.526309i 0.902596 + 0.430488i \(0.141659\pi\)
−0.995399 + 0.0958207i \(0.969452\pi\)
\(620\) 1.99540e11i 1.35040i
\(621\) 0 0
\(622\) −2.29543e11 −1.53357
\(623\) −1.12553e11 1.98461e10i −0.747144 0.131742i
\(624\) 0 0
\(625\) 1.61616e11 + 5.88236e10i 1.05917 + 0.385506i
\(626\) 4.22599e10 + 5.03634e10i 0.275189 + 0.327957i
\(627\) 0 0
\(628\) −3.39437e11 + 1.23545e11i −2.18233 + 0.794304i
\(629\) 5.03506e10 + 2.90699e10i 0.321664 + 0.185713i
\(630\) 0 0
\(631\) 3.10276e10 + 5.37415e10i 0.195718 + 0.338994i 0.947136 0.320833i \(-0.103963\pi\)
−0.751417 + 0.659827i \(0.770630\pi\)
\(632\) −2.22796e10 + 2.65518e10i −0.139650 + 0.166428i
\(633\) 0 0
\(634\) −1.51871e10 8.61302e10i −0.0939977 0.533088i
\(635\) 3.84831e11 6.78561e10i 2.36687 0.417344i
\(636\) 0 0
\(637\) −2.84115e11 2.38401e11i −1.72559 1.44794i
\(638\) −4.43608e10 + 2.56117e10i −0.267742 + 0.154581i
\(639\) 0 0
\(640\) −1.69033e11 + 2.92775e11i −1.00752 + 1.74507i
\(641\) −9.42691e10 2.59002e11i −0.558390 1.53416i −0.821973 0.569526i \(-0.807127\pi\)
0.263584 0.964637i \(-0.415096\pi\)
\(642\) 0 0
\(643\) 2.14606e11 1.80076e11i 1.25545 1.05345i 0.259297 0.965798i \(-0.416509\pi\)
0.996151 0.0876483i \(-0.0279352\pi\)
\(644\) −1.30456e11 + 3.58425e11i −0.758440 + 2.08380i
\(645\) 0 0
\(646\) −6.99385e10 + 3.96641e11i −0.401593 + 2.27755i
\(647\) 1.18701e11i 0.677390i 0.940896 + 0.338695i \(0.109985\pi\)
−0.940896 + 0.338695i \(0.890015\pi\)
\(648\) 0 0
\(649\) 1.32918e11 0.749213
\(650\) −3.28224e11 5.78747e10i −1.83872 0.324217i
\(651\) 0 0
\(652\) 4.71922e10 + 1.71766e10i 0.261144 + 0.0950486i
\(653\) 1.10090e11 + 1.31200e11i 0.605473 + 0.721574i 0.978500 0.206246i \(-0.0661247\pi\)
−0.373027 + 0.927820i \(0.621680\pi\)
\(654\) 0 0
\(655\) 2.98000e11 1.08463e11i 1.61902 0.589274i
\(656\) −8.90229e9 5.13974e9i −0.0480713 0.0277540i
\(657\) 0 0
\(658\) 1.76727e11 + 3.06100e11i 0.942754 + 1.63290i
\(659\) −1.32926e11 + 1.58415e11i −0.704805 + 0.839954i −0.993061 0.117600i \(-0.962480\pi\)
0.288256 + 0.957553i \(0.406924\pi\)
\(660\) 0 0
\(661\) 4.95574e10 + 2.81054e11i 0.259599 + 1.47226i 0.783986 + 0.620779i \(0.213184\pi\)
−0.524387 + 0.851480i \(0.675705\pi\)
\(662\) −4.63013e11 + 8.16417e10i −2.41080 + 0.425089i
\(663\) 0 0
\(664\) −6.63834e10 5.57023e10i −0.341497 0.286550i
\(665\) 3.57872e11 2.06618e11i 1.82996 1.05653i
