Properties

Label 81.9.f.a.8.17
Level $81$
Weight $9$
Character 81.8
Analytic conductor $32.998$
Analytic rank $0$
Dimension $138$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(138\)
Relative dimension: \(23\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.17
Character \(\chi\) \(=\) 81.8
Dual form 81.9.f.a.71.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(18.1654 + 3.20306i) q^{2} +(79.1620 + 28.8126i) q^{4} +(-462.775 - 551.514i) q^{5} +(1642.82 - 597.939i) q^{7} +(-2743.73 - 1584.09i) q^{8} +(-6639.98 - 11500.8i) q^{10} +(-9016.87 + 10745.9i) q^{11} +(9043.29 + 51287.0i) q^{13} +(31757.8 - 5599.76i) q^{14} +(-61287.6 - 51426.4i) q^{16} +(49707.0 - 28698.4i) q^{17} +(-116884. + 202450. i) q^{19} +(-20743.7 - 56992.7i) q^{20} +(-198215. + 166322. i) q^{22} +(-79587.0 + 218664. i) q^{23} +(-22175.6 + 125764. i) q^{25} +960617. i q^{26} +147277. q^{28} +(-147697. - 26043.0i) q^{29} +(-1.38587e6 - 504414. i) q^{31} +(-427258. - 509186. i) q^{32} +(994872. - 362104. i) q^{34} +(-1.09003e6 - 629329. i) q^{35} +(697113. + 1.20744e6i) q^{37} +(-2.77171e6 + 3.30320e6i) q^{38} +(396080. + 2.24628e6i) q^{40} +(1.41044e6 - 248698. i) q^{41} +(-69449.3 - 58274.9i) q^{43} +(-1.02341e6 + 590866. i) q^{44} +(-2.14612e6 + 3.71720e6i) q^{46} +(-2.27848e6 - 6.26006e6i) q^{47} +(-2.07476e6 + 1.74093e6i) q^{49} +(-805657. + 2.21352e6i) q^{50} +(-761828. + 4.32054e6i) q^{52} +396154. i q^{53} +1.00993e7 q^{55} +(-5.45465e6 - 961801. i) q^{56} +(-2.59957e6 - 946165. i) q^{58} +(3.41825e6 + 4.07371e6i) q^{59} +(1.58012e6 - 575117. i) q^{61} +(-2.35592e7 - 1.36019e7i) q^{62} +(4.11030e6 + 7.11925e6i) q^{64} +(2.41005e7 - 2.87219e7i) q^{65} +(1.88303e6 + 1.06792e7i) q^{67} +(4.76178e6 - 839630. i) q^{68} +(-1.77851e7 - 1.49235e7i) q^{70} +(-3.79332e7 + 2.19007e7i) q^{71} +(-9.39455e6 + 1.62718e7i) q^{73} +(8.79588e6 + 2.41665e7i) q^{74} +(-1.50859e7 + 1.26586e7i) q^{76} +(-8.38774e6 + 2.30451e7i) q^{77} +(171845. - 974580. i) q^{79} +5.75999e7i q^{80} +2.64178e7 q^{82} +(-2.50236e7 - 4.41234e6i) q^{83} +(-3.88307e7 - 1.41332e7i) q^{85} +(-1.07492e6 - 1.28104e6i) q^{86} +(4.17623e7 - 1.52002e7i) q^{88} +(3.33894e7 + 1.92774e7i) q^{89} +(4.55230e7 + 7.88482e7i) q^{91} +(-1.26005e7 + 1.50167e7i) q^{92} +(-2.13382e7 - 1.21015e8i) q^{94} +(1.65745e8 - 2.92253e7i) q^{95} +(-1.11208e8 - 9.33146e7i) q^{97} +(-4.32651e7 + 2.49791e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.1654 + 3.20306i 1.13534 + 0.200191i 0.709566 0.704639i \(-0.248891\pi\)
0.425773 + 0.904830i \(0.360002\pi\)
\(3\) 0 0
\(4\) 79.1620 + 28.8126i 0.309227 + 0.112549i
\(5\) −462.775 551.514i −0.740441 0.882423i 0.256004 0.966676i \(-0.417594\pi\)
−0.996444 + 0.0842531i \(0.973150\pi\)
\(6\) 0 0
\(7\) 1642.82 597.939i 0.684225 0.249037i 0.0235642 0.999722i \(-0.492499\pi\)
0.660660 + 0.750685i \(0.270276\pi\)
\(8\) −2743.73 1584.09i −0.669855 0.386741i
\(9\) 0 0
\(10\) −6639.98 11500.8i −0.663998 1.15008i
\(11\) −9016.87 + 10745.9i −0.615864 + 0.733958i −0.980353 0.197249i \(-0.936799\pi\)
0.364489 + 0.931208i \(0.381244\pi\)
\(12\) 0 0
\(13\) 9043.29 + 51287.0i 0.316631 + 1.79570i 0.562927 + 0.826507i \(0.309675\pi\)
−0.246296 + 0.969195i \(0.579214\pi\)
\(14\) 31757.8 5599.76i 0.826682 0.145766i
\(15\) 0 0
\(16\) −61287.6 51426.4i −0.935175 0.784705i
\(17\) 49707.0 28698.4i 0.595144 0.343606i −0.171985 0.985100i \(-0.555018\pi\)
0.767129 + 0.641493i \(0.221685\pi\)
\(18\) 0 0
\(19\) −116884. + 202450.i −0.896896 + 1.55347i −0.0654550 + 0.997856i \(0.520850\pi\)
