Properties

Label 81.9.f.a.8.18
Level $81$
Weight $9$
Character 81.8
Analytic conductor $32.998$
Analytic rank $0$
Dimension $138$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(138\)
Relative dimension: \(23\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.18
Character \(\chi\) \(=\) 81.8
Dual form 81.9.f.a.71.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(18.2801 + 3.22328i) q^{2} +(83.2125 + 30.2869i) q^{4} +(223.403 + 266.242i) q^{5} +(-1438.86 + 523.701i) q^{7} +(-2691.76 - 1554.09i) q^{8} +(3225.67 + 5587.03i) q^{10} +(-262.444 + 312.769i) q^{11} +(-7243.71 - 41081.1i) q^{13} +(-27990.6 + 4935.49i) q^{14} +(-61562.3 - 51656.9i) q^{16} +(-52651.8 + 30398.5i) q^{17} +(81686.6 - 141485. i) q^{19} +(10526.3 + 28920.8i) q^{20} +(-5805.66 + 4871.53i) q^{22} +(-88565.0 + 243330. i) q^{23} +(46855.7 - 265732. i) q^{25} -774316. i q^{26} -135592. q^{28} +(-833385. - 146948. i) q^{29} +(-733729. - 267056. i) q^{31} +(-447401. - 533192. i) q^{32} +(-1.06047e6 + 385978. i) q^{34} +(-460877. - 266087. i) q^{35} +(-858362. - 1.48673e6i) q^{37} +(1.94929e6 - 2.32307e6i) q^{38} +(-187585. - 1.06385e6i) q^{40} +(24637.0 - 4344.17i) q^{41} +(738972. + 620071. i) q^{43} +(-31311.4 + 18077.7i) q^{44} +(-2.40330e6 + 4.16264e6i) q^{46} +(-463987. - 1.27479e6i) q^{47} +(-2.62005e6 + 2.19848e6i) q^{49} +(1.71306e6 - 4.70659e6i) q^{50} +(641451. - 3.63785e6i) q^{52} -6.06703e6i q^{53} -141903. q^{55} +(4.68694e6 + 826433. i) q^{56} +(-1.47607e7 - 5.37247e6i) q^{58} +(1.23794e7 + 1.47532e7i) q^{59} +(7.35050e6 - 2.67536e6i) q^{61} +(-1.25519e7 - 7.24683e6i) q^{62} +(3.82665e6 + 6.62796e6i) q^{64} +(9.31923e6 - 1.11062e7i) q^{65} +(-3.57529e6 - 2.02765e7i) q^{67} +(-5.30197e6 + 934880. i) q^{68} +(-7.56721e6 - 6.34965e6i) q^{70} +(-1.86096e7 + 1.07443e7i) q^{71} +(-2.63704e7 + 4.56749e7i) q^{73} +(-1.08988e7 - 2.99443e7i) q^{74} +(1.10825e7 - 9.29932e6i) q^{76} +(213822. - 587472. i) q^{77} +(6.77127e6 - 3.84018e7i) q^{79} -2.79308e7i q^{80} +464371. q^{82} +(1.82582e7 + 3.21941e6i) q^{83} +(-1.98560e7 - 7.22697e6i) q^{85} +(1.15098e7 + 1.37169e7i) q^{86} +(1.19251e6 - 434037. i) q^{88} +(-7.85112e7 - 4.53284e7i) q^{89} +(3.19369e7 + 5.53163e7i) q^{91} +(-1.47394e7 + 1.75658e7i) q^{92} +(-4.37272e6 - 2.47989e7i) q^{94} +(5.59184e7 - 9.85992e6i) q^{95} +(5.90263e7 + 4.95290e7i) q^{97} +(-5.49811e7 + 3.17433e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.2801 + 3.22328i 1.14251 + 0.201455i 0.712703 0.701466i \(-0.247471\pi\)
0.429806 + 0.902921i \(0.358582\pi\)
\(3\) 0 0
\(4\) 83.2125 + 30.2869i 0.325049 + 0.118308i
\(5\) 223.403 + 266.242i 0.357445 + 0.425987i 0.914561 0.404448i \(-0.132536\pi\)
−0.557116 + 0.830435i \(0.688092\pi\)
\(6\) 0 0
\(7\) −1438.86 + 523.701i −0.599274 + 0.218118i −0.623804 0.781581i \(-0.714414\pi\)
0.0245293 + 0.999699i \(0.492191\pi\)
\(8\) −2691.76 1554.09i −0.657168 0.379416i
\(9\) 0 0
\(10\) 3225.67 + 5587.03i 0.322567 + 0.558703i
\(11\) −262.444 + 312.769i −0.0179253 + 0.0213625i −0.774933 0.632044i \(-0.782216\pi\)
0.757007 + 0.653406i \(0.226661\pi\)
\(12\) 0 0
\(13\) −7243.71 41081.1i −0.253622 1.43836i −0.799585 0.600554i \(-0.794947\pi\)
0.545962 0.837810i \(-0.316164\pi\)
\(14\) −27990.6 + 4935.49i −0.728617 + 0.128475i
\(15\) 0 0
\(16\) −61562.3 51656.9i −0.939367 0.788222i
\(17\) −52651.8 + 30398.5i −0.630402 + 0.363963i −0.780908 0.624646i \(-0.785243\pi\)
0.150506 + 0.988609i \(0.451910\pi\)
\(18\) 0 0
\(19\) 81686.6 141485.i 0.626811 1.08567i −0.361377 0.932420i \(-0.617693\pi\)
0.988188 0.153249i \(-0.0489735\pi\)
\(20\) 10526.3 + 28920.8i 0.0657895 + 0.180755i
\(21\) 0 0
\(22\) −5805.66 + 4871.53i −0.0247834 + 0.0207957i
\(23\) −88565.0 + 243330.i −0.316483 + 0.869531i 0.674826 + 0.737977i \(0.264219\pi\)
−0.991309 + 0.131554i \(0.958003\pi\)
\(24\) 0 0
\(25\) 46855.7 265732.i 0.119951 0.680274i
\(26\) 774316.i 1.69444i
\(27\) 0 0
\(28\) −135592. −0.220599
\(29\) −833385. 146948.i −1.17829 0.207765i −0.449999 0.893029i \(-0.648576\pi\)
−0.728295 + 0.685264i \(0.759687\pi\)
\(30\) 0 0
\(31\) −733729. 267056.i −0.794491 0.289171i −0.0872894 0.996183i \(-0.527820\pi\)
−0.707202 + 0.707012i \(0.750043\pi\)
\(32\) −447401. 533192.i −0.426675 0.508492i
\(33\) 0 0
\(34\) −1.06047e6 + 385978.i −0.793562 + 0.288833i
\(35\) −460877. 266087.i −0.307123 0.177318i
\(36\) 0 0
\(37\) −858362. 1.48673e6i −0.457998 0.793276i 0.540857 0.841115i \(-0.318100\pi\)
−0.998855 + 0.0478387i \(0.984767\pi\)
\(38\) 1.94929e6 2.32307e6i 0.934850 1.11411i
\(39\) 0 0
\(40\) −187585. 1.06385e6i −0.0732754 0.415565i
\(41\) 24637.0 4344.17i 0.00871872 0.00153735i −0.169287 0.985567i \(-0.554147\pi\)
0.178006 + 0.984029i \(0.443035\pi\)
\(42\) 0 0
\(43\) 738972. + 620071.i 0.216150 + 0.181371i 0.744433 0.667697i \(-0.232720\pi\)
−0.528284 + 0.849068i \(0.677164\pi\)
\(44\) −31311.4 + 18077.7i −0.00835396 + 0.00482316i
\(45\) 0 0
\(46\) −2.40330e6 + 4.16264e6i −0.536756 + 0.929689i
\(47\) −463987. 1.27479e6i −0.0950854 0.261245i 0.883027 0.469322i \(-0.155502\pi\)
−0.978112 + 0.208077i \(0.933279\pi\)
\(48\) 0 0
\(49\) −2.62005e6 + 2.19848e6i −0.454490 + 0.381362i
\(50\) 1.71306e6 4.70659e6i 0.274089 0.753054i
\(51\) 0 0
\(52\) 641451. 3.63785e6i 0.0877304 0.497544i
\(53\) 6.06703e6i 0.768905i −0.923145 0.384452i \(-0.874390\pi\)
0.923145 0.384452i \(-0.125610\pi\)
\(54\) 0 0
\(55\) −141903. −0.0155075
\(56\) 4.68694e6 + 826433.i 0.476581 + 0.0840341i
\(57\) 0 0
\(58\) −1.47607e7 5.37247e6i −1.30436 0.474747i
\(59\) 1.23794e7 + 1.47532e7i 1.02163 + 1.21753i 0.975820 + 0.218575i \(0.0701408\pi\)
0.0458050 + 0.998950i \(0.485415\pi\)
\(60\) 0 0
\(61\) 7.35050e6 2.67536e6i 0.530881 0.193225i −0.0626504 0.998036i \(-0.519955\pi\)
0.593532 + 0.804810i \(0.297733\pi\)
\(62\) −1.25519e7 7.24683e6i −0.849458 0.490435i
\(63\) 0 0
\(64\) 3.82665e6 + 6.62796e6i 0.228086 + 0.395057i
\(65\) 9.31923e6 1.11062e7i 0.522068 0.622176i
\(66\) 0 0
\(67\) −3.57529e6 2.02765e7i −0.177424 1.00622i −0.935309 0.353832i \(-0.884878\pi\)
0.757885 0.652388i \(-0.226233\pi\)
\(68\) −5.30197e6 + 934880.i −0.247971 + 0.0437240i
\(69\) 0 0
\(70\) −7.56721e6 6.34965e6i −0.315169 0.264458i
\(71\) −1.86096e7 + 1.07443e7i −0.732325 + 0.422808i −0.819272 0.573405i \(-0.805622\pi\)
0.0869473 + 0.996213i \(0.472289\pi\)
\(72\) 0 0
\(73\) −2.63704e7 + 4.56749e7i −0.928593 + 1.60837i −0.142914 + 0.989735i \(0.545647\pi\)
−0.785678 + 0.618635i \(0.787686\pi\)
\(74\) −1.08988e7 2.99443e7i −0.363457 0.998590i
\(75\) 0 0
\(76\) 1.10825e7 9.29932e6i 0.332188 0.278738i
\(77\) 213822. 587472.i 0.00608262 0.0167119i