\(666\) 0 0
\(667\) 2.22569e10 3.85501e10i 0.112450 0.194770i
\(668\) 1.70975e11 + 4.69749e11i 0.858669 + 2.35917i
\(669\) 0 0
\(670\) −5.28176e11 + 4.43192e11i −2.62107 + 2.19934i
\(671\) −2.01064e10 + 5.52419e10i −0.0991847 + 0.272508i
\(672\) 0 0
\(673\) −1.42595e10 + 8.08695e10i −0.0695093 + 0.394207i 0.930127 + 0.367238i \(0.119697\pi\)
−0.999636 + 0.0269688i \(0.991415\pi\)
\(674\) 1.18662e11i 0.575004i
\(675\) 0 0
\(676\) −2.88290e11 −1.38052
\(677\) −1.47869e11 2.60732e10i −0.703916 0.124119i −0.189778 0.981827i \(-0.560777\pi\)
−0.514138 + 0.857708i \(0.671888\pi\)
\(678\) 0 0
\(679\) −4.11665e11 1.49834e11i −1.93671 0.704905i
\(680\) 2.46493e11 + 2.93759e11i 1.15284 + 1.37390i
\(681\) 0 0
\(682\) −1.58640e11 + 5.77402e10i −0.733288 + 0.266895i
\(683\) 2.82988e11 + 1.63383e11i 1.30043 + 0.750801i 0.980477 0.196634i \(-0.0630010\pi\)
0.319949 + 0.947435i \(0.396334\pi\)
\(684\) 0 0
\(685\) −3.09076e10 5.35335e10i −0.140379 0.243144i
\(686\) 2.34952e11 2.80005e11i 1.06092 1.26436i
\(687\) 0 0
\(688\) 4.95249e9 + 2.80870e10i 0.0221039 + 0.125358i
\(689\) −2.69760e11 + 4.75660e10i −1.19702 + 0.211067i
\(690\) 0 0
\(691\) −1.88959e11 1.58555e11i −0.828810 0.695454i 0.126207 0.992004i \(-0.459720\pi\)
−0.955017 + 0.296550i \(0.904164\pi\)
\(692\) 1.57534e11 9.09522e10i 0.686988 0.396633i
\(693\) 0 0
\(694\) 3.63004e11 6.28741e11i 1.56485 2.71040i
\(695\) 1.87799e11 + 5.15975e11i 0.804924 + 2.21151i
\(696\) 0 0
\(697\) −9.66704e10 + 8.11161e10i −0.409602 + 0.343697i
\(698\) 1.19422e11 3.28109e11i 0.503110 1.38228i
\(699\) 0 0
\(700\) 8.89851e10 5.04660e11i 0.370617 2.10187i
\(701\) 3.69835e11i 1.53157i −0.643098 0.765784i \(-0.722351\pi\)
0.643098 0.765784i \(-0.277649\pi\)
\(702\) 0 0
\(703\) 5.72608e10 0.234442
\(704\) −3.00428e11 5.29735e10i −1.22306 0.215659i
\(705\) 0 0
\(706\) 5.39340e11 + 1.96304e11i 2.17092 + 0.790150i
\(707\) −1.39443e11 1.66181e11i −0.558107 0.665126i
\(708\) 0 0
\(709\) 2.54355e11 9.25776e10i 1.00660 0.366371i 0.214471 0.976730i \(-0.431197\pi\)
0.792125 + 0.610359i \(0.208975\pi\)
\(710\) −4.65590e11 2.68808e11i −1.83219 1.05781i
\(711\) 0 0
\(712\) −5.22274e10 9.04605e10i −0.203226 0.351997i
\(713\) 9.43018e10 1.12384e11i 0.364890 0.434859i
\(714\) 0 0
\(715\) −6.46805e10 3.66821e11i −0.247485 1.40356i
\(716\) 5.88440e11 1.03758e11i 2.23898 0.394792i