−0.831441 + 0.555613i \(0.812483\pi\)
\(20\) −20743.7 56992.7i −0.129648 0.356205i
\(21\) 0 0
\(22\) −198215. + 166322.i −0.846147 + 0.710001i
\(23\) −79587.0 + 218664.i −0.284401 + 0.781385i 0.712423 + 0.701750i \(0.247598\pi\)
−0.996824 + 0.0796349i \(0.974625\pi\)
\(24\) 0 0
\(25\) −22175.6 + 125764.i −0.0567694 + 0.321955i
\(26\) 960617.i 2.10212i
\(27\) 0 0
\(28\) 147277. 0.239609
\(29\) −147697. 26043.0i −0.208824 0.0368213i 0.0682575 0.997668i \(-0.478256\pi\)
−0.277081 + 0.960846i \(0.589367\pi\)
\(30\) 0 0
\(31\) −1.38587e6 504414.i −1.50063 0.546186i −0.544409 0.838820i \(-0.683246\pi\)
−0.956225 + 0.292633i \(0.905468\pi\)
\(32\) −427258. 509186.i −0.407465 0.485598i
\(33\) 0 0
\(34\) 994872. 362104.i 0.744477 0.270968i
\(35\) −1.09003e6 629329.i −0.726384 0.419378i
\(36\) 0 0
\(37\) 697113. + 1.20744e6i 0.371960 + 0.644254i 0.989867 0.141998i \(-0.0453525\pi\)
−0.617907 + 0.786251i \(0.712019\pi\)
\(38\) −2.77171e6 + 3.30320e6i −1.32927 + 1.58416i
\(39\) 0 0
\(40\) 396080. + 2.24628e6i 0.154719 + 0.877454i
\(41\) 1.41044e6 248698.i 0.499136 0.0880111i 0.0815882 0.996666i \(-0.474001\pi\)
0.417548 + 0.908655i \(0.362890\pi\)
\(42\) 0 0
\(43\) −69449.3 58274.9i −0.0203139 0.0170454i 0.632574 0.774500i \(-0.281998\pi\)
−0.652888 + 0.757454i \(0.726443\pi\)
\(44\) −1.02341e6 + 590866.i −0.273048 + 0.157644i
\(45\) 0 0
\(46\) −2.14612e6 + 3.71720e6i −0.479318 + 0.830203i
\(47\) −2.27848e6 6.26006e6i −0.466931 1.28288i −0.920179 0.391498i \(-0.871957\pi\)
0.453248 0.891385i \(-0.350265\pi\)
\(48\) 0 0
\(49\) −2.07476e6 + 1.74093e6i −0.359901 + 0.301993i
\(50\) −805657. + 2.21352e6i −0.128905 + 0.354164i
\(51\) 0 0
\(52\) −761828. + 4.32054e6i −0.104194 + 0.590915i
\(53\) 396154.i 0.0502065i 0.999685 + 0.0251033i \(0.00799146\pi\)
−0.999685 + 0.0251033i \(0.992009\pi\)
\(54\) 0 0
\(55\) 1.00993e7 1.10367
\(56\) −5.45465e6 961801.i −0.554644 0.0977987i
\(57\) 0 0
\(58\) −2.59957e6 946165.i −0.229715 0.0836093i
\(59\) 3.41825e6 + 4.07371e6i 0.282095 + 0.336188i 0.888422 0.459028i \(-0.151802\pi\)
−0.606327 + 0.795216i \(0.707358\pi\)
\(60\) 0 0
\(61\) 1.58012e6 575117.i 0.114123 0.0415372i −0.284328 0.958727i \(-0.591770\pi\)
0.398450 + 0.917190i \(0.369548\pi\)
\(62\) −2.35592e7 1.36019e7i −1.59439 0.920520i
\(63\) 0 0
\(64\) 4.11030e6 + 7.11925e6i 0.244993 + 0.424340i
\(65\) 2.41005e7 2.87219e7i 1.35012 1.60901i
\(66\) 0 0
\(67\) 1.88303e6 + 1.06792e7i 0.0934456 + 0.529956i 0.995213 + 0.0977338i \(0.0311594\pi\)
−0.901767 + 0.432222i \(0.857730\pi\)
\(68\) 4.76178e6 839630.i 0.222707 0.0392692i
\(69\) 0 0
\(70\) −1.77851e7 1.49235e7i −0.740737 0.621552i
\(71\) −3.79332e7 + 2.19007e7i −1.49275 + 0.861837i −0.999965 0.00831631i \(-0.997353\pi\)
−0.492781 + 0.870154i \(0.664019\pi\)
\(72\) 0 0
\(73\) −9.39455e6 + 1.62718e7i −0.330815 + 0.572988i −0.982672 0.185354i \(-0.940657\pi\)
0.651857 + 0.758342i \(0.273990\pi\)
\(74\) 8.79588e6 + 2.41665e7i 0.293327 + 0.805910i
\(75\) 0 0
\(76\) −1.50859e7 + 1.26586e7i −0.452186 + 0.379429i
\(77\) −8.38774e6 + 2.30451e7i −0.238606 + 0.655565i
\(78\) 0 0
\(79\) 171845. 974580.i 0.00441192 0.0250213i −0.982522 0.186145i \(-0.940401\pi\)
0.986934 + 0.161124i \(0.0515118\pi\)
\(80\) 5.75999e7i 1.40625i
\(81\) 0 0
\(82\) 2.64178e7 0.584308
\(83\) −2.50236e7 4.41234e6i −0.527276 0.0929730i −0.0963279 0.995350i \(-0.530710\pi\)
−0.430948 + 0.902377i \(0.641821\pi\)
\(84\) 0 0
\(85\) −3.88307e7 1.41332e7i −0.743875 0.270748i
\(86\) −1.07492e6 1.28104e6i −0.0196509 0.0234190i