\(78\) 0 0
\(79\) 6.77127e6 3.84018e7i 0.173845 0.985923i −0.765624 0.643289i \(-0.777570\pi\)
0.939469 0.342635i \(-0.111319\pi\)
\(80\) 2.79308e7i 0.681904i
\(81\) 0 0
\(82\) 464371. 0.0102709
\(83\) 1.82582e7 + 3.21941e6i 0.384721 + 0.0678366i 0.362664 0.931920i \(-0.381867\pi\)
0.0220569 + 0.999757i \(0.492979\pi\)
\(84\) 0 0
\(85\) −1.98560e7 7.22697e6i −0.380378 0.138446i
\(86\) 1.15098e7 + 1.37169e7i 0.210415 + 0.250762i
\(87\) 0 0
\(88\) 1.19251e6 434037.i 0.0198852 0.00723763i
\(89\) −7.85112e7 4.53284e7i −1.25133 0.722455i −0.279955 0.960013i \(-0.590320\pi\)
−0.971373 + 0.237558i \(0.923653\pi\)
\(90\) 0 0
\(91\) 3.19369e7 + 5.53163e7i 0.465722 + 0.806655i
\(92\) −1.47394e7 + 1.75658e7i −0.205745 + 0.245197i
\(93\) 0 0
\(94\) −4.37272e6 2.47989e7i −0.0560068 0.317630i
\(95\) 5.59184e7 9.85992e6i 0.686531 0.121054i
\(96\) 0 0
\(97\) 5.90263e7 + 4.95290e7i 0.666744 + 0.559464i 0.912100 0.409969i \(-0.134460\pi\)
−0.245356 + 0.969433i \(0.578905\pi\)
\(98\) −5.49811e7 + 3.17433e7i −0.596086 + 0.344151i
\(99\) 0 0
\(100\) 1.19472e7 2.06931e7i 0.119472 0.206931i
\(101\) 6.70812e7 + 1.84304e8i 0.644637 + 1.77113i 0.636645 + 0.771157i \(0.280322\pi\)
0.00799213 + 0.999968i \(0.497456\pi\)
\(102\) 0 0
\(103\) 8.03334e7 6.74077e7i 0.713752 0.598909i −0.211897 0.977292i \(-0.567964\pi\)
0.925649 + 0.378383i \(0.123520\pi\)
\(104\) −4.43453e7 + 1.21838e8i −0.379066 + 1.04147i
\(105\) 0 0
\(106\) 1.95557e7 1.10906e8i 0.154900 0.878480i
\(107\) 1.09060e8i 0.832017i 0.909361 + 0.416009i \(0.136571\pi\)
−0.909361 + 0.416009i \(0.863429\pi\)
\(108\) 0 0
\(109\) 7.61337e6 0.0539350 0.0269675 0.999636i \(-0.491415\pi\)
0.0269675 + 0.999636i \(0.491415\pi\)
\(110\) −2.59401e6 457393.i −0.0177174 0.00312406i
\(111\) 0 0
\(112\) 1.15632e8 + 4.20867e7i 0.734864 + 0.267469i
\(113\) 1.13330e8 + 1.35062e8i 0.695076 + 0.828359i 0.991960 0.126555i \(-0.0403919\pi\)
−0.296884 + 0.954914i \(0.595947\pi\)
\(114\) 0 0
\(115\) −8.45704e7 + 3.07811e7i −0.483534 + 0.175992i
\(116\) −6.48975e7 3.74686e7i −0.358423 0.206936i
\(117\) 0 0
\(118\) 1.78743e8 + 3.09593e8i 0.921939 + 1.59684i
\(119\) 5.98387e7 7.13130e7i 0.298397 0.355616i
\(120\) 0 0
\(121\) 3.71941e7 + 2.10938e8i 0.173513 + 0.984042i
\(122\) 1.42992e8 2.52133e7i 0.645463 0.113812i
\(123\) 0 0
\(124\) −5.29672e7 4.44447e7i −0.224037 0.187989i
\(125\) 1.98791e8 1.14772e8i 0.814248 0.470106i
\(126\) 0 0
\(127\) −9.87685e7 + 1.71072e8i −0.379668 + 0.657604i −0.991014 0.133759i \(-0.957295\pi\)
0.611346 + 0.791363i \(0.290628\pi\)
\(128\) 1.09531e8 + 3.00933e8i 0.408033 + 1.12106i
\(129\) 0 0
\(130\) 2.06155e8 1.72985e8i 0.721807 0.605668i
\(131\) 9.97225e7 2.73985e8i 0.338616 0.930341i −0.647171 0.762345i \(-0.724048\pi\)
0.985788 0.167996i \(-0.0537297\pi\)
\(132\) 0 0
\(133\) −4.34394e7 + 2.46357e8i −0.138828 + 0.787332i
\(134\) 3.82180e8i 1.18536i
\(135\) 0 0
\(136\) 1.88968e8 0.552373
\(137\) −4.29187e8 7.56772e7i −1.21833 0.214824i −0.472722 0.881212i \(-0.656728\pi\)
−0.745605 + 0.666388i \(0.767840\pi\)
\(138\) 0 0
\(139\) −1.12303e8 4.08750e7i −0.300838 0.109496i 0.187191 0.982324i \(-0.440062\pi\)
−0.488029 + 0.872827i \(0.662284\pi\)
\(140\) −3.02918e7 3.61003e7i −0.0788519 0.0939721i
\(141\) 0 0
\(142\) −3.74818e8 + 1.36423e8i −0.921864 + 0.335531i
\(143\) 1.47500e7 + 8.51589e6i 0.0352733 + 0.0203651i
\(144\) 0 0
\(145\) −1.47057e8 2.54711e8i −0.332671 0.576202i
\(146\) −6.29278e8 + 7.49944e8i −1.38494 + 1.65051i
\(147\) 0 0
\(148\) −2.63981e7 1.49711e8i −0.0550208 0.312038i
\(149\) 6.60425e8 1.16451e8i 1.33992 0.236264i 0.542686 0.839936i \(-0.317407\pi\)
0.797233 + 0.603672i \(0.206296\pi\)
\(150\) 0 0
\(151\) −6.82796e8 5.72934e8i −1.31336 1.10204i −0.987668 0.156562i \(-0.949959\pi\)
−0.325691 0.945476i \(-0.605597\pi\)
\(152\) −4.39762e8 + 2.53896e8i −0.823840 + 0.475644i
\(153\) 0 0
\(154\) 5.80229e6 1.00499e7i 0.0103161 0.0178681i
\(155\) −9.28162e7 2.55010e8i −0.160804 0.441805i
\(156\) 0 0
\(157\) 9.14157e8 7.67068e8i 1.50460 1.26251i 0.631092 0.775708i \(-0.282607\pi\)
0.873511 0.486804i \(-0.161837\pi\)
\(158\) 2.47560e8 6.80164e8i 0.397239 1.09140i
\(159\) 0 0
\(160\) 4.20071e7 2.38234e8i 0.0640977 0.363516i
\(161\) 3.96499e8i 0.590118i
\(162\) 0 0
\(163\) −8.51414e8 −1.20612 −0.603060 0.797696i \(-0.706052\pi\)
−0.603060 + 0.797696i \(0.706052\pi\)
\(164\) 2.18168e6 + 384689.i 0.00301589 + 0.000531783i
\(165\) 0 0
\(166\) 3.23385e8 + 1.17703e8i 0.425880 + 0.155008i
\(167\) −9.10357e8 1.08492e9i −1.17043 1.39487i −0.902093 0.431541i \(-0.857970\pi\)
−0.268338 0.963325i \(-0.586474\pi\)
\(168\) 0 0
\(169\) −8.68649e8 + 3.16162e8i −1.06487 + 0.387582i
\(170\) −3.39675e8 1.96111e8i −0.406694 0.234805i
\(171\) 0 0
\(172\) 4.27117e7 + 7.39789e7i 0.0488015 + 0.0845267i
\(173\) −2.97039e8 + 3.53997e8i −0.331611 + 0.395199i −0.905926 0.423436i \(-0.860824\pi\)
0.574315 + 0.818634i \(0.305268\pi\)
\(174\) 0 0
\(175\) 7.17455e7 + 4.06889e8i 0.0764967 + 0.433834i
\(176\) 3.23134e7 5.69772e6i 0.0336769 0.00593814i
\(177\) 0 0
\(178\) −1.28909e9 1.08167e9i −1.28411 1.07750i
\(179\) 6.54667e8 3.77972e8i 0.637688 0.368170i −0.146035 0.989279i \(-0.546651\pi\)
0.783723 + 0.621110i \(0.213318\pi\)
\(180\) 0 0
\(181\) 1.30127e8 2.25387e8i 0.121242 0.209997i −0.799016 0.601310i \(-0.794646\pi\)
0.920258 + 0.391313i \(0.127979\pi\)
\(182\) 4.05511e8 + 1.11413e9i 0.369587 + 1.01543i
\(183\) 0 0
\(184\) 6.16553e8 5.17349e8i 0.537897 0.451349i
\(185\) 2.04068e8 5.60671e8i 0.174216 0.478654i
\(186\) 0 0
\(187\) 4.31045e6 2.44458e7i 0.00352498 0.0199911i
\(188\) 1.20131e8i 0.0961668i
\(189\) 0 0
\(190\) 1.05398e9 0.808754
\(191\) 3.97575e8 + 7.01032e7i 0.298735 + 0.0526750i 0.321007 0.947077i \(-0.395979\pi\)
−0.0222719 + 0.999752i \(0.507090\pi\)
\(192\) 0 0
\(193\) −1.13999e9 4.14921e8i −0.821619 0.299045i −0.103204 0.994660i \(-0.532910\pi\)
−0.718414 + 0.695615i \(0.755132\pi\)
\(194\) 9.19364e8 + 1.09566e9i 0.649053 + 0.773512i
\(195\) 0 0
\(196\) −2.84606e8 + 1.03588e8i −0.192850 + 0.0701916i
\(197\) −1.93591e9 1.11770e9i −1.28535 0.742096i −0.307527 0.951539i \(-0.599502\pi\)
−0.977821 + 0.209443i \(0.932835\pi\)
\(198\) 0 0
\(199\) −1.14409e8 1.98163e8i −0.0729540 0.126360i 0.827241 0.561848i \(-0.189909\pi\)
−0.900195 + 0.435488i \(0.856576\pi\)
\(200\) −5.39095e8 + 6.42469e8i −0.336935 + 0.401543i
\(201\) 0 0
\(202\) 6.32189e8 + 3.58532e9i 0.379701 + 2.15339i
\(203\) 1.27608e9 2.25007e8i 0.751439 0.132499i
\(204\) 0 0
\(205\) 6.66059e6 + 5.58890e6i 0.00377135 + 0.00316454i
\(206\) 1.68578e9 9.73285e8i 0.936121 0.540470i
\(207\) 0 0