\(717\) 0 0
\(718\) 1.31257e10 + 1.10138e10i 0.0493884 + 0.0414418i
\(719\) −4.07092e9 + 2.35035e9i −0.0152327 + 0.00879462i −0.507597 0.861595i \(-0.669466\pi\)
0.492364 + 0.870389i \(0.336133\pi\)
\(720\) 0 0
\(721\) −2.55494e11 + 4.42528e11i −0.945451 + 1.63757i
\(722\) −1.26070e10 3.46374e10i −0.0463940 0.127467i
\(723\) 0 0
\(724\) 3.30577e11 2.77387e11i 1.20314 1.00956i
\(725\) −2.04541e10 + 5.61972e10i −0.0740335 + 0.203405i
\(726\) 0 0
\(727\) 5.52832e10 3.13527e11i 0.197905 1.12237i −0.710317 0.703882i \(-0.751448\pi\)
0.908221 0.418490i \(-0.137441\pi\)
\(728\) 5.46033e11i 1.94399i
\(729\) 0 0
\(730\) −9.95309e10 −0.350483
\(731\) 3.44805e11 + 6.07983e10i 1.20755 + 0.212923i
\(732\) 0 0
\(733\) 3.96308e11 + 1.44244e11i 1.37283 + 0.499669i 0.919997 0.391926i \(-0.128191\pi\)
0.452833 + 0.891595i \(0.350413\pi\)
\(734\) 3.09470e9 + 3.68812e9i 0.0106619 + 0.0127064i
\(735\) 0 0
\(736\) 2.73143e11 9.94158e10i 0.930847 0.338800i
\(737\) −3.06709e11 1.77079e11i −1.03958 0.600200i
\(738\) 0 0
\(739\) 1.39500e11 + 2.41621e11i 0.467731 + 0.810134i 0.999320 0.0368686i \(-0.0117383\pi\)
−0.531589 + 0.847002i \(0.678405\pi\)
\(740\) 9.93086e10 1.18351e11i 0.331177 0.394681i
\(741\) 0 0
\(742\) −1.20462e11 6.83174e11i −0.397406 2.25380i
\(743\) −7.10841e9 + 1.25340e9i −0.0233248 + 0.00411279i −0.185298 0.982682i \(-0.559325\pi\)
0.161974 + 0.986795i \(0.448214\pi\)
\(744\) 0 0
\(745\) −5.58580e9 4.68705e9i −0.0181326 0.0152151i
\(746\) −4.24242e11 + 2.44936e11i −1.36980 + 0.790856i
\(747\) 0 0
\(748\) −2.79094e11 + 4.83404e11i −0.891546 + 1.54420i
\(749\) 1.44684e11 + 3.97517e11i 0.459721 + 1.26307i
\(750\) 0 0
\(751\) −6.48985e10 + 5.44563e10i −0.204021 + 0.171194i −0.739073 0.673625i \(-0.764736\pi\)
0.535052 + 0.844819i \(0.320292\pi\)
\(752\) 1.25230e10 3.44067e10i 0.0391595 0.107590i
\(753\) 0 0
\(754\) −3.13575e10 + 1.77837e11i −0.0970189 + 0.550221i
\(755\) 1.65542e11i 0.509471i
\(756\) 0 0
\(757\) −4.60417e11 −1.40206 −0.701032 0.713130i \(-0.747277\pi\)
−0.701032 + 0.713130i \(0.747277\pi\)
\(758\) 7.79163e11 + 1.37388e11i 2.36022 + 0.416170i
\(759\) 0 0
\(760\) 3.54901e11 + 1.29173e11i 1.06378 + 0.387185i
\(761\) −7.37481e9 8.78895e9i −0.0219893 0.0262059i 0.754938 0.655797i \(-0.227667\pi\)
−0.776927 + 0.629591i \(0.783223\pi\)
\(762\) 0 0
\(763\) 3.89771e11 1.41865e11i 1.15004 0.418579i