\(87\) 0 0
\(88\) 4.17623e7 1.52002e7i 0.696391 0.253466i
\(89\) 3.33894e7 + 1.92774e7i 0.532168 + 0.307247i 0.741899 0.670512i \(-0.233925\pi\)
−0.209731 + 0.977759i \(0.567259\pi\)
\(90\) 0 0
\(91\) 4.55230e7 + 7.88482e7i 0.663843 + 1.14981i
\(92\) −1.26005e7 + 1.50167e7i −0.175889 + 0.209616i
\(93\) 0 0
\(94\) −2.13382e7 1.21015e8i −0.273304 1.54998i
\(95\) 1.65745e8 2.92253e7i 2.03491 0.358810i
\(96\) 0 0
\(97\) −1.11208e8 9.33146e7i −1.25617 1.05405i −0.996079 0.0884697i \(-0.971802\pi\)
−0.260093 0.965584i \(-0.583753\pi\)
\(98\) −4.32651e7 + 2.49791e7i −0.469066 + 0.270815i
\(99\) 0 0
\(100\) −5.37905e6 + 9.31678e6i −0.0537905 + 0.0931678i
\(101\) −1.89584e7 5.20877e7i −0.182186 0.500552i 0.814658 0.579942i \(-0.196925\pi\)
−0.996844 + 0.0793901i \(0.974703\pi\)
\(102\) 0 0
\(103\) 3.52430e6 2.95724e6i 0.0313130 0.0262747i −0.626997 0.779022i \(-0.715716\pi\)
0.658310 + 0.752747i \(0.271272\pi\)
\(104\) 5.64310e7 1.55043e8i 0.482375 1.32531i
\(105\) 0 0
\(106\) −1.26890e6 + 7.19630e6i −0.0100509 + 0.0570015i
\(107\) 1.83233e8i 1.39788i −0.715182 0.698938i \(-0.753656\pi\)
0.715182 0.698938i \(-0.246344\pi\)
\(108\) 0 0
\(109\) 1.67490e8 1.18654 0.593269 0.805004i \(-0.297837\pi\)
0.593269 + 0.805004i \(0.297837\pi\)
\(110\) 1.83458e8 + 3.23486e7i 1.25304 + 0.220945i
\(111\) 0 0
\(112\) −1.31435e8 4.78383e7i −0.835290 0.304021i
\(113\) 2.59179e7 + 3.08878e7i 0.158959 + 0.189440i 0.839646 0.543135i \(-0.182763\pi\)
−0.680686 + 0.732575i \(0.738318\pi\)
\(114\) 0 0
\(115\) 1.57427e8 5.72987e7i 0.900094 0.327607i
\(116\) −1.09416e7 6.31716e6i −0.0604297 0.0348891i
\(117\) 0 0
\(118\) 4.90456e7 + 8.49495e7i 0.252972 + 0.438160i
\(119\) 6.45000e7 7.68681e7i 0.321641 0.383317i
\(120\) 0 0
\(121\) 3.05291e6 + 1.73139e7i 0.0142420 + 0.0807707i
\(122\) 3.05457e7 5.38604e6i 0.137883 0.0243125i
\(123\) 0 0
\(124\) −9.51745e7 7.98609e7i −0.402563 0.337791i
\(125\) −1.63930e8 + 9.46451e7i −0.671458 + 0.387666i
\(126\) 0 0
\(127\) 2.01391e8 3.48820e8i 0.774151 1.34087i −0.161119 0.986935i \(-0.551510\pi\)
0.935270 0.353935i \(-0.115156\pi\)
\(128\) 1.10061e8 + 3.02390e8i 0.410009 + 1.12649i
\(129\) 0 0
\(130\) 5.29794e8 4.44550e8i 1.85496 1.55649i
\(131\) 1.26817e8 3.48427e8i 0.430618 1.18311i −0.514816 0.857301i \(-0.672140\pi\)
0.945434 0.325813i \(-0.105638\pi\)
\(132\) 0 0
\(133\) −7.09678e7 + 4.02479e8i −0.226806 + 1.28628i
\(134\) 2.00024e8i 0.620387i
\(135\) 0 0
\(136\) −1.81843e8 −0.531547
\(137\) 8.60399e7 + 1.51711e7i 0.244240 + 0.0430662i 0.294428 0.955674i \(-0.404871\pi\)
−0.0501877 + 0.998740i \(0.515982\pi\)
\(138\) 0 0
\(139\) 2.71609e7 + 9.88575e6i 0.0727587 + 0.0264820i 0.378143 0.925747i \(-0.376563\pi\)
−0.305384 + 0.952229i \(0.598785\pi\)
\(140\) −6.81563e7 8.12255e7i −0.177417 0.211437i
\(141\) 0 0
\(142\) −7.59222e8 + 2.76334e8i −1.86731 + 0.679644i
\(143\) −6.32666e8 3.65270e8i −1.51297 0.873514i
\(144\) 0 0
\(145\) 5.39875e7 + 9.35092e7i 0.122130 + 0.211535i
\(146\) −2.22776e8 + 2.65494e8i −0.490294 + 0.584309i
\(147\) 0 0
\(148\) 2.03955e7 + 1.15669e8i 0.0425096 + 0.241084i
\(149\) −7.98721e8 + 1.40836e8i −1.62050 + 0.285739i −0.908954 0.416896i \(-0.863118\pi\)
−0.711550 + 0.702635i \(0.752007\pi\)
\(150\) 0 0
\(151\) 2.02568e8 + 1.69974e8i 0.389639 + 0.326946i 0.816472 0.577384i \(-0.195927\pi\)
−0.426834 + 0.904330i \(0.640371\pi\)
\(152\) 6.41397e8 3.70311e8i 1.20158 0.693733i
\(153\) 0 0
\(154\) −2.26182e8 + 3.91758e8i −0.402137 + 0.696522i
\(155\) 3.63153e8 + 9.97756e8i 0.629163 + 1.72861i