\(208\) −1.67618e9 + 2.90324e9i −0.895506 + 1.55106i
\(209\) 2.28140e7 + 6.26811e7i 0.0119569 + 0.0328512i
\(210\) 0 0
\(211\) 2.08099e9 1.74615e9i 1.04988 0.880953i 0.0567980 0.998386i \(-0.481911\pi\)
0.993081 + 0.117433i \(0.0374665\pi\)
\(212\) 1.83751e8 5.04853e8i 0.0909677 0.249932i
\(213\) 0 0
\(214\) −3.51533e8 + 1.99364e9i −0.167614 + 0.950587i
\(215\) 3.35271e8i 0.156907i
\(216\) 0 0
\(217\) 1.19559e9 0.539192
\(218\) 1.39173e8 + 2.45400e7i 0.0616212 + 0.0108655i
\(219\) 0 0
\(220\) −1.18081e7 4.29780e6i −0.00504068 0.00183466i
\(221\) 1.63020e9 + 1.94280e9i 0.683395 + 0.814438i
\(222\) 0 0
\(223\) 9.99762e8 3.63884e8i 0.404275 0.147144i −0.131876 0.991266i \(-0.542100\pi\)
0.536151 + 0.844122i \(0.319878\pi\)
\(224\) 9.22981e8 + 5.32883e8i 0.366607 + 0.211661i
\(225\) 0 0
\(226\) 1.63635e9 + 2.83424e9i 0.627253 + 1.08643i
\(227\) 1.55800e9 1.85676e9i 0.586767 0.699281i −0.388214 0.921569i \(-0.626908\pi\)
0.974981 + 0.222288i \(0.0713525\pi\)
\(228\) 0 0
\(229\) −5.67440e8 3.21811e9i −0.206337 1.17020i −0.895321 0.445421i \(-0.853054\pi\)
0.688984 0.724777i \(-0.258057\pi\)
\(230\) −1.64517e9 + 2.90089e8i −0.587896 + 0.103662i
\(231\) 0 0
\(232\) 2.01490e9 + 1.69070e9i 0.695508 + 0.583600i
\(233\) −3.12090e9 + 1.80185e9i −1.05890 + 0.611358i −0.925129 0.379653i \(-0.876043\pi\)
−0.133775 + 0.991012i \(0.542710\pi\)
\(234\) 0 0
\(235\) 2.35747e8 4.08325e8i 0.0772991 0.133886i
\(236\) 5.83293e8 + 1.60258e9i 0.188035 + 0.516622i
\(237\) 0 0
\(238\) 1.32372e9 1.11073e9i 0.412562 0.346180i
\(239\) −7.81125e8 + 2.14612e9i −0.239403 + 0.657754i 0.760561 + 0.649266i \(0.224924\pi\)
−0.999964 + 0.00848739i \(0.997298\pi\)
\(240\) 0 0
\(241\) 6.31882e8 3.58358e9i 0.187313 1.06230i −0.735635 0.677379i \(-0.763116\pi\)
0.922948 0.384926i \(-0.125773\pi\)
\(242\) 3.97586e9i 1.15923i
\(243\) 0 0
\(244\) 6.92682e8 0.195422
\(245\) −1.17065e9 2.06418e8i −0.324911 0.0572905i
\(246\) 0 0
\(247\) −6.40409e9 2.33090e9i −1.72056 0.626232i
\(248\) 1.55999e9 + 1.85913e9i 0.412398 + 0.491477i
\(249\) 0 0
\(250\) 4.00387e9 1.45729e9i 1.02499 0.373066i
\(251\) −3.02697e9 1.74762e9i −0.762629 0.440304i 0.0676098 0.997712i \(-0.478463\pi\)
−0.830239 + 0.557408i \(0.811796\pi\)
\(252\) 0 0
\(253\) −5.28628e7 9.15610e7i −0.0129023 0.0223475i
\(254\) −2.35692e9 + 2.80886e9i −0.566251 + 0.674832i
\(255\) 0 0
\(256\) 6.92024e8 + 3.92466e9i 0.161124 + 0.913782i
\(257\) −1.73307e9 + 3.05588e8i −0.397269 + 0.0700493i −0.368714 0.929543i \(-0.620202\pi\)
−0.0285553 + 0.999592i \(0.509091\pi\)
\(258\) 0 0
\(259\) 2.01366e9 + 1.68966e9i 0.447494 + 0.375492i
\(260\) 1.11185e9 6.41927e8i 0.243306 0.140473i
\(261\) 0 0
\(262\) 2.70607e9 4.68706e9i 0.574294 0.994706i
\(263\) −2.40551e9 6.60909e9i −0.502787 1.38140i −0.888542 0.458795i \(-0.848281\pi\)
0.385755 0.922601i \(-0.373941\pi\)
\(264\) 0 0
\(265\) 1.61530e9 1.35539e9i 0.327543 0.274841i
\(266\) −1.58815e9 + 4.36342e9i −0.317224 + 0.871566i
\(267\) 0 0
\(268\) 3.16602e8 1.79554e9i 0.0613726 0.348061i
\(269\) 4.63105e8i 0.0884445i −0.999022 0.0442222i \(-0.985919\pi\)
0.999022 0.0442222i \(-0.0140810\pi\)
\(270\) 0 0
\(271\) −9.95879e9 −1.84642 −0.923208 0.384301i \(-0.874442\pi\)
−0.923208 + 0.384301i \(0.874442\pi\)
\(272\) 4.81167e9 + 8.48426e8i 0.879063 + 0.155002i
\(273\) 0 0
\(274\) −7.60166e9 2.76678e9i −1.34867 0.490876i
\(275\) 7.08157e7 + 8.43948e7i 0.0123822 + 0.0147566i
\(276\) 0 0
\(277\) 7.16936e9 2.60943e9i 1.21776 0.443228i 0.348370 0.937357i \(-0.386735\pi\)
0.869388 + 0.494129i \(0.164513\pi\)
\(278\) −1.92117e9 1.10919e9i −0.321652 0.185706i
\(279\) 0 0
\(280\) 8.27046e8 + 1.43249e9i 0.134554 + 0.233055i
\(281\) 6.16695e9 7.34949e9i 0.989112 1.17878i 0.00522454 0.999986i \(-0.498337\pi\)
0.983887 0.178791i \(-0.0572186\pi\)
\(282\) 0 0
\(283\) 1.71278e9 + 9.71364e9i 0.267027 + 1.51439i 0.763201 + 0.646162i \(0.223627\pi\)
−0.496174 + 0.868223i \(0.665262\pi\)
\(284\) −1.87396e9 + 3.30430e8i −0.288063 + 0.0507933i
\(285\) 0 0
\(286\) 2.42182e8 + 2.03215e8i 0.0361974 + 0.0303733i
\(287\) −3.31741e7 + 1.91531e7i −0.00488958 + 0.00282300i
\(288\) 0 0
\(289\) −1.63974e9 + 2.84011e9i −0.235062 + 0.407139i
\(290\) −1.86722e9 5.13015e9i −0.264000 0.725334i
\(291\) 0 0
\(292\) −3.57770e9 + 3.00204e9i −0.492121 + 0.412939i
\(293\) −6.70230e8 + 1.84144e9i −0.0909396 + 0.249855i −0.976821 0.214057i \(-0.931332\pi\)
0.885882 + 0.463911i \(0.153554\pi\)
\(294\) 0 0
\(295\) −1.16232e9 + 6.59182e9i −0.153475 + 0.870397i
\(296\) 5.33588e9i 0.695087i
\(297\) 0 0
\(298\) 1.24480e10 1.57846
\(299\) 1.06378e10 + 1.87573e9i 1.33097 + 0.234686i
\(300\) 0 0
\(301\) −1.38801e9 5.05194e8i −0.169093 0.0615449i
\(302\) −1.06349e10 1.26742e10i −1.27851 1.52367i
\(303\) 0 0
\(304\) −1.23375e10 + 4.49049e9i −1.44455 + 0.525775i
\(305\) 2.35442e9 + 1.35932e9i 0.272072 + 0.157081i
\(306\) 0 0
\(307\) −2.48105e9 4.29730e9i −0.279307 0.483773i 0.691906 0.721988i \(-0.256771\pi\)
−0.971213 + 0.238214i \(0.923438\pi\)
\(308\) 3.55854e7 4.24090e7i 0.00395429 0.00471254i
\(309\) 0 0
\(310\) −8.74722e8 4.96080e9i −0.0947160 0.537161i
\(311\) 6.42742e9 1.13333e9i 0.687060 0.121147i 0.180790 0.983522i \(-0.442135\pi\)
0.506271 + 0.862375i \(0.331024\pi\)
\(312\) 0 0
\(313\) 6.45751e9 + 5.41849e9i 0.672802 + 0.564548i 0.913893 0.405954i \(-0.133061\pi\)
−0.241091 + 0.970502i \(0.577505\pi\)
\(314\) 1.91834e10 1.10755e10i 1.97336 1.13932i
\(315\) 0 0
\(316\) 1.72652e9 2.99043e9i 0.173151 0.299906i
\(317\) 1.74715e8 + 4.80026e8i 0.0173019 + 0.0475366i 0.948043 0.318142i \(-0.103059\pi\)
−0.930741 + 0.365679i \(0.880837\pi\)
\(318\) 0 0
\(319\) 2.64678e8 2.22091e8i 0.0255597 0.0214471i
\(320\) −9.09751e8 + 2.49952e9i −0.0867607 + 0.238373i
\(321\) 0 0
\(322\) 1.27803e9 7.24806e9i 0.118882 0.674215i
\(323\) 9.93262e9i 0.912544i
\(324\) 0 0
\(325\) −1.12560e10 −1.00890
\(326\) −1.55640e10 2.74435e9i −1.37800 0.242979i
\(327\) 0 0
\(328\) −7.30682e7 2.65946e7i −0.00631296 0.00229773i
\(329\) 1.33522e9 + 1.59125e9i 0.113965 + 0.135818i
\(330\) 0 0
\(331\) −7.92073e9 + 2.88291e9i −0.659862 + 0.240170i −0.650177 0.759783i \(-0.725305\pi\)
−0.00968542 + 0.999953i \(0.503083\pi\)
\(332\) 1.42180e9 + 8.20879e8i 0.117027 + 0.0675658i
\(333\) 0 0
\(334\) −1.31444e10 2.27668e10i −1.05622 1.82944i
\(335\) 4.59971e9 5.48172e9i 0.365217 0.435249i
\(336\) 0 0
\(337\) 2.27225e9 + 1.28866e10i 0.176172 + 0.999120i 0.936783 + 0.349912i \(0.113788\pi\)
−0.760611 + 0.649208i \(0.775101\pi\)
\(338\) −1.68981e10 + 2.97959e9i −1.29471 + 0.228292i
\(339\) 0 0
\(340\) −1.43338e9 1.20275e9i −0.107262 0.0900035i