\(764\) −3.92234e11 2.26457e11i −1.15126 0.664678i
\(765\) 0 0
\(766\) −1.77013e11 3.06596e11i −0.514151 0.890535i
\(767\) 3.01200e11 3.58956e11i 0.870308 1.03719i
\(768\) 0 0
\(769\) −4.42064e10 2.50707e11i −0.126410 0.716904i −0.980461 0.196715i \(-0.936973\pi\)
0.854051 0.520189i \(-0.174139\pi\)
\(770\) 9.28982e11 1.63805e11i 2.64268 0.465976i
\(771\) 0 0
\(772\) 9.13633e10 + 7.66629e10i 0.257219 + 0.215832i
\(773\) −1.20697e11 + 6.96843e10i −0.338047 + 0.195172i −0.659408 0.751785i \(-0.729193\pi\)
0.321361 + 0.946957i \(0.395860\pi\)
\(774\) 0 0
\(775\) −9.85500e10 + 1.70694e11i −0.273181 + 0.473163i
\(776\) −1.36941e11 3.76242e11i −0.377647 1.03758i
\(777\) 0 0
\(778\) 4.99922e11 4.19484e11i 1.36453 1.14498i
\(779\) −4.25083e10 + 1.16791e11i −0.115431 + 0.317145i
\(780\) 0 0
\(781\) 4.79529e10 2.71954e11i 0.128887 0.730957i
\(782\) 7.98970e11i 2.13650i
\(783\) 0 0
\(784\) −9.73013e10 −0.257546
\(785\) −7.64530e11 1.34807e11i −2.01333 0.355005i
\(786\) 0 0
\(787\) 2.58977e11 + 9.42598e10i 0.675090 + 0.245713i 0.656738 0.754119i \(-0.271936\pi\)
0.0183521 + 0.999832i \(0.494158\pi\)
\(788\) −1.13987e9 1.35844e9i −0.00295631 0.00352319i
\(789\) 0 0
\(790\) −1.98366e11 + 7.21992e10i −0.509282 + 0.185363i
\(791\) 5.64649e11 + 3.26000e11i 1.44236 + 0.832744i
\(792\) 0 0
\(793\) 1.03623e11 + 1.79480e11i 0.262037 + 0.453862i
\(794\) −4.61398e11 + 5.49873e11i −1.16090 + 1.38350i
\(795\) 0 0
\(796\) −1.22298e11 6.93585e11i −0.304625 1.72762i
\(797\) −1.29154e11 + 2.27733e10i −0.320091 + 0.0564407i −0.331385 0.943496i \(-0.607516\pi\)
0.0112943 + 0.999936i \(0.496405\pi\)
\(798\) 0 0
\(799\) −3.44333e11 2.88930e11i −0.844874 0.708933i
\(800\) −3.38196e11 + 1.95257e11i −0.825674 + 0.476703i
\(801\) 0 0
\(802\) −2.45950e11 + 4.25998e11i −0.594496 + 1.02970i
\(803\) −1.74856e10 4.80413e10i −0.0420551 0.115545i
\(804\) 0 0
\(805\) −6.27966e11 + 5.26926e11i −1.49538 + 1.25478i
\(806\) −2.03555e11 + 5.59262e11i −0.482326 + 1.32518i
\(807\) 0 0
\(808\) 3.44288e10 1.95255e11i 0.0807748 0.458097i
\(809\) 1.21681e11i 0.284072i −0.989862 0.142036i \(-0.954635\pi\)
0.989862 0.142036i \(-0.0453648\pi\)
\(810\) 0 0
\(811\) 9.29506e10 0.214867 0.107433 0.994212i \(-0.465737\pi\)
0.107433 + 0.994212i \(0.465737\pi\)
\(812\) −2.73433e11 4.82136e10i −0.628966 0.110904i
\(813\) 0 0