\(156\) 0 0
\(157\) 5.05526e8 4.24187e8i 0.832041 0.698165i −0.123718 0.992317i \(-0.539482\pi\)
0.955759 + 0.294152i \(0.0950372\pi\)
\(158\) 6.24327e6 1.71532e7i 0.0100181 0.0275244i
\(159\) 0 0
\(160\) −8.30990e7 + 4.71278e8i −0.126799 + 0.719113i
\(161\) 4.06814e8i 0.605469i
\(162\) 0 0
\(163\) −1.96394e8 −0.278213 −0.139106 0.990277i \(-0.544423\pi\)
−0.139106 + 0.990277i \(0.544423\pi\)
\(164\) 1.18819e8 + 2.09510e7i 0.164252 + 0.0289620i
\(165\) 0 0
\(166\) −4.40432e8 1.60304e8i −0.580025 0.211112i
\(167\) −3.42930e8 4.08688e8i −0.440900 0.525444i 0.499134 0.866525i \(-0.333651\pi\)
−0.940034 + 0.341081i \(0.889207\pi\)
\(168\) 0 0
\(169\) −1.78204e9 + 6.48610e8i −2.18460 + 0.795128i
\(170\) −6.60107e8 3.81113e8i −0.790349 0.456308i
\(171\) 0 0
\(172\) −3.81869e6 6.61417e6i −0.00436316 0.00755721i
\(173\) −4.07106e8 + 4.85170e8i −0.454489 + 0.541638i −0.943820 0.330459i \(-0.892796\pi\)
0.489332 + 0.872098i \(0.337241\pi\)
\(174\) 0 0
\(175\) 3.87685e7 + 2.19867e8i 0.0413359 + 0.234427i
\(176\) 1.10524e9 1.94884e8i 1.15188 0.203108i
\(177\) 0 0
\(178\) 5.44786e8 + 4.57130e8i 0.542683 + 0.455365i
\(179\) −1.48872e9 + 8.59512e8i −1.45011 + 0.837221i −0.998487 0.0549884i \(-0.982488\pi\)
−0.451622 + 0.892209i \(0.649154\pi\)
\(180\) 0 0
\(181\) −9.45427e8 + 1.63753e9i −0.880874 + 1.52572i −0.0305022 + 0.999535i \(0.509711\pi\)
−0.850371 + 0.526183i \(0.823623\pi\)
\(182\) 5.74390e8 + 1.57812e9i 0.523506 + 1.43832i
\(183\) 0 0
\(184\) 5.64748e8 4.73880e8i 0.492701 0.413425i
\(185\) 3.43311e8 9.43239e8i 0.293090 0.805258i
\(186\) 0 0
\(187\) −1.39812e8 + 7.92915e8i −0.114335 + 0.648426i
\(188\) 5.61208e8i 0.449254i
\(189\) 0 0
\(190\) 3.10444e9 2.38215
\(191\) −4.60832e8 8.12572e7i −0.346266 0.0610560i −0.00218915 0.999998i \(-0.500697\pi\)
−0.344076 + 0.938942i \(0.611808\pi\)
\(192\) 0 0
\(193\) −1.24219e9 4.52119e8i −0.895278 0.325854i −0.146919 0.989149i \(-0.546936\pi\)
−0.748359 + 0.663294i \(0.769158\pi\)
\(194\) −1.72125e9 2.05130e9i −1.21517 1.44818i
\(195\) 0 0
\(196\) −2.14403e8 + 7.80362e7i −0.145280 + 0.0528776i
\(197\) 1.03606e9 + 5.98170e8i 0.687892 + 0.397155i 0.802822 0.596219i \(-0.203331\pi\)
−0.114930 + 0.993374i \(0.536664\pi\)
\(198\) 0 0
\(199\) 5.77895e8 + 1.00094e9i 0.368499 + 0.638259i 0.989331 0.145684i \(-0.0465384\pi\)
−0.620832 + 0.783944i \(0.713205\pi\)
\(200\) 2.60065e8 3.09933e8i 0.162541 0.193708i
\(201\) 0 0
\(202\) −1.77547e8 1.00692e9i −0.106637 0.604769i
\(203\) −2.58213e8 + 4.55298e7i −0.152052 + 0.0268109i
\(204\) 0 0
\(205\) −7.89877e8 6.62786e8i −0.447244 0.375282i
\(206\) 7.34927e7 4.24310e7i 0.0408108 0.0235621i
\(207\) 0 0
\(208\) 2.08327e9 3.60832e9i 1.11299 1.92776i
\(209\) −1.12157e9 3.08149e9i −0.587816 1.61501i
\(210\) 0 0
\(211\) 1.94143e9 1.62906e9i 0.979474 0.821876i −0.00453579 0.999990i \(-0.501444\pi\)
0.984010 + 0.178113i \(0.0569993\pi\)
\(212\) −1.14142e7 + 3.13603e7i −0.00565071 + 0.0155252i
\(213\) 0 0
\(214\) 5.86906e8 3.32851e9i 0.279842 1.58706i
\(215\) 6.52705e7i 0.0305466i
\(216\) 0 0
\(217\) −2.57834e9 −1.16279
\(218\) 3.04252e9 + 5.36479e8i 1.34712 + 0.237534i
\(219\) 0 0
\(220\) 7.99480e8 + 2.90987e8i 0.341285 + 0.124217i
\(221\) 1.92137e9 + 2.28980e9i 0.805455 + 0.959904i
\(222\) 0 0
\(223\) 2.25559e9 8.20967e8i 0.912096 0.331976i 0.157006 0.987598i \(-0.449816\pi\)
0.755089 + 0.655622i \(0.227593\pi\)
\(224\) −1.00637e9 5.81029e8i −0.399730 0.230784i
\(225\) 0 0
\(226\) 3.71875e8 + 6.44106e8i 0.142549 + 0.246901i