\(341\) 2.76090e8 1.59400e8i 0.0204189 0.0117889i
\(342\) 0 0
\(343\) 7.03206e9 1.21799e10i 0.508050 0.879968i
\(344\) −1.02549e9 2.81751e9i −0.0732315 0.201202i
\(345\) 0 0
\(346\) −6.57095e9 + 5.51368e9i −0.458483 + 0.384713i
\(347\) 5.29741e9 1.45545e10i 0.365381 1.00388i −0.611715 0.791078i \(-0.709520\pi\)
0.977096 0.212798i \(-0.0682576\pi\)
\(348\) 0 0
\(349\) −4.91194e8 + 2.78570e9i −0.0331094 + 0.187773i −0.996877 0.0789708i \(-0.974837\pi\)
0.963768 + 0.266744i \(0.0859477\pi\)
\(350\) 7.66924e9i 0.511070i
\(351\) 0 0
\(352\) 2.84184e8 0.0185110
\(353\) −1.90149e10 3.35285e9i −1.22461 0.215931i −0.476299 0.879284i \(-0.658022\pi\)
−0.748307 + 0.663352i \(0.769133\pi\)
\(354\) 0 0
\(355\) −7.01802e9 2.55435e9i −0.441877 0.160830i
\(356\) −5.16025e9 6.14975e9i −0.321271 0.382875i
\(357\) 0 0
\(358\) 1.31857e10 4.79921e9i 0.802734 0.292171i
\(359\) 7.35567e9 + 4.24680e9i 0.442838 + 0.255672i 0.704801 0.709405i \(-0.251036\pi\)
−0.261963 + 0.965078i \(0.584370\pi\)
\(360\) 0 0
\(361\) −4.85363e9 8.40674e9i −0.285784 0.494993i
\(362\) 3.10523e9 3.70066e9i 0.180825 0.215499i
\(363\) 0 0
\(364\) 9.82190e8 + 5.57028e9i 0.0559487 + 0.317301i
\(365\) −1.80518e10 + 3.18302e9i −1.01707 + 0.179336i
\(366\) 0 0
\(367\) 1.46247e10 + 1.22716e10i 0.806163 + 0.676451i 0.949689 0.313195i \(-0.101400\pi\)
−0.143526 + 0.989647i \(0.545844\pi\)
\(368\) 1.80220e10 1.04050e10i 0.982678 0.567349i
\(369\) 0 0
\(370\) 5.53759e9 9.59138e9i 0.295470 0.511769i
\(371\) 3.17731e9 + 8.72959e9i 0.167712 + 0.460785i
\(372\) 0 0
\(373\) 2.34539e9 1.96802e9i 0.121166 0.101670i −0.580191 0.814480i \(-0.697022\pi\)
0.701357 + 0.712810i \(0.252578\pi\)
\(374\) 1.57591e8 4.32978e8i 0.00805463 0.0221299i
\(375\) 0 0
\(376\) −7.32200e8 + 4.15251e9i −0.0366335 + 0.207759i
\(377\) 3.53008e10i 1.74751i
\(378\) 0 0
\(379\) 9.45638e9 0.458319 0.229160 0.973389i \(-0.426402\pi\)
0.229160 + 0.973389i \(0.426402\pi\)
\(380\) 4.95173e9 + 8.73124e8i 0.237478 + 0.0418737i
\(381\) 0 0
\(382\) 7.04176e9 + 2.56299e9i 0.330695 + 0.120363i
\(383\) −2.14845e9 2.56042e9i −0.0998459 0.118992i 0.713808 0.700342i \(-0.246969\pi\)
−0.813653 + 0.581350i \(0.802525\pi\)
\(384\) 0 0
\(385\) 2.04178e8 7.43148e7i 0.00929323 0.00338246i
\(386\) −1.95017e10 1.12593e10i −0.878462 0.507180i
\(387\) 0 0
\(388\) 3.41165e9 + 5.90915e9i 0.150535 + 0.260734i
\(389\) −1.93823e9 + 2.30989e9i −0.0846461 + 0.100877i −0.806705 0.590954i \(-0.798751\pi\)
0.722059 + 0.691831i \(0.243196\pi\)
\(390\) 0 0
\(391\) −2.73378e9 1.55040e10i −0.116965 0.663342i
\(392\) 1.04692e10 1.84600e9i 0.443371 0.0781783i
\(393\) 0 0
\(394\) −3.17861e10 2.66717e10i −1.31902 1.10679i
\(395\) 1.17369e10 6.77629e9i 0.482130 0.278358i
\(396\) 0 0
\(397\) −4.50332e8 + 7.79998e8i −0.0181289 + 0.0314001i −0.874948 0.484218i \(-0.839104\pi\)
0.856819 + 0.515618i \(0.172438\pi\)
\(398\) −1.45268e9 3.99121e9i −0.0578947 0.159064i
\(399\) 0 0
\(400\) −1.66114e10 + 1.39387e10i −0.648885 + 0.544479i
\(401\) −3.39206e9 + 9.31962e9i −0.131186 + 0.360430i −0.987843 0.155457i \(-0.950315\pi\)
0.856657 + 0.515886i \(0.172537\pi\)
\(402\) 0 0
\(403\) −5.65602e9 + 3.20769e10i −0.214432 + 1.21611i
\(404\) 1.73681e10i 0.651968i
\(405\) 0 0
\(406\) 2.40522e10 0.885218
\(407\) 6.90274e8 + 1.21714e8i 0.0251561 + 0.00443570i
\(408\) 0 0
\(409\) 4.63141e10 + 1.68570e10i 1.65508 + 0.602402i 0.989579 0.143991i \(-0.0459937\pi\)
0.665506 + 0.746393i \(0.268216\pi\)
\(410\) 1.03742e8 + 1.23635e8i 0.00367129 + 0.00437527i
\(411\) 0 0
\(412\) 8.72631e9 3.17612e9i 0.302860 0.110232i
\(413\) −2.55385e10 1.47446e10i −0.877798 0.506797i
\(414\) 0 0
\(415\) 3.22180e9 + 5.58032e9i 0.108619 + 0.188134i
\(416\) −1.86633e10 + 2.22420e10i −0.623182 + 0.742679i
\(417\) 0 0
\(418\) 2.15005e8 + 1.21935e9i 0.00704277 + 0.0399415i
\(419\) 9.07900e9 1.60087e9i 0.294565 0.0519398i −0.0244125 0.999702i \(-0.507772\pi\)
0.318978 + 0.947762i \(0.396660\pi\)
\(420\) 0 0
\(421\) 2.97544e10 + 2.49669e10i 0.947159 + 0.794761i 0.978817 0.204738i \(-0.0656343\pi\)
−0.0316579 + 0.999499i \(0.510079\pi\)
\(422\) 4.36690e10 2.52123e10i 1.37697 0.794993i
\(423\) 0 0
\(424\) −9.42870e9 + 1.63310e10i −0.291735 + 0.505300i
\(425\) 5.61083e9 + 1.54156e10i 0.171977 + 0.472504i
\(426\) 0 0
\(427\) −9.17523e9 + 7.69893e9i −0.275998 + 0.231590i
\(428\) −3.30310e9 + 9.07519e9i −0.0984344 + 0.270446i
\(429\) 0 0
\(430\) −1.08067e9 + 6.12880e9i −0.0316097 + 0.179268i
\(431\) 4.74289e10i 1.37447i 0.726436 + 0.687234i \(0.241175\pi\)
−0.726436 + 0.687234i \(0.758825\pi\)
\(432\) 0 0
\(433\) −2.37974e10 −0.676984 −0.338492 0.940969i \(-0.609917\pi\)
−0.338492 + 0.940969i \(0.609917\pi\)
\(434\) 2.18555e10 + 3.85372e9i 0.616031 + 0.108623i
\(435\) 0 0
\(436\) 6.33527e8 + 2.30585e8i 0.0175315 + 0.00638095i
\(437\) 2.71931e10 + 3.24075e10i 0.745647 + 0.888628i
\(438\) 0 0
\(439\) 2.94082e10 1.07037e10i 0.791789 0.288188i 0.0857097 0.996320i \(-0.472684\pi\)
0.706080 + 0.708132i \(0.250462\pi\)
\(440\) 3.81969e8 + 2.20530e8i 0.0101910 + 0.00588378i
\(441\) 0 0
\(442\) 2.35381e10 + 4.07692e10i 0.616712 + 1.06818i
\(443\) −9.78540e8 + 1.16618e9i −0.0254076 + 0.0302796i −0.778599 0.627522i \(-0.784069\pi\)
0.753191 + 0.657802i \(0.228514\pi\)
\(444\) 0 0
\(445\) −5.47133e9 3.10295e10i −0.139525 0.791287i
\(446\) 1.94487e10 3.42933e9i 0.491531 0.0866702i
\(447\) 0 0
\(448\) −8.97708e9 7.53266e9i −0.222855 0.186998i
\(449\) −2.91593e10 + 1.68352e10i −0.717451 + 0.414221i −0.813814 0.581126i \(-0.802612\pi\)
0.0963628 + 0.995346i \(0.469279\pi\)
\(450\) 0 0
\(451\) −5.10712e6 + 8.84580e6i −0.000123444 + 0.000213811i
\(452\) 5.33990e9 + 1.46712e10i 0.127932 + 0.351490i
\(453\) 0 0
\(454\) 3.44654e10 2.89199e10i 0.811260 0.680728i
\(455\) −7.59270e9 + 2.08608e10i −0.177154 + 0.486726i
\(456\) 0 0
\(457\) 1.09556e10 6.21321e10i 0.251171 1.42446i −0.554541 0.832156i \(-0.687106\pi\)
0.805713 0.592307i \(-0.201783\pi\)
\(458\) 6.06566e10i 1.37853i
\(459\) 0 0
\(460\) −7.96958e9 −0.177993
\(461\) 3.07188e10 + 5.41656e9i 0.680145 + 0.119928i 0.503039 0.864264i \(-0.332215\pi\)
0.177106 + 0.984192i \(0.443326\pi\)
\(462\) 0 0
\(463\) 4.22751e10 + 1.53869e10i 0.919942 + 0.334831i 0.758215 0.652004i \(-0.226072\pi\)
0.161726 + 0.986836i \(0.448294\pi\)
\(464\) 4.37142e10 + 5.20966e10i 0.943085 + 1.12393i
\(465\) 0 0
\(466\) −6.28584e10 + 2.28786e10i −1.33297 + 0.485161i
\(467\) −6.93681e10 4.00497e10i −1.45845 0.842037i −0.459516 0.888169i \(-0.651977\pi\)
−0.998935 + 0.0461320i \(0.985310\pi\)
\(468\) 0 0
\(469\) 1.57631e10 + 2.73026e10i 0.325800 + 0.564302i