\(814\) 1.22829e11 + 4.47062e10i 0.279772 + 0.101829i
\(815\) 6.93779e10 + 8.26814e10i 0.157250 + 0.187403i
\(816\) 0 0
\(817\) 3.24034e11 1.17939e11i 0.727281 0.264709i
\(818\) 1.09520e12 + 6.32316e11i 2.44614 + 1.41228i
\(819\) 0 0
\(820\) 1.67670e11 + 2.90413e11i 0.370851 + 0.642333i
\(821\) 6.00692e10 7.15877e10i 0.132215 0.157567i −0.695875 0.718163i \(-0.744983\pi\)
0.828090 + 0.560596i \(0.189428\pi\)
\(822\) 0 0
\(823\) −7.89598e9 4.47804e10i −0.0172110 0.0976086i 0.974992 0.222239i \(-0.0713366\pi\)
−0.992203 + 0.124631i \(0.960225\pi\)
\(824\) −4.59923e11 + 8.10968e10i −0.997645 + 0.175912i
\(825\) 0 0
\(826\) 9.09063e11 + 7.62795e11i 1.95287 + 1.63865i
\(827\) −2.41268e11 + 1.39296e11i −0.515795 + 0.297794i −0.735212 0.677837i \(-0.762918\pi\)
0.219418 + 0.975631i \(0.429584\pi\)
\(828\) 0 0
\(829\) 8.05320e10 1.39486e11i 0.170510 0.295332i −0.768088 0.640344i \(-0.778792\pi\)
0.938598 + 0.345012i \(0.112125\pi\)
\(830\) −1.80508e11 4.95942e11i −0.380351 1.04501i
\(831\) 0 0
\(832\) −8.23844e11 + 6.91287e11i −1.71930 + 1.44266i
\(833\) −4.08544e11 + 1.12247e12i −0.848513 + 2.33127i
\(834\) 0 0
\(835\) −1.86560e11 + 1.05804e12i −0.383772 + 2.17648i
\(836\) 5.49747e11i 1.12548i
\(837\) 0 0
\(838\) 3.38220e9 0.00685840
\(839\) 3.62946e11 + 6.39972e10i 0.732478 + 0.129156i 0.527433 0.849597i \(-0.323155\pi\)
0.205045 + 0.978753i \(0.434266\pi\)
\(840\) 0 0
\(841\) −4.39629e11 1.60012e11i −0.878825 0.319866i
\(842\) 2.91265e11 + 3.47116e11i 0.579482 + 0.690600i
\(843\) 0 0
\(844\) −3.99314e9 + 1.45339e9i −0.00786947 + 0.00286425i
\(845\) −5.36574e11 3.09791e11i −1.05245 0.607634i
\(846\) 0 0
\(847\) −1.75623e11 3.04189e11i −0.341231 0.591030i
\(848\) −4.61925e10 + 5.50501e10i −0.0893282 + 0.106457i
\(849\) 0 0
\(850\) 1.86395e11 + 1.05710e12i 0.357075 + 2.02507i
\(851\) −1.11865e11 + 1.97248e10i −0.213292 + 0.0376092i
\(852\) 0 0
\(853\) −7.35866e11 6.17465e11i −1.38996 1.16632i −0.965356 0.260936i \(-0.915969\pi\)
−0.424604 0.905379i \(-0.639587\pi\)
\(854\) −4.54537e11 + 2.62427e11i −0.854551 + 0.493375i
\(855\) 0 0
\(856\) −1.93314e11 + 3.34829e11i −0.360054 + 0.623632i
\(857\) −1.83325e11 5.03683e11i −0.339860 0.933756i −0.985434 0.170059i \(-0.945604\pi\)
0.645574 0.763697i \(-0.276618\pi\)
\(858\) 0 0
\(859\) 3.19597e11 2.68174e11i 0.586990 0.492543i −0.300244 0.953862i \(-0.597068\pi\)