\(227\) −1.60366e9 + 1.91116e9i −0.603959 + 0.719770i −0.978224 0.207551i \(-0.933451\pi\)
0.374265 + 0.927322i \(0.377895\pi\)
\(228\) 0 0
\(229\) 6.89136e8 + 3.90829e9i 0.250590 + 1.42116i 0.807145 + 0.590354i \(0.201012\pi\)
−0.556555 + 0.830811i \(0.687877\pi\)
\(230\) 3.04326e9 5.36609e8i 1.08750 0.191755i
\(231\) 0 0
\(232\) 3.63986e8 + 3.05421e8i 0.125641 + 0.105426i
\(233\) 4.22219e8 2.43768e8i 0.143256 0.0827091i −0.426659 0.904413i \(-0.640309\pi\)
0.569915 + 0.821704i \(0.306976\pi\)
\(234\) 0 0
\(235\) −2.39809e9 + 4.15361e9i −0.786310 + 1.36193i
\(236\) 1.53221e8 + 4.20972e8i 0.0493936 + 0.135708i
\(237\) 0 0
\(238\) 1.41788e9 1.18974e9i 0.441908 0.370805i
\(239\) 4.06551e8 1.11699e9i 0.124602 0.342340i −0.861670 0.507468i \(-0.830581\pi\)
0.986272 + 0.165128i \(0.0528037\pi\)
\(240\) 0 0
\(241\) 2.13497e8 1.21080e9i 0.0632883 0.358926i −0.936674 0.350203i \(-0.886112\pi\)
0.999962 0.00872222i \(-0.00277640\pi\)
\(242\) 3.24293e8i 0.0945533i
\(243\) 0 0
\(244\) 1.41656e8 0.0399647
\(245\) 1.92029e9 + 3.38599e8i 0.532970 + 0.0939771i
\(246\) 0 0
\(247\) −1.14401e10 4.16384e9i −3.07355 1.11868i
\(248\) 3.00340e9 + 3.57931e9i 0.793975 + 0.946222i
\(249\) 0 0
\(250\) −3.28101e9 + 1.19419e9i −0.839940 + 0.305713i
\(251\) −3.54220e9 2.04509e9i −0.892437 0.515249i −0.0176984 0.999843i \(-0.505634\pi\)
−0.874739 + 0.484594i \(0.838967\pi\)
\(252\) 0 0
\(253\) −1.63211e9 2.82689e9i −0.398352 0.689965i
\(254\) 4.77565e9 5.69140e9i 1.14735 1.36736i
\(255\) 0 0
\(256\) 6.65294e8 + 3.77307e9i 0.154901 + 0.878486i
\(257\) 1.63864e9 2.88936e8i 0.375622 0.0662322i 0.0173497 0.999849i \(-0.494477\pi\)
0.358272 + 0.933617i \(0.383366\pi\)
\(258\) 0 0
\(259\) 1.86721e9 + 1.56677e9i 0.414947 + 0.348182i
\(260\) 2.73540e9 1.57928e9i 0.598587 0.345594i
\(261\) 0 0
\(262\) 3.41972e9 5.92313e9i 0.725747 1.25703i
\(263\) −1.77101e9 4.86581e9i −0.370167 1.01703i −0.975297 0.220899i \(-0.929101\pi\)
0.605129 0.796127i \(-0.293121\pi\)
\(264\) 0 0
\(265\) 2.18484e8 1.83330e8i 0.0443034 0.0371750i
\(266\) −2.57832e9 + 7.08388e9i −0.515004 + 1.41496i
\(267\) 0 0
\(268\) −1.58631e8 + 8.99643e8i −0.0307503 + 0.174394i
\(269\) 1.03009e10i 1.96728i 0.180134 + 0.983642i \(0.442347\pi\)
−0.180134 + 0.983642i \(0.557653\pi\)
\(270\) 0 0
\(271\) 6.13223e9 1.13695 0.568474 0.822701i \(-0.307534\pi\)
0.568474 + 0.822701i \(0.307534\pi\)
\(272\) −4.52228e9 7.97399e8i −0.826193 0.145680i
\(273\) 0 0
\(274\) 1.51436e9 + 5.51181e8i 0.268674 + 0.0977894i
\(275\) −1.15149e9 1.37229e9i −0.201340 0.239947i
\(276\) 0 0
\(277\) 6.01341e9 2.18870e9i 1.02141 0.371764i 0.223608 0.974679i \(-0.428216\pi\)
0.797805 + 0.602915i \(0.205994\pi\)
\(278\) 4.61725e8 + 2.66577e8i 0.0773043 + 0.0446317i
\(279\) 0 0
\(280\) 1.99383e9 + 3.45341e9i 0.324381 + 0.561845i
\(281\) −8.46391e8 + 1.00869e9i −0.135752 + 0.161783i −0.829638 0.558302i \(-0.811453\pi\)
0.693886 + 0.720085i \(0.255897\pi\)
\(282\) 0 0
\(283\) 6.64649e8 + 3.76941e9i 0.103621 + 0.587662i 0.991762 + 0.128092i \(0.0408854\pi\)
−0.888142 + 0.459570i \(0.848004\pi\)
\(284\) −3.63388e9 + 6.40752e8i −0.558596 + 0.0984955i
\(285\) 0 0
\(286\) −1.03227e10 8.66176e9i −1.54287 1.29462i
\(287\) 2.16840e9 1.25192e9i 0.319603 0.184523i
\(288\) 0 0
\(289\) −1.84069e9 + 3.18816e9i −0.263869 + 0.457035i
\(290\) 6.81192e8 + 1.87156e9i 0.0963114 + 0.264613i
\(291\) 0 0
\(292\) −1.21253e9 + 1.01743e9i −0.166786 + 0.139950i
\(293\) −1.60626e7 + 4.41317e7i −0.00217944 + 0.00598797i −0.940778 0.339024i \(-0.889903\pi\)