\(470\) 5.62563e9 6.70437e9i 0.115287 0.137394i
\(471\) 0 0
\(472\) −1.03946e10 5.89507e10i −0.209431 1.18774i
\(473\) −3.87878e8 + 6.83934e7i −0.00774909 + 0.00136637i
\(474\) 0 0
\(475\) −3.37697e10 2.83362e10i −0.663366 0.556630i
\(476\) 7.13918e9 4.12181e9i 0.139066 0.0802897i
\(477\) 0 0
\(478\) −2.11966e10 + 3.67137e10i −0.406027 + 0.703260i
\(479\) −5.05947e9 1.39008e10i −0.0961088 0.264057i 0.882317 0.470656i \(-0.155983\pi\)
−0.978426 + 0.206599i \(0.933760\pi\)
\(480\) 0 0
\(481\) −5.48586e10 + 4.60319e10i −1.02486 + 0.859960i
\(482\) 2.31018e10 6.34716e10i 0.428013 1.17596i
\(483\) 0 0
\(484\) −3.29364e9 + 1.86792e10i −0.0600199 + 0.340390i
\(485\) 2.67802e10i 0.484002i
\(486\) 0 0
\(487\) −1.00517e10 −0.178699 −0.0893495 0.996000i \(-0.528479\pi\)
−0.0893495 + 0.996000i \(0.528479\pi\)
\(488\) −2.39435e10 4.22189e9i −0.422191 0.0744436i
\(489\) 0 0
\(490\) −2.07344e10 7.54669e9i −0.359672 0.130910i
\(491\) −6.53311e10 7.78585e10i −1.12407 1.33962i −0.933763 0.357891i \(-0.883496\pi\)
−0.190308 0.981724i \(-0.560949\pi\)
\(492\) 0 0
\(493\) 4.83463e10 1.75966e10i 0.818418 0.297880i
\(494\) −1.09554e11 6.32513e10i −1.83960 1.06209i
\(495\) 0 0
\(496\) 3.13748e10 + 5.43428e10i 0.518387 + 0.897873i
\(497\) 2.11498e10 2.52053e10i 0.346641 0.413111i
\(498\) 0 0
\(499\) −1.13923e10 6.46088e10i −0.183742 1.04205i −0.927561 0.373672i \(-0.878099\pi\)
0.743819 0.668381i \(-0.233012\pi\)
\(500\) 2.00180e10 3.52971e9i 0.320288 0.0564754i
\(501\) 0 0
\(502\) −4.97004e10 4.17036e10i −0.782609 0.656687i
\(503\) 9.70501e9 5.60319e9i 0.151609 0.0875313i −0.422277 0.906467i \(-0.638769\pi\)
0.573885 + 0.818936i \(0.305436\pi\)
\(504\) 0 0
\(505\) −3.40833e10 + 5.90339e10i −0.524053 + 0.907687i
\(506\) −6.71212e8 1.84414e9i −0.0102390 0.0281314i
\(507\) 0 0
\(508\) −1.34000e10 + 1.12440e10i −0.201210 + 0.168836i
\(509\) 9.23104e9 2.53621e10i 0.137524 0.377845i −0.851743 0.523959i \(-0.824454\pi\)
0.989268 + 0.146114i \(0.0466767\pi\)
\(510\) 0 0
\(511\) 1.40233e10 7.95299e10i 0.205667 1.16640i
\(512\) 8.00907e9i 0.116547i
\(513\) 0 0
\(514\) −3.26658e10 −0.467995
\(515\) 3.58935e10 + 6.32899e9i 0.510254 + 0.0899716i
\(516\) 0 0
\(517\) 5.20486e8 + 1.89441e8i 0.00728529 + 0.00265163i
\(518\) 3.13638e10 + 3.73779e10i 0.435621 + 0.519153i
\(519\) 0 0
\(520\) −4.23452e10 + 1.54124e10i −0.579149 + 0.210793i
\(521\) −1.10388e11 6.37326e10i −1.49820 0.864989i −0.498207 0.867058i \(-0.666008\pi\)
−0.999998 + 0.00206969i \(0.999341\pi\)
\(522\) 0 0
\(523\) −4.11516e10 7.12766e10i −0.550022 0.952666i −0.998272 0.0587576i \(-0.981286\pi\)
0.448251 0.893908i \(-0.352047\pi\)
\(524\) 1.65963e10 1.97787e10i 0.220134 0.262345i
\(525\) 0 0
\(526\) −2.26701e10 1.28569e11i −0.296149 1.67955i
\(527\) 4.67503e10 8.24334e9i 0.606096 0.106871i
\(528\) 0 0
\(529\) 8.62378e9 + 7.23621e9i 0.110122 + 0.0924035i
\(530\) 3.38966e10 1.95702e10i 0.429589 0.248023i
\(531\) 0 0
\(532\) −1.10761e10 + 1.91843e10i −0.138274 + 0.239497i
\(533\) −3.56927e8 9.80648e8i −0.00442252 0.0121508i
\(534\) 0 0
\(535\) −2.90364e10 + 2.43645e10i −0.354428 + 0.297401i
\(536\) −2.18876e10 + 6.01356e10i −0.265179 + 0.728573i
\(537\) 0 0
\(538\) 1.49272e9 8.46563e9i 0.0178176 0.101049i
\(539\) 1.39645e9i 0.0165451i
\(540\) 0 0
\(541\) −2.87855e9 −0.0336035 −0.0168017 0.999859i \(-0.505348\pi\)
−0.0168017 + 0.999859i \(0.505348\pi\)
\(542\) −1.82048e11 3.21000e10i −2.10955 0.371970i
\(543\) 0 0
\(544\) 3.97648e10 + 1.44732e10i 0.454049 + 0.165260i
\(545\) 1.70085e9 + 2.02700e9i 0.0192788 + 0.0229756i
\(546\) 0 0
\(547\) −3.04941e10 + 1.10989e10i −0.340617 + 0.123974i −0.506665 0.862143i \(-0.669122\pi\)
0.166047 + 0.986118i \(0.446899\pi\)
\(548\) −3.34217e10 1.92960e10i −0.370600 0.213966i
\(549\) 0 0
\(550\) 1.02249e9 + 1.77101e9i 0.0111740 + 0.0193540i
\(551\) −8.88675e10 + 1.05908e11i −0.964132 + 1.14901i
\(552\) 0 0
\(553\) 1.03682e10 + 5.88009e10i 0.110867 + 0.628757i
\(554\) 1.39468e11 2.45919e10i 1.48059 0.261068i
\(555\) 0 0
\(556\) −8.10706e9 6.80263e9i −0.0848329 0.0711832i
\(557\) 1.21822e11 7.03341e10i 1.26563 0.730710i 0.291470 0.956580i \(-0.405856\pi\)
0.974157 + 0.225870i \(0.0725225\pi\)
\(558\) 0 0
\(559\) 2.01203e10 3.48494e10i 0.206057 0.356901i
\(560\) 1.46274e10 + 4.01884e10i 0.148736 + 0.408648i
\(561\) 0 0
\(562\) 1.36422e11 1.14472e11i 1.36754 1.14750i
\(563\) 1.95156e10 5.36186e10i 0.194244 0.533681i −0.803888 0.594781i \(-0.797239\pi\)
0.998132 + 0.0611000i \(0.0194609\pi\)
\(564\) 0 0
\(565\) −1.06407e10 + 6.03465e10i −0.104418 + 0.592186i
\(566\) 1.83087e11i 1.78399i
\(567\) 0 0
\(568\) 6.67901e10 0.641680
\(569\) 1.32018e11 + 2.32784e10i 1.25946 + 0.222077i 0.763237 0.646118i \(-0.223609\pi\)
0.496223 + 0.868195i \(0.334720\pi\)
\(570\) 0 0
\(571\) 5.91665e10 + 2.15349e10i 0.556585 + 0.202580i 0.604970 0.796248i \(-0.293185\pi\)
−0.0483848 + 0.998829i \(0.515407\pi\)
\(572\) 9.69461e8 + 1.15536e9i 0.00905621 + 0.0107928i
\(573\) 0 0
\(574\) −6.68163e8 + 2.43192e8i −0.00615510 + 0.00224027i
\(575\) 6.05109e10 + 3.49360e10i 0.553557 + 0.319596i
\(576\) 0 0
\(577\) 6.37070e10 + 1.10344e11i 0.574756 + 0.995507i 0.996068 + 0.0885910i \(0.0282364\pi\)
−0.421312 + 0.906916i \(0.638430\pi\)
\(578\) −3.91291e10 + 4.66322e10i −0.350581 + 0.417806i
\(579\) 0 0
\(580\) −4.52261e9 2.56490e10i −0.0399648 0.226651i
\(581\) −2.79570e10 + 4.92956e9i −0.245350 + 0.0432617i
\(582\) 0 0
\(583\) 1.89758e9 + 1.59226e9i 0.0164258 + 0.0137828i
\(584\) 1.41966e11 8.19639e10i 1.22048 0.704646i
\(585\) 0 0
\(586\) −1.81874e10 + 3.15015e10i −0.154234 + 0.267141i
\(587\) 1.06263e10 + 2.91956e10i 0.0895015 + 0.245903i 0.976365 0.216128i \(-0.0693429\pi\)
−0.886863 + 0.462032i \(0.847121\pi\)
\(588\) 0 0
\(589\) −9.77203e10 + 8.19971e10i −0.811940 + 0.681298i
\(590\) −4.24946e10 + 1.16753e11i −0.350692 + 0.963518i
\(591\) 0 0
\(592\) −2.39570e10 + 1.35867e11i −0.195050 + 1.10618i
\(593\) 7.72499e10i 0.624711i 0.949965 + 0.312356i \(0.101118\pi\)
−0.949965 + 0.312356i \(0.898882\pi\)
\(594\) 0 0
\(595\) 3.23547e10 0.258148
\(596\) 5.84825e10 + 1.03120e10i 0.463491 + 0.0817259i
\(597\) 0 0
\(598\) 1.88415e11 + 6.85774e10i 1.47336 + 0.536261i
\(599\) −7.99461e10 9.52760e10i −0.620998 0.740076i 0.360244 0.932858i \(-0.382693\pi\)
−0.981242 + 0.192782i \(0.938249\pi\)
\(600\) 0 0
\(601\) −2.16119e11 + 7.86608e10i −1.65651 + 0.602921i −0.989809 0.142402i \(-0.954517\pi\)
−0.666703 + 0.745323i \(0.732295\pi\)
\(602\) −2.37446e10 1.37090e10i −0.180792 0.104380i
\(603\) 0 0
\(604\) −3.94648e10 6.83550e10i −0.296526 0.513597i
\(605\) −4.78512e10 + 5.70269e10i −0.357167 + 0.425655i