0.887234 + 0.461319i \(0.152624\pi\)
\(860\) 3.18214e11 8.74285e11i 0.581735 1.59830i
\(861\) 0 0
\(862\) 3.84506e10 2.18064e11i 0.0696424 0.394962i
\(863\) 1.90539e11i 0.343512i 0.985140 + 0.171756i \(0.0549441\pi\)
−0.985140 + 0.171756i \(0.945056\pi\)
\(864\) 0 0
\(865\) 3.90942e11 0.698309
\(866\) 1.01058e12 + 1.78193e11i 1.79681 + 0.316825i
\(867\) 0 0
\(868\) −8.59891e11 3.12975e11i −1.51483 0.551354i
\(869\) −6.96979e10 8.30627e10i −0.122219 0.145655i
\(870\) 0 0
\(871\) −1.17323e12 + 4.27022e11i −2.03851 + 0.741955i
\(872\) 3.28305e11 + 1.89547e11i 0.567822 + 0.327832i
\(873\) 0 0
\(874\) −3.93445e11 6.81466e11i −0.674277 1.16788i
\(875\) −1.24430e11 + 1.48290e11i −0.212273 + 0.252977i
\(876\) 0 0
\(877\) −1.69490e11 9.61225e11i −0.286514 1.62490i −0.699828 0.714312i \(-0.746740\pi\)
0.413314 0.910589i \(-0.364371\pi\)
\(878\) −9.84566e11 + 1.73606e11i −1.65679 + 0.292136i
\(879\) 0 0
\(880\) −7.48574e10 6.28128e10i −0.124826 0.104741i
\(881\) 8.30379e11 4.79419e11i 1.37839 0.795815i 0.386426 0.922320i \(-0.373710\pi\)
0.991966 + 0.126506i \(0.0403762\pi\)
\(882\) 0 0
\(883\) 6.56496e10 1.13709e11i 0.107991 0.187047i −0.806965 0.590599i \(-0.798891\pi\)
0.914956 + 0.403553i \(0.132225\pi\)
\(884\) 6.73030e11 + 1.84913e12i 1.10211 + 3.02803i
\(885\) 0 0
\(886\) −5.00016e11 + 4.19564e11i −0.811427 + 0.680868i
\(887\) −8.69002e10 + 2.38756e11i −0.140387 + 0.385710i −0.989883 0.141885i \(-0.954684\pi\)
0.849496 + 0.527595i \(0.176906\pi\)
\(888\) 0 0
\(889\) −3.11183e11 + 1.76481e12i −0.498206 + 2.82547i
\(890\) 6.36163e11i 1.01393i
\(891\) 0 0
\(892\) 5.92428e11 0.935785
\(893\) −4.35973e11 7.68738e10i −0.685573 0.120885i
\(894\) 0 0
\(895\) 1.20672e12 + 4.39209e11i 1.88067 + 0.684509i
\(896\) −9.96546e11 1.18764e12i −1.54620 1.84269i
\(897\) 0 0
\(898\) −7.43008e9 + 2.70433e9i −0.0114258 + 0.00415866i
\(899\) 9.24847e10 + 5.33961e10i 0.141589 + 0.0817467i
\(900\) 0 0
\(901\) 4.41106e11 + 7.64018e11i 0.669335 + 1.15932i
\(902\) −1.82368e11 + 2.17338e11i −0.275500 + 0.328329i
\(903\) 0 0
\(904\) 1.03476e11 + 5.86844e11i 0.154941 + 0.878716i
\(905\) 9.13353e11 1.61049e11i 1.36158 0.240084i
\(906\) 0 0
\(907\) 5.49245e11 + 4.60871e11i 0.811591 + 0.681005i 0.950987 0.309231i \(-0.100072\pi\)
−0.139396 + 0.990237i \(0.544516\pi\)
\(908\) −1.74703e11 + 1.00865e11i −0.257015 + 0.148388i