0.938598 + 0.345012i \(0.112125\pi\)
\(294\) 0 0
\(295\) 6.64828e8 3.77043e9i 0.0877851 0.497854i
\(296\) 4.41716e9i 0.575409i
\(297\) 0 0
\(298\) −1.49602e10 −1.89702
\(299\) −1.19343e10 2.10434e9i −1.49318 0.263289i
\(300\) 0 0
\(301\) −1.48938e8 5.42089e7i −0.0181442 0.00660396i
\(302\) 3.13529e9 + 3.73649e9i 0.376921 + 0.449197i
\(303\) 0 0
\(304\) 1.75748e10 6.39671e9i 2.05777 0.748966i
\(305\) −1.04843e9 6.05310e8i −0.121154 0.0699485i
\(306\) 0 0
\(307\) 1.01998e9 + 1.76665e9i 0.114825 + 0.198883i 0.917710 0.397251i \(-0.130036\pi\)
−0.802885 + 0.596134i \(0.796703\pi\)
\(308\) −1.32798e9 + 1.58263e9i −0.147567 + 0.175863i
\(309\) 0 0
\(310\) 3.40097e9 + 1.92879e10i 0.368261 + 2.08851i
\(311\) −2.45554e9 + 4.32978e8i −0.262485 + 0.0462833i −0.303342 0.952882i \(-0.598102\pi\)
0.0408565 + 0.999165i \(0.486991\pi\)
\(312\) 0 0
\(313\) 1.11051e10 + 9.31825e9i 1.15703 + 0.970861i 0.999860 0.0167116i \(-0.00531970\pi\)
0.157166 + 0.987572i \(0.449764\pi\)
\(314\) 1.05418e10 6.08630e9i 1.08442 0.626088i
\(315\) 0 0
\(316\) 4.16838e7 7.21984e7i 0.00418041 0.00724068i
\(317\) −3.46689e9 9.52521e9i −0.343323 0.943273i −0.984423 0.175816i \(-0.943744\pi\)
0.641100 0.767458i \(-0.278478\pi\)
\(318\) 0 0
\(319\) 1.61162e9 1.35231e9i 0.155632 0.130591i
\(320\) 2.02422e9 5.56150e9i 0.193045 0.530386i
\(321\) 0 0
\(322\) −1.30305e9 + 7.38995e9i −0.121209 + 0.687413i
\(323\) 1.34176e10i 1.23272i
\(324\) 0 0
\(325\) −6.65059e9 −0.596111
\(326\) −3.56758e9 6.29060e8i −0.315866 0.0556957i
\(327\) 0 0
\(328\) −4.26382e9 1.55190e9i −0.368386 0.134082i
\(329\) −7.48626e9 8.92178e9i −0.638972 0.761497i
\(330\) 0 0
\(331\) 5.31002e9 1.93269e9i 0.442369 0.161009i −0.111226 0.993795i \(-0.535478\pi\)
0.553595 + 0.832786i \(0.313256\pi\)
\(332\) −1.85379e9 1.07029e9i −0.152584 0.0880943i
\(333\) 0 0
\(334\) −4.92042e9 8.52242e9i −0.395382 0.684821i
\(335\) 5.01832e9 5.98060e9i 0.398455 0.474860i
\(336\) 0 0
\(337\) −1.87667e9 1.06431e10i −0.145502 0.825183i −0.966963 0.254918i \(-0.917951\pi\)
0.821461 0.570265i \(-0.193160\pi\)
\(338\) −3.44491e10 + 6.07430e9i −2.63943 + 0.465404i
\(339\) 0 0
\(340\) −2.66670e9 2.23763e9i −0.199553 0.167445i
\(341\) 1.79166e10 1.03441e10i 1.32506 0.765026i
\(342\) 0 0
\(343\) −7.40666e9 + 1.28287e10i −0.535114 + 0.926844i
\(344\) 9.82371e7 + 2.69904e8i 0.00701523 + 0.0192742i
\(345\) 0 0
\(346\) −8.94928e9 + 7.50934e9i −0.624430 + 0.523959i
\(347\) −4.55820e9 + 1.25235e10i −0.314395 + 0.863792i 0.677361 + 0.735651i \(0.263123\pi\)
−0.991756 + 0.128142i \(0.959099\pi\)
\(348\) 0 0
\(349\) −2.30095e9 + 1.30494e10i −0.155098 + 0.879605i 0.803598 + 0.595172i \(0.202916\pi\)
−0.958696 + 0.284432i \(0.908195\pi\)
\(350\) 4.11816e9i 0.274430i
\(351\) 0 0
\(352\) 9.32419e9 0.607352
\(353\) 9.35744e9 + 1.64997e9i 0.602640 + 0.106262i 0.466641 0.884447i \(-0.345464\pi\)
0.136000 + 0.990709i \(0.456575\pi\)
\(354\) 0 0
\(355\) 2.96331e10 + 1.07856e10i 1.86579 + 0.679094i
\(356\) 2.08774e9 + 2.48807e9i 0.129980 + 0.154904i
\(357\) 0 0
\(358\) −2.97963e10 + 1.08450e10i −1.81397 + 0.660231i
\(359\) 4.24744e9 + 2.45226e9i 0.255711 + 0.147635i 0.622376 0.782718i \(-0.286167\pi\)
−0.366666 + 0.930353i \(0.619501\pi\)
\(360\) 0 0
\(361\) −1.88321e10 3.26182e10i −1.10884 1.92057i
\(362\) −2.24192e10 + 2.67181e10i −1.30553 + 1.55586i
\(363\) 0 0
\(364\) 1.33187e9 + 7.55342e9i 0.0758677 + 0.430267i
\(365\) 1.33217e10 2.34898e9i 0.750566 0.132345i
\(366\) 0 0
\(367\) 1.40786e9 + 1.18134e9i 0.0776061 + 0.0651193i 0.680765 0.732501i \(-0.261647\pi\)