\(606\) 0 0
\(607\) 4.05256e10 + 2.29832e11i 0.298521 + 1.69300i 0.652537 + 0.757757i \(0.273705\pi\)
−0.354016 + 0.935240i \(0.615184\pi\)
\(608\) −1.11986e11 + 1.97461e10i −0.819498 + 0.144500i
\(609\) 0 0
\(610\) 3.86576e10 + 3.24376e10i 0.279200 + 0.234277i
\(611\) −4.90089e10 + 2.82953e10i −0.351650 + 0.203025i
\(612\) 0 0
\(613\) 7.90435e10 1.36907e11i 0.559789 0.969583i −0.437725 0.899109i \(-0.644216\pi\)
0.997514 0.0704739i \(-0.0224512\pi\)
\(614\) −3.15025e10 8.65523e10i −0.221652 0.608983i
\(615\) 0 0
\(616\) −1.48854e9 + 1.24904e9i −0.0103380 + 0.00867465i
\(617\) 6.27486e10 1.72400e11i 0.432976 1.18959i −0.511002 0.859580i \(-0.670725\pi\)
0.943977 0.330011i \(-0.107052\pi\)
\(618\) 0 0
\(619\) 3.91904e10 2.22260e11i 0.266942 1.51391i −0.496504 0.868034i \(-0.665383\pi\)
0.763447 0.645871i \(-0.223506\pi\)
\(620\) 2.40312e10i 0.162633i
\(621\) 0 0
\(622\) 1.21147e11 0.809378
\(623\) 1.36705e11 + 2.41048e10i 0.907470 + 0.160011i
\(624\) 0 0
\(625\) −2.40786e10 8.76390e9i −0.157802 0.0574351i
\(626\) 1.00579e11 + 1.19865e11i 0.654951 + 0.780540i
\(627\) 0 0
\(628\) 9.93014e10 3.61427e10i 0.638435 0.232371i
\(629\) 9.03887e10 + 5.21859e10i 0.577446 + 0.333389i
\(630\) 0 0
\(631\) −1.16579e11 2.01921e11i −0.735368 1.27369i −0.954562 0.298013i \(-0.903676\pi\)
0.219194 0.975681i \(-0.429657\pi\)
\(632\) −7.79064e10 + 9.28452e10i −0.488320 + 0.581958i
\(633\) 0 0
\(634\) 1.64656e9 + 9.33810e9i 0.0101911 + 0.0577965i
\(635\) −6.76118e10 + 1.19218e10i −0.415841 + 0.0733240i
\(636\) 0 0
\(637\) 1.09295e11 + 9.17092e10i 0.663807 + 0.557000i
\(638\) 5.55421e9 3.20673e9i 0.0335228 0.0193544i
\(639\) 0 0
\(640\) −5.56514e10 + 9.63910e10i −0.331708 + 0.574535i
\(641\) 7.15456e10 + 1.96570e11i 0.423790 + 1.16435i 0.949521 + 0.313703i \(0.101570\pi\)
−0.525731 + 0.850651i \(0.676208\pi\)
\(642\) 0 0
\(643\) 2.36854e9 1.98744e9i 0.0138560 0.0116265i −0.635833 0.771826i \(-0.719343\pi\)
0.649689 + 0.760200i \(0.274899\pi\)
\(644\) 1.20087e10 3.29937e10i 0.0698158 0.191817i
\(645\) 0 0
\(646\) −3.20156e10 + 1.81570e11i −0.183837 + 1.04259i
\(647\) 3.30829e10i 0.188793i −0.995535 0.0943966i \(-0.969908\pi\)
0.995535 0.0943966i \(-0.0300922\pi\)
\(648\) 0 0
\(649\) −7.86324e9 −0.0443224
\(650\) −2.05761e11 3.62812e10i −1.15268 0.203249i
\(651\) 0 0
\(652\) −7.08483e10 2.57867e10i −0.392048 0.142694i
\(653\) −7.83339e10 9.33547e10i −0.430821 0.513433i 0.506338 0.862335i \(-0.330999\pi\)
−0.937159 + 0.348903i \(0.886554\pi\)
\(654\) 0 0
\(655\) 9.52247e10 3.46589e10i 0.517350 0.188300i
\(656\) −1.74112e9 1.00524e9i −0.00940185 0.00542816i
\(657\) 0 0
\(658\) 1.92790e10 + 3.33921e10i 0.102844 + 0.178132i
\(659\) 1.08052e11 1.28771e11i 0.572916 0.682775i −0.399310 0.916816i \(-0.630750\pi\)
0.972227 + 0.234041i \(0.0751949\pi\)
\(660\) 0 0
\(661\) 3.13825e10 + 1.77979e11i 0.164392 + 0.932316i 0.949689 + 0.313196i \(0.101400\pi\)
−0.785296 + 0.619120i \(0.787489\pi\)
\(662\) −1.54084e11 + 2.71693e10i −0.802282 + 0.141464i
\(663\) 0 0
\(664\) −4.41434e10 3.70407e10i −0.227088 0.190549i
\(665\) −7.52949e10 + 4.34716e10i −0.385016 + 0.222289i
\(666\) 0 0
\(667\) 1.09566e11 1.89773e11i 0.553569 0.958809i
\(668\) −4.28942e10 1.17851e11i −0.215423 0.591871i
\(669\) 0 0
\(670\) 1.01752e11 8.53804e10i 0.504946 0.423700i
\(671\) −1.09233e9 + 3.00114e9i −0.00538843 + 0.0148046i
\(672\) 0 0
\(673\) 1.10197e10 6.24957e10i 0.0537166 0.304642i −0.946098 0.323880i \(-0.895013\pi\)
0.999815 + 0.0192375i \(0.00612385\pi\)
\(674\) 2.42892e11i 1.17699i
\(675\) 0 0
\(676\) −8.18580e10 −0.391990
\(677\) −1.72977e11 3.05005e10i −0.823442 0.145195i −0.253977 0.967210i \(-0.581739\pi\)
−0.569465 + 0.822015i \(0.692850\pi\)
\(678\) 0 0
\(679\) −1.10869e11 4.03530e10i −0.521592 0.189844i
\(680\) 4.22161e10 + 5.03112e10i 0.197443 + 0.235304i
\(681\) 0 0
\(682\) 5.56075e9 2.02395e9i 0.0257037 0.00935538i
\(683\) 2.25895e11 + 1.30420e11i 1.03806 + 0.599325i 0.919284 0.393596i \(-0.128769\pi\)
0.118778 + 0.992921i \(0.462102\pi\)
\(684\) 0 0
\(685\) −7.57333e10 1.31174e11i −0.343973 0.595779i
\(686\) 1.67806e11 1.99984e11i 0.757725 0.903021i
\(687\) 0 0
\(688\) −1.34619e10 7.63461e10i −0.0600830 0.340748i
\(689\) −2.49240e11 + 4.39478e10i −1.10596 + 0.195011i
\(690\) 0 0
\(691\) −4.63160e10 3.88637e10i −0.203151 0.170464i 0.535536 0.844512i \(-0.320109\pi\)
−0.738687 + 0.674048i \(0.764554\pi\)
\(692\) −3.54388e10 + 2.04606e10i −0.154545 + 0.0892266i
\(693\) 0 0
\(694\) 1.43751e11 2.48984e11i 0.619687 1.07333i
\(695\) −1.42063e10 3.90314e10i −0.0608893 0.167292i
\(696\) 0 0
\(697\) −1.16513e9 + 9.77658e8i −0.00493676 + 0.00414244i
\(698\) −1.79582e10 + 4.93397e10i −0.0756556 + 0.207862i
\(699\) 0 0
\(700\) −6.35327e9 + 3.60312e10i −0.0264609 + 0.150067i
\(701\) 2.34678e11i 0.971852i 0.874000 + 0.485926i \(0.161518\pi\)
−0.874000 + 0.485926i \(0.838482\pi\)
\(702\) 0 0
\(703\) −2.80467e11 −1.14831
\(704\) −3.07730e9 5.42611e8i −0.0125279 0.00220901i
\(705\) 0 0
\(706\) −3.36789e11 1.22581e11i −1.35562 0.493406i
\(707\) −1.93041e11 2.30057e11i −0.772629 0.920783i
\(708\) 0 0
\(709\) 2.36805e11 8.61899e10i 0.937143 0.341092i 0.172106 0.985078i \(-0.444943\pi\)
0.765037 + 0.643986i \(0.222721\pi\)
\(710\) −1.20057e11 6.93149e10i −0.472448 0.272768i
\(711\) 0 0
\(712\) 1.40889e11 + 2.44026e11i 0.548222 + 0.949548i
\(713\) 1.29965e11 1.54887e11i 0.502886 0.599317i
\(714\) 0 0
\(715\) 1.02790e9 + 5.82953e9i 0.00393304 + 0.0223054i
\(716\) 6.59241e10 1.16242e10i 0.250837 0.0442294i
\(717\) 0 0
\(718\) 1.20774e11 + 1.01341e11i 0.454439 + 0.381320i
\(719\) 2.59305e11 1.49710e11i 0.970275 0.560189i 0.0709551 0.997480i \(-0.477395\pi\)
0.899320 + 0.437291i \(0.144062\pi\)
\(720\) 0 0
\(721\) −8.02868e10 + 1.39061e11i −0.297100 + 0.514593i
\(722\) −6.16278e10 1.69321e11i −0.226792 0.623106i
\(723\) 0 0
\(724\) 1.76545e10 1.48139e10i 0.0642540 0.0539155i
\(725\) −7.80977e10 + 2.14572e11i −0.282674 + 0.776641i
\(726\) 0 0
\(727\) 3.23715e10 1.83588e11i 0.115885 0.657214i −0.870424 0.492303i \(-0.836155\pi\)
0.986308 0.164911i \(-0.0527337\pi\)
\(728\) 1.98531e11i 0.706810i
\(729\) 0 0
\(730\) −3.40249e11 −1.19813
\(731\) −5.77575e10 1.01842e10i −0.202273 0.0356663i
\(732\) 0 0
\(733\) −4.74456e11 1.72688e11i −1.64354 0.598199i −0.655886 0.754860i \(-0.727705\pi\)
−0.987652 + 0.156661i \(0.949927\pi\)
\(734\) 2.27787e11 + 2.71466e11i 0.784774 + 0.935257i
\(735\) 0 0
\(736\) 1.69366e11 6.16442e10i 0.577185 0.210078i
\(737\) 7.28016e9 + 4.20320e9i 0.0246758 + 0.0142466i
\(738\) 0 0