\(909\) 0 0
\(910\) 1.66276e12 2.87998e12i 2.42473 4.19975i
\(911\) −2.82777e11 7.76924e11i −0.410555 1.12799i −0.956897 0.290428i \(-0.906202\pi\)
0.546342 0.837562i \(-0.316020\pi\)
\(912\) 0 0
\(913\) 2.07668e11 1.74255e11i 0.298874 0.250785i
\(914\) 6.56174e11 1.80282e12i 0.940231 2.58326i
\(915\) 0 0
\(916\) 2.66270e11 1.51009e12i 0.378217 2.14497i
\(917\) 1.45431e12i 2.05675i
\(918\) 0 0
\(919\) 1.09601e12 1.53658 0.768288 0.640104i \(-0.221109\pi\)
0.768288 + 0.640104i \(0.221109\pi\)
\(920\) −7.37831e11 1.30099e11i −1.02992 0.181604i
\(921\) 0 0
\(922\) −2.85982e11 1.04089e11i −0.395745 0.144039i
\(923\) −6.25770e11 7.45764e11i −0.862200 1.02753i
\(924\) 0 0
\(925\) 1.43404e11 5.21948e10i 0.195882 0.0712952i
\(926\) 1.02583e12 + 5.92260e11i 1.39518 + 0.805506i
\(927\) 0 0
\(928\) 1.05794e11 + 1.83240e11i 0.142649 + 0.247075i
\(929\) −4.47446e11 + 5.33245e11i −0.600727 + 0.715919i −0.977630 0.210334i \(-0.932545\pi\)
0.376902 + 0.926253i \(0.376989\pi\)
\(930\) 0 0
\(931\) 2.04287e11 + 1.15857e12i 0.271920 + 1.54214i
\(932\) −1.60754e12 + 2.83453e11i −2.13058 + 0.375679i
\(933\) 0 0
\(934\) 7.93135e11 + 6.65519e11i 1.04222 + 0.874527i
\(935\) −1.03891e12 + 5.99817e11i −1.35936 + 0.784825i
\(936\) 0 0
\(937\) −1.55285e11 + 2.68961e11i −0.201452 + 0.348925i −0.948996 0.315287i \(-0.897899\pi\)
0.747545 + 0.664212i \(0.231233\pi\)
\(938\) −1.08144e12 2.97124e12i −1.39699 3.83819i
\(939\) 0 0
\(940\) −9.15007e11 + 7.67782e11i −1.17196 + 0.983392i
\(941\) −6.34290e10 + 1.74270e11i −0.0808964 + 0.222261i −0.973546 0.228489i \(-0.926621\pi\)
0.892650 + 0.450750i \(0.148844\pi\)
\(942\) 0 0
\(943\) 4.28131e10 2.42805e11i 0.0541415 0.307052i
\(944\) 1.22932e11i 0.154802i
\(945\) 0 0
\(946\) 7.87160e11 0.982876
\(947\) −6.64181e11 1.17113e11i −0.825822 0.145615i −0.255263 0.966872i \(-0.582162\pi\)
−0.570559 + 0.821257i \(0.693273\pi\)
\(948\) 0 0
\(949\) −1.69363e11 6.16430e10i −0.208811 0.0760009i
\(950\) 6.79541e11 + 8.09845e11i 0.834297 + 0.994277i
\(951\) 0 0
\(952\) −1.65254e12 + 6.01474e11i −2.01188 + 0.732266i
\(953\) −5.06794e11 2.92598e11i −0.614412 0.354731i 0.160278 0.987072i \(-0.448761\pi\)
−0.774690 + 0.632341i \(0.782094\pi\)
\(954\) 0 0
\(955\) −4.86692e11 8.42975e11i −0.585114 1.01345i
\(956\) −2.65614e11 + 3.16546e11i −0.317994 + 0.378971i
\(957\) 0 0