−0.603159 + 0.797621i \(0.706092\pi\)
\(368\) 1.61228e10 9.30849e9i 0.879121 0.507561i
\(369\) 0 0
\(370\) 9.25764e9 1.60347e10i 0.493962 0.855567i
\(371\) 2.36876e8 + 6.50811e8i 0.0125033 + 0.0343526i
\(372\) 0 0
\(373\) 3.52175e9 2.95510e9i 0.181938 0.152664i −0.547270 0.836956i \(-0.684333\pi\)
0.729208 + 0.684292i \(0.239889\pi\)
\(374\) −5.07950e9 + 1.39558e10i −0.259618 + 0.713294i
\(375\) 0 0
\(376\) −3.66499e9 + 2.07852e10i −0.183367 + 1.03993i
\(377\) 7.81046e9i 0.386644i
\(378\) 0 0
\(379\) −2.22539e10 −1.07857 −0.539286 0.842123i \(-0.681306\pi\)
−0.539286 + 0.842123i \(0.681306\pi\)
\(380\) 1.39628e10 + 2.46201e9i 0.669633 + 0.118074i
\(381\) 0 0
\(382\) −8.11094e9 2.95214e9i −0.380906 0.138638i
\(383\) 1.36042e10 + 1.62128e10i 0.632233 + 0.753466i 0.983122 0.182951i \(-0.0585649\pi\)
−0.350889 + 0.936417i \(0.614120\pi\)
\(384\) 0 0
\(385\) 1.65913e10 6.03876e9i 0.755160 0.274856i
\(386\) −2.11167e10 1.21917e10i −0.951211 0.549182i
\(387\) 0 0
\(388\) −6.11481e9 1.05912e10i −0.269809 0.467322i
\(389\) 9.00357e9 1.07300e10i 0.393203 0.468601i −0.532732 0.846284i \(-0.678835\pi\)
0.925935 + 0.377683i \(0.123279\pi\)
\(390\) 0 0
\(391\) 2.31925e9 + 1.31531e10i 0.0992295 + 0.562758i
\(392\) 8.45035e9 1.49002e9i 0.357874 0.0631029i
\(393\) 0 0
\(394\) 1.69045e10 + 1.41846e10i 0.701484 + 0.588615i
\(395\) −6.17021e8 + 3.56237e8i −0.0253461 + 0.0146336i
\(396\) 0 0
\(397\) 5.43453e9 9.41289e9i 0.218776 0.378932i −0.735658 0.677353i \(-0.763127\pi\)
0.954434 + 0.298422i \(0.0964602\pi\)
\(398\) 7.29163e9 + 2.00336e10i 0.290598 + 0.798411i
\(399\) 0 0
\(400\) 7.82667e9 6.56735e9i 0.305729 0.256537i
\(401\) −2.85037e9 + 7.83132e9i −0.110236 + 0.302871i −0.982528 0.186114i \(-0.940411\pi\)
0.872292 + 0.488985i \(0.162633\pi\)
\(402\) 0 0
\(403\) 1.33371e10 7.56386e10i 0.505640 2.86763i
\(404\) 4.66960e9i 0.175289i
\(405\) 0 0
\(406\) −4.83638e9 −0.177998
\(407\) −1.92607e10 3.39619e9i −0.701932 0.123770i
\(408\) 0 0
\(409\) 9.00316e9 + 3.27688e9i 0.321737 + 0.117103i 0.497840 0.867269i \(-0.334127\pi\)
−0.176102 + 0.984372i \(0.556349\pi\)
\(410\) −1.22255e10 1.45698e10i −0.432645 0.515606i
\(411\) 0 0
\(412\) 3.64197e8 1.32557e8i 0.0126400 0.00460059i
\(413\) 8.05141e9 + 4.64848e9i 0.276740 + 0.159776i
\(414\) 0 0
\(415\) 9.14685e9 + 1.58428e10i 0.308375 + 0.534121i
\(416\) 2.22508e10 2.65175e10i 0.742973 0.885441i
\(417\) 0 0
\(418\) −1.05036e10 5.95690e10i −0.344060 1.95126i
\(419\) 1.91013e10 3.36808e9i 0.619737 0.109276i 0.145040 0.989426i \(-0.453669\pi\)
0.474697 + 0.880149i \(0.342558\pi\)
\(420\) 0 0
\(421\) −1.62543e9 1.36390e9i −0.0517416 0.0434164i 0.616550 0.787316i \(-0.288530\pi\)
−0.668292 + 0.743899i \(0.732974\pi\)
\(422\) 4.04850e10 2.33740e10i 1.27657 0.737027i
\(423\) 0 0
\(424\) 6.27544e8 1.08694e9i 0.0194169 0.0336311i
\(425\) 2.50693e9 + 6.88774e9i 0.0768400 + 0.211116i
\(426\) 0 0
\(427\) 2.25198e9 1.88963e9i 0.0677411 0.0568415i
\(428\) 5.27942e9 1.45051e10i 0.157330 0.432260i
\(429\) 0 0
\(430\) −2.09065e8 + 1.18567e9i −0.00611515 + 0.0346808i
\(431\) 5.48147e10i 1.58850i 0.607589 + 0.794251i \(0.292137\pi\)
−0.607589 + 0.794251i \(0.707863\pi\)
\(432\) 0 0
\(433\) 4.47196e10 1.27217 0.636087 0.771617i \(-0.280552\pi\)
0.636087 + 0.771617i \(0.280552\pi\)
\(434\) −4.68367e10 8.25858e9i −1.32016 0.232780i
\(435\) 0 0
\(436\) 1.32588e10 + 4.82581e9i 0.366909 + 0.133544i
\(437\) −3.49659e10 4.16707e10i −0.958779 1.14263i
\(438\) 0 0
\(439\) −3.39413e10 + 1.23536e10i −0.913841 + 0.332611i −0.755785 0.654820i \(-0.772745\pi\)