\(739\) −3.06215e10 5.30379e10i −0.102671 0.177832i 0.810113 0.586273i \(-0.199406\pi\)
−0.912784 + 0.408442i \(0.866072\pi\)
\(740\) 3.39620e10 4.04743e10i 0.113257 0.134975i
\(741\) 0 0
\(742\) 2.99438e10 + 1.69820e11i 0.0987849 + 0.560237i
\(743\) 3.40134e11 5.99748e10i 1.11608 0.196795i 0.414961 0.909839i \(-0.363795\pi\)
0.701119 + 0.713044i \(0.252684\pi\)
\(744\) 0 0
\(745\) 1.78545e11 + 1.49817e11i 0.579593 + 0.486336i
\(746\) 4.92176e10 2.84158e10i 0.158915 0.0917496i
\(747\) 0 0
\(748\) 1.09907e9 1.90364e9i 0.00351090 0.00608106i
\(749\) −5.71151e10 1.56923e11i −0.181478 0.498607i
\(750\) 0 0
\(751\) −2.09990e11 + 1.76202e11i −0.660143 + 0.553926i −0.910130 0.414324i \(-0.864018\pi\)
0.249987 + 0.968249i \(0.419574\pi\)
\(752\) −3.72878e10 + 1.02447e11i −0.116599 + 0.320353i
\(753\) 0 0
\(754\) −1.13784e11 + 6.45304e11i −0.352045 + 1.99654i
\(755\) 3.09784e11i 0.953392i
\(756\) 0 0
\(757\) 4.12942e11 1.25749 0.628747 0.777610i \(-0.283568\pi\)
0.628747 + 0.777610i \(0.283568\pi\)
\(758\) 1.72864e11 + 3.04806e10i 0.523634 + 0.0923308i
\(759\) 0 0
\(760\) −1.65842e11 6.03616e10i −0.497096 0.180928i
\(761\) −4.01928e10 4.78999e10i −0.119842 0.142822i 0.702788 0.711400i \(-0.251938\pi\)
−0.822630 + 0.568577i \(0.807494\pi\)
\(762\) 0 0
\(763\) −1.09546e10 + 3.98713e9i −0.0323219 + 0.0117642i
\(764\) 3.09600e10 + 1.78748e10i 0.0908715 + 0.0524647i
\(765\) 0 0
\(766\) −3.10210e10 5.37300e10i −0.0901033 0.156064i
\(767\) 5.16405e11 6.15427e11i 1.49214 1.77826i
\(768\) 0 0
\(769\) 6.94082e10 + 3.93633e11i 0.198475 + 1.12561i 0.907383 + 0.420305i \(0.138077\pi\)
−0.708908 + 0.705301i \(0.750812\pi\)
\(770\) 3.97194e9 7.00361e8i 0.0112990 0.00199232i
\(771\) 0 0
\(772\) −8.22944e10 6.90532e10i −0.231687 0.194408i
\(773\) −3.03906e11 + 1.75460e11i −0.851179 + 0.491428i −0.861048 0.508523i \(-0.830192\pi\)
0.00986956 + 0.999951i \(0.496858\pi\)
\(774\) 0 0
\(775\) −1.05345e11 + 1.82462e11i −0.292015 + 0.505785i
\(776\) −8.19123e10 2.25052e11i −0.225893 0.620635i
\(777\) 0 0
\(778\) −4.28766e10 + 3.59777e10i −0.117031 + 0.0982008i
\(779\) 1.39788e9 3.84064e9i 0.00379594 0.0104293i
\(780\) 0 0
\(781\) 1.52351e9 8.64027e9i 0.00409489 0.0232233i
\(782\) 2.92228e11i 0.781438i
\(783\) 0 0
\(784\) 2.74863e11 0.727531
\(785\) 4.08451e11 + 7.20210e10i 1.07563 + 0.189662i
\(786\) 0 0
\(787\) −4.15833e11 1.51351e11i −1.08398 0.394535i −0.262590 0.964907i \(-0.584577\pi\)
−0.821386 + 0.570372i \(0.806799\pi\)
\(788\) −1.27240e11 1.51639e11i −0.330005 0.393285i
\(789\) 0 0
\(790\) 2.36394e11 8.60403e10i 0.606915 0.220899i
\(791\) −2.33798e11 1.34983e11i −0.597221 0.344806i
\(792\) 0 0
\(793\) −1.63152e11 2.82587e11i −0.412571 0.714594i
\(794\) −1.07463e10 + 1.28069e10i −0.0270381 + 0.0322228i
\(795\) 0 0
\(796\) −3.51855e9 1.99547e10i −0.00876419 0.0497042i
\(797\) −4.61690e11 + 8.14084e10i −1.14424 + 0.201760i −0.713460 0.700696i \(-0.752873\pi\)
−0.430781 + 0.902457i \(0.641762\pi\)
\(798\) 0 0
\(799\) 6.31816e10 + 5.30156e10i 0.155026 + 0.130082i
\(800\) −1.62650e11 + 9.39058e10i −0.397094 + 0.229262i
\(801\) 0 0
\(802\) −9.20472e10 + 1.59430e11i −0.222491 + 0.385366i
\(803\) −7.36492e9 2.02350e10i −0.0177136 0.0486676i
\(804\) 0 0
\(805\) 1.05565e11 8.85793e10i 0.251383 0.210935i
\(806\) −2.06786e11 + 5.68139e11i −0.489982 + 1.34621i
\(807\) 0 0
\(808\) 1.05858e11 6.00352e11i 0.248359 1.40851i
\(809\) 2.16664e11i 0.505817i 0.967490 + 0.252908i \(0.0813871\pi\)
−0.967490 + 0.252908i \(0.918613\pi\)
\(810\) 0 0
\(811\) −1.65427e11 −0.382405 −0.191203 0.981551i \(-0.561239\pi\)
−0.191203 + 0.981551i \(0.561239\pi\)
\(812\) 1.13001e11 + 1.99250e10i 0.259930 + 0.0458327i
\(813\) 0 0
\(814\) 1.22260e10 + 4.44989e9i 0.0278475 + 0.0101357i
\(815\) −1.90209e11 2.26682e11i −0.431122 0.513791i
\(816\) 0 0
\(817\) 1.48095e11 5.39023e10i 0.332394 0.120981i
\(818\) 7.92294e11 + 4.57431e11i 1.76959 + 1.02167i
\(819\) 0 0
\(820\) 3.84974e8 + 6.66795e8i 0.000851483 + 0.00147481i
\(821\) −3.93958e11 + 4.69501e11i −0.867116 + 1.03339i 0.131996 + 0.991250i \(0.457861\pi\)
−0.999112 + 0.0421384i \(0.986583\pi\)
\(822\) 0 0
\(823\) −3.55321e10 2.01513e11i −0.0774501 0.439241i −0.998732 0.0503455i \(-0.983968\pi\)
0.921282 0.388896i \(-0.127143\pi\)
\(824\) −3.20996e11 + 5.66002e10i −0.696290 + 0.122775i
\(825\) 0 0
\(826\) −4.19321e11 3.51852e11i −0.900795 0.755857i
\(827\) −3.20967e11 + 1.85311e11i −0.686181 + 0.396167i −0.802180 0.597083i \(-0.796326\pi\)
0.115999 + 0.993249i \(0.462993\pi\)
\(828\) 0 0
\(829\) 1.52445e10 2.64043e10i 0.0322772 0.0559058i −0.849436 0.527692i \(-0.823057\pi\)
0.881713 + 0.471787i \(0.156391\pi\)
\(830\) 4.09080e10 + 1.12394e11i 0.0861977 + 0.236826i
\(831\) 0 0
\(832\) 2.44565e11 2.05214e11i 0.510388 0.428266i
\(833\) 7.11196e10 1.95399e11i 0.147710 0.405829i
\(834\) 0 0
\(835\) 8.54745e10 4.84750e11i 0.175829 0.997176i
\(836\) 5.90681e9i 0.0120928i
\(837\) 0 0
\(838\) 1.71125e11 0.347007
\(839\) −8.55531e10 1.50853e10i −0.172658 0.0304443i 0.0866505 0.996239i \(-0.472384\pi\)
−0.259309 + 0.965794i \(0.583495\pi\)
\(840\) 0 0
\(841\) 2.02859e11 + 7.38346e10i 0.405518 + 0.147597i
\(842\) 4.63439e11 + 5.52305e11i 0.922028 + 1.09883i
\(843\) 0 0
\(844\) 2.26050e11 8.22753e10i 0.445486 0.162144i
\(845\) −2.78235e11 1.60639e11i −0.545738 0.315082i
\(846\) 0 0
\(847\) −1.63986e11 2.84031e11i −0.318619 0.551865i
\(848\) −3.13404e11 + 3.73501e11i −0.606068 + 0.722284i
\(849\) 0 0
\(850\) 5.28778e10 + 2.99885e11i 0.101297 + 0.574485i
\(851\) 4.37787e11 7.71936e10i 0.834727 0.147185i
\(852\) 0 0
\(853\) 5.31783e11 + 4.46219e11i 1.00447 + 0.842853i 0.987598 0.157005i \(-0.0501838\pi\)
0.0168750 + 0.999858i \(0.494628\pi\)
\(854\) −1.92540e11 + 1.11163e11i −0.361985 + 0.208992i
\(855\) 0 0
\(856\) 1.69490e11 2.93565e11i 0.315681 0.546775i
\(857\) 1.56253e10 + 4.29300e10i 0.0289670 + 0.0795862i 0.953333 0.301920i \(-0.0976276\pi\)
−0.924366 + 0.381506i \(0.875405\pi\)
\(858\) 0 0
\(859\) 7.59299e11 6.37127e11i 1.39457 1.17018i 0.431119 0.902295i \(-0.358119\pi\)
0.963450 0.267887i \(-0.0863255\pi\)
\(860\) −1.01543e10 + 2.78988e10i −0.0185634 + 0.0510025i
\(861\) 0 0
\(862\) −1.52877e11 + 8.67008e11i −0.276893 + 1.57034i
\(863\) 2.70088e11i 0.486926i −0.969910 0.243463i \(-0.921717\pi\)
0.969910 0.243463i \(-0.0782834\pi\)
\(864\) 0 0
\(865\) −1.60608e11 −0.286882
\(866\) −4.35020e11 7.67058e10i −0.773460 0.136382i
\(867\) 0 0
\(868\) 9.94880e10 + 3.62107e10i 0.175264 + 0.0637907i
\(869\) 1.02338e10 + 1.21962e10i 0.0179456 + 0.0213867i
\(870\) 0 0
\(871\) −8.07081e11 + 2.93753e11i −1.40231 + 0.510399i