\(958\) 1.42094e11 + 8.05854e11i 0.168699 + 0.956741i
\(959\) 2.79173e11 4.92258e10i 0.330065 0.0581994i
\(960\) 0 0
\(961\) −3.83733e11 3.21990e11i −0.449920 0.377528i
\(962\) 3.99070e11 2.30403e11i 0.465960 0.269022i
\(963\) 0 0
\(964\) 2.85546e11 4.94581e11i 0.330650 0.572702i
\(965\) 8.76675e10 + 2.40864e11i 0.101095 + 0.277756i
\(966\) 0 0
\(967\) 4.53600e11 3.80616e11i 0.518761 0.435292i −0.345438 0.938441i \(-0.612270\pi\)
0.864200 + 0.503149i \(0.167825\pi\)
\(968\) 1.09796e11 3.01663e11i 0.125051 0.343574i
\(969\) 0 0
\(970\) 4.23440e11 2.40145e12i 0.478305 2.71260i
\(971\) 1.22816e12i 1.38158i −0.723053 0.690792i \(-0.757262\pi\)
0.723053 0.690792i \(-0.242738\pi\)
\(972\) 0 0
\(973\) −2.51808e12 −2.80943
\(974\) 1.73857e12 + 3.06556e11i 1.93177 + 0.340623i
\(975\) 0 0
\(976\) 5.10916e10 + 1.85958e10i 0.0563054 + 0.0204935i
\(977\) 3.07346e11 + 3.66281e11i 0.337326 + 0.402009i 0.907866 0.419261i \(-0.137711\pi\)
−0.570540 + 0.821270i \(0.693266\pi\)
\(978\) 0 0
\(979\) 3.07061e11 1.11761e11i 0.334268 0.121664i
\(980\) 2.74893e12 + 1.58709e12i 2.98029 + 1.72067i
\(981\) 0 0
\(982\) 1.96637e11 + 3.40585e11i 0.211455 + 0.366251i
\(983\) 6.20840e11 7.39888e11i 0.664914 0.792414i −0.323168 0.946342i \(-0.604748\pi\)
0.988082 + 0.153928i \(0.0491923\pi\)
\(984\) 0 0
\(985\) −6.61799e8 3.75325e9i −0.000703042 0.00398715i
\(986\) 5.72755e11 1.00992e11i 0.605984 0.106851i
\(987\) 0 0
\(988\) 1.48464e12 + 1.24576e12i 1.55809 + 1.30739i
\(989\) −5.92406e11 + 3.42026e11i −0.619205 + 0.357498i
\(990\) 0 0
\(991\) 4.11018e10 7.11905e10i 0.0426154 0.0738120i −0.843931 0.536452i \(-0.819764\pi\)
0.886546 + 0.462640i \(0.153098\pi\)
\(992\) 2.38506e11 + 6.55291e11i 0.246294 + 0.676686i
\(993\) 0 0
\(994\) 1.88866e12 1.58478e12i 1.93468 1.62339i
\(995\) 5.17689e11 1.42234e12i 0.528173 1.45114i
\(996\) 0 0
\(997\) −1.37239e11 + 7.78323e11i −0.138899 + 0.787734i 0.833166 + 0.553022i \(0.186526\pi\)
−0.972065 + 0.234711i \(0.924586\pi\)
\(998\) 1.27606e12i 1.28632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.f.a.8.4 138
3.2 odd 2 27.9.f.a.2.20 138
27.13 even 9 27.9.f.a.14.20 yes 138
27.14 odd 18 inner 81.9.f.a.71.4 138
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.f.a.2.20 138 3.2 odd 2
27.9.f.a.14.20 yes 138 27.13 even 9
81.9.f.a.8.4 138 1.1 even 1 trivial
81.9.f.a.71.4 138 27.14 odd 18 inner