\(872\) −2.04934e10 1.18318e10i −0.0354444 0.0204638i
\(873\) 0 0
\(874\) 3.92635e11 + 6.80065e11i 0.672890 + 1.16548i
\(875\) −2.25926e11 + 2.69248e11i −0.385419 + 0.459325i
\(876\) 0 0
\(877\) 6.08459e10 + 3.45074e11i 0.102857 + 0.583330i 0.992055 + 0.125807i \(0.0401521\pi\)
−0.889198 + 0.457523i \(0.848737\pi\)
\(878\) 5.72086e11 1.00874e11i 0.962683 0.169747i
\(879\) 0 0
\(880\) 8.73588e9 + 7.33028e9i 0.0145672 + 0.0122233i
\(881\) −4.63683e11 + 2.67708e11i −0.769694 + 0.444383i −0.832765 0.553626i \(-0.813244\pi\)
0.0630716 + 0.998009i \(0.479910\pi\)
\(882\) 0 0
\(883\) −3.50386e10 + 6.06887e10i −0.0576374 + 0.0998309i −0.893404 0.449253i \(-0.851690\pi\)
0.835767 + 0.549084i \(0.185023\pi\)
\(884\) 7.68118e10 + 2.11039e11i 0.125782 + 0.345583i
\(885\) 0 0
\(886\) −2.16468e10 + 1.81638e10i −0.0351284 + 0.0294762i
\(887\) 2.07018e11 5.68777e11i 0.334436 0.918856i −0.652506 0.757783i \(-0.726282\pi\)
0.986943 0.161073i \(-0.0514954\pi\)
\(888\) 0 0
\(889\) 5.25232e10 2.97874e11i 0.0840899 0.476898i
\(890\) 5.84858e11i 0.932161i
\(891\) 0 0
\(892\) 9.42136e10 0.148818
\(893\) −2.18266e11 3.84862e10i −0.343226 0.0605200i
\(894\) 0 0
\(895\) 2.46887e11 + 8.98594e10i 0.384774 + 0.140046i
\(896\) −3.15198e11 3.75638e11i −0.489048 0.582825i
\(897\) 0 0
\(898\) −5.87301e11 + 2.13760e11i −0.903141 + 0.328716i
\(899\) 5.72236e11 + 3.30380e11i 0.876064 + 0.505796i
\(900\) 0 0
\(901\) 1.84429e11 + 3.19440e11i 0.279853 + 0.484719i
\(902\) −1.21871e8 + 1.45241e8i −0.000184109 + 0.000219413i
\(903\) 0 0
\(904\) −9.51599e10 5.39679e11i −0.142489 0.808094i
\(905\) 8.90782e10 1.57069e10i 0.132794 0.0234151i
\(906\) 0 0
\(907\) 3.57812e11 + 3.00240e11i 0.528721 + 0.443649i 0.867659 0.497159i \(-0.165624\pi\)
−0.338939 + 0.940808i \(0.610068\pi\)
\(908\) 1.85881e11 1.07318e11i 0.273458 0.157881i
\(909\) 0 0
\(910\) −2.06036e11 + 3.56864e11i −0.300453 + 0.520401i
\(911\) 3.31123e11 + 9.09752e11i 0.480746 + 1.32084i 0.908855 + 0.417111i \(0.136958\pi\)
−0.428110 + 0.903727i \(0.640820\pi\)
\(912\) 0 0
\(913\) −5.79869e9 + 4.86568e9i −0.00834539 + 0.00700261i
\(914\) 4.00538e11 1.10047e12i 0.573930 1.57686i
\(915\) 0 0
\(916\) 5.02485e10 2.84973e11i 0.0713741 0.404783i
\(917\) 4.46451e11i 0.631388i
\(918\) 0 0
\(919\) 3.60571e11 0.505509 0.252755 0.967530i \(-0.418663\pi\)
0.252755 + 0.967530i \(0.418663\pi\)
\(920\) 2.75480e11 + 4.85745e10i 0.384537 + 0.0678043i
\(921\) 0 0
\(922\) 5.44086e11 + 1.98031e11i 0.752911 + 0.274037i
\(923\) 5.76188e11 + 6.86675e11i 0.793885 + 0.946116i
\(924\) 0 0
\(925\) −4.35290e11 + 1.58433e11i −0.594582 + 0.216410i
\(926\) 7.23198e11 + 4.17538e11i 0.983588 + 0.567875i
\(927\) 0 0
\(928\) 2.94506e11 + 5.10099e11i 0.397102 + 0.687801i
\(929\) −2.68522e11 + 3.20012e11i −0.360509 + 0.429638i −0.915562 0.402177i \(-0.868254\pi\)
0.555053 + 0.831815i \(0.312698\pi\)
\(930\) 0 0
\(931\) 9.70300e10 + 5.50285e11i 0.129154 + 0.732468i
\(932\) −3.14271e11 + 5.54144e10i −0.416524 + 0.0734444i
\(933\) 0 0
\(934\) −1.13897e12 9.55706e11i −1.49666 1.25585i
\(935\) 7.47145e9 4.31365e9i 0.00977594 0.00564414i
\(936\) 0 0
\(937\) −2.31539e11 + 4.01037e11i −0.300376 + 0.520266i −0.976221 0.216777i \(-0.930445\pi\)
0.675845 + 0.737044i \(0.263779\pi\)
\(938\) 2.00148e11 + 5.49903e11i 0.258548 + 0.710354i
\(939\) 0 0
\(940\) 3.19840e10 2.68377e10i 0.0409658 0.0343744i
\(941\) −3.23231e11 + 8.88071e11i −0.412245 + 1.13263i 0.543749 + 0.839248i \(0.317004\pi\)
−0.955994 + 0.293386i \(0.905218\pi\)
\(942\) 0 0
\(943\) −1.12491e9 + 6.37968e9i −0.00142256 + 0.00806774i
\(944\) 1.54772e12i 1.94897i
\(945\) 0 0
\(946\) −7.31091e9 −0.00912866
\(947\) −1.13441e11 2.00028e10i −0.141049 0.0248708i 0.102678 0.994715i \(-0.467259\pi\)
−0.243727 + 0.969844i \(0.578370\pi\)
\(948\) 0 0
\(949\) 2.06739e12 + 7.52470e11i 2.54893 + 0.927736i
\(950\) −5.25980e11 6.26838e11i −0.645765 0.769593i
\(951\) 0 0
\(952\) −2.71898e11 + 9.89628e10i −0.331023 + 0.120483i
\(953\) 7.23371e11 + 4.17638e11i 0.876980 + 0.506324i 0.869661 0.493649i \(-0.164337\pi\)
0.00731829 + 0.999973i \(0.497670\pi\)
\(954\) 0 0
\(955\) 7.01552e10 + 1.21512e11i 0.0843424 + 0.146085i
\(956\) −1.29999e11 + 1.54927e11i −0.155635 + 0.185479i
\(957\) 0 0
\(958\) −4.76817e10 2.70416e11i −0.0566096 0.321049i
\(959\) 6.57171e11 1.15877e11i 0.776969 0.137001i
\(960\) 0 0
\(961\) −1.86313e11 1.56335e11i −0.218448 0.183300i
\(962\) −1.15120e12 + 6.64644e11i −1.34415 + 0.776048i
\(963\) 0 0
\(964\) 1.61116e11 2.79061e11i 0.186565 0.323140i
\(965\) −1.44207e11 3.96206e11i −0.166295 0.456891i
\(966\) 0 0
\(967\) −5.96657e11 + 5.00655e11i −0.682369 + 0.572575i −0.916697 0.399582i \(-0.869155\pi\)
0.234329 + 0.972157i \(0.424711\pi\)
\(968\) 2.27699e11 6.25598e11i 0.259334 0.712514i
\(969\) 0 0
\(970\) −8.63202e10 + 4.89546e11i −0.0975046 + 0.552976i
\(971\) 8.97129e11i 1.00920i −0.863353 0.504601i \(-0.831640\pi\)
0.863353 0.504601i \(-0.168360\pi\)
\(972\) 0 0
\(973\) 1.82995e11 0.204168
\(974\) −1.83746e11 3.23993e10i −0.204165 0.0359998i
\(975\) 0 0
\(976\) −5.90715e11 2.15003e11i −0.650997 0.236943i
\(977\) 9.94842e10 + 1.18561e11i 0.109188 + 0.130125i 0.817871 0.575402i \(-0.195154\pi\)
−0.708682 + 0.705528i \(0.750710\pi\)
\(978\) 0 0
\(979\) 3.47821e10 1.26597e10i 0.0378639 0.0137813i
\(980\) −9.11612e10 5.26320e10i −0.0988339 0.0570618i
\(981\) 0 0
\(982\) −9.43301e11 1.63384e12i −1.01439 1.75697i
\(983\) −1.17650e11 + 1.40210e11i −0.126002 + 0.150163i −0.825357 0.564611i \(-0.809026\pi\)
0.699355 + 0.714774i \(0.253471\pi\)
\(984\) 0 0
\(985\) −1.34911e11 7.65118e11i −0.143319 0.812800i
\(986\) 9.40495e11 1.65835e11i 0.995059 0.175456i
\(987\) 0 0
\(988\) −4.62305e11 3.87920e11i −0.485177 0.407112i
\(989\) −2.16329e11 + 1.24898e11i −0.226115 + 0.130548i
\(990\) 0 0
\(991\) 2.68198e11 4.64533e11i 0.278075 0.481640i −0.692831 0.721100i \(-0.743637\pi\)
0.970906 + 0.239460i \(0.0769703\pi\)
\(992\) 1.85880e11 + 5.10700e11i 0.191949 + 0.527374i
\(993\) 0 0
\(994\) 4.67865e11 3.92585e11i 0.479264 0.402150i
\(995\) 2.71997e10 7.47307e10i 0.0277506 0.0762442i
\(996\) 0 0
\(997\) −1.28567e11 + 7.29138e11i −0.130121 + 0.737953i 0.848013 + 0.529976i \(0.177799\pi\)
−0.978134 + 0.207977i \(0.933312\pi\)
\(998\) 1.21778e12i 1.22757i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.f.a.8.18 138
3.2 odd 2 27.9.f.a.2.6 138
27.13 even 9 27.9.f.a.14.6 yes 138
27.14 odd 18 inner 81.9.f.a.71.18 138
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.f.a.2.6 138 3.2 odd 2
27.9.f.a.14.6 yes 138 27.13 even 9
81.9.f.a.8.18 138 1.1 even 1 trivial
81.9.f.a.71.18 138 27.14 odd 18 inner