−0.158055 + 0.987430i \(0.550522\pi\)
\(440\) −2.77097e10 1.59982e10i −0.739300 0.426835i
\(441\) 0 0
\(442\) 2.75681e10 + 4.77494e10i 0.722301 + 1.25106i
\(443\) 4.43162e10 5.28140e10i 1.15066 1.37131i 0.233710 0.972306i \(-0.424913\pi\)
0.916951 0.398999i \(-0.130642\pi\)
\(444\) 0 0
\(445\) −4.82004e9 2.73358e10i −0.122917 0.697095i
\(446\) 4.36033e10 7.68845e9i 1.10200 0.194312i
\(447\) 0 0
\(448\) 1.10094e10 + 9.23796e9i 0.273307 + 0.229332i
\(449\) 1.65666e10 9.56473e9i 0.407613 0.235335i −0.282151 0.959370i \(-0.591048\pi\)
0.689764 + 0.724035i \(0.257714\pi\)
\(450\) 0 0
\(451\) −1.00453e10 + 1.73989e10i −0.242803 + 0.420548i
\(452\) 1.16176e9 + 3.19190e9i 0.0278331 + 0.0764708i
\(453\) 0 0
\(454\) −3.52526e10 + 2.95805e10i −0.829790 + 0.696277i
\(455\) 2.24190e10 6.15956e10i 0.523082 1.43716i
\(456\) 0 0
\(457\) 2.24574e9 1.27362e10i 0.0514867 0.291996i −0.948182 0.317727i \(-0.897080\pi\)
0.999669 + 0.0257316i \(0.00819152\pi\)
\(458\) 7.32030e10i 1.66367i
\(459\) 0 0
\(460\) 1.41132e10 0.315205
\(461\) 8.59007e10 + 1.51466e10i 1.90192 + 0.335360i 0.996095 0.0882848i \(-0.0281386\pi\)
0.905828 + 0.423645i \(0.139250\pi\)
\(462\) 0 0
\(463\) −3.39370e10 1.23521e10i −0.738498 0.268791i −0.0547406 0.998501i \(-0.517433\pi\)
−0.683758 + 0.729709i \(0.739655\pi\)
\(464\) 7.71271e9 + 9.19165e9i 0.166393 + 0.198299i
\(465\) 0 0
\(466\) 8.45059e9 3.07576e9i 0.179202 0.0652243i
\(467\) −6.28492e10 3.62860e10i −1.32139 0.762907i −0.337442 0.941346i \(-0.609562\pi\)
−0.983951 + 0.178439i \(0.942895\pi\)
\(468\) 0 0
\(469\) 9.47900e9 + 1.64181e10i 0.195917 + 0.339338i
\(470\) −5.68666e10 + 6.77710e10i −1.16537 + 1.38884i
\(471\) 0 0
\(472\) −2.92561e9 1.65920e10i −0.0589452 0.334295i
\(473\) 1.25243e9 2.20837e8i 0.0250212 0.00441192i
\(474\) 0 0
\(475\) −2.28689e10 1.91893e10i −0.449231 0.376950i
\(476\) 7.32072e9 4.22662e9i 0.142602 0.0823313i
\(477\) 0 0
\(478\) 1.09630e10 1.89884e10i 0.209999 0.363728i
\(479\) −5.00005e9 1.37375e10i −0.0949800 0.260955i 0.883100 0.469185i \(-0.155452\pi\)
−0.978080 + 0.208229i \(0.933230\pi\)
\(480\) 0 0
\(481\) −5.56216e10 + 4.66720e10i −1.03911 + 0.871919i
\(482\) 7.75652e9 2.13109e10i 0.143707 0.394833i
\(483\) 0 0
\(484\) −2.57185e8 + 1.45857e9i −0.00468666 + 0.0265794i
\(485\) 1.04516e11i 1.88894i
\(486\) 0 0
\(487\) 5.04287e9 0.0896523 0.0448262 0.998995i \(-0.485727\pi\)
0.0448262 + 0.998995i \(0.485727\pi\)
\(488\) −5.24646e9 9.25093e8i −0.0925097 0.0163120i
\(489\) 0 0
\(490\) 3.37984e10 + 1.23016e10i 0.586289 + 0.213392i
\(491\) 6.98310e10 + 8.32214e10i 1.20150 + 1.43189i 0.873234 + 0.487301i \(0.162019\pi\)
0.328263 + 0.944587i \(0.393537\pi\)
\(492\) 0 0
\(493\) −8.08898e9 + 2.94415e9i −0.136932 + 0.0498393i
\(494\) −1.94477e11 1.12281e11i −3.26557 1.88538i
\(495\) 0 0
\(496\) 5.89962e10 + 1.02185e11i 0.974760 + 1.68833i
\(497\) −4.92222e10 + 5.86608e10i −0.806744 + 0.961440i
\(498\) 0 0
\(499\) −1.09560e10 6.21345e10i −0.176705 1.00215i −0.936157 0.351582i \(-0.885644\pi\)
0.759452 0.650564i \(-0.225467\pi\)
\(500\) −1.57040e10 + 2.76904e9i −0.251264 + 0.0443046i
\(501\) 0 0
\(502\) −5.77950e10 4.84958e10i −0.910071 0.763640i
\(503\) −8.47129e10 + 4.89090e10i −1.32336 + 0.764042i −0.984263 0.176710i \(-0.943454\pi\)
−0.339096 + 0.940752i \(0.610121\pi\)
\(504\) 0 0
\(505\) −1.99536e10 + 3.45607e10i −0.306801 + 0.531394i
\(506\) −2.05932e10 5.65795e10i −0.314139 0.863091i
\(507\) 0 0
\(508\) 2.59930e10 2.18107e10i 0.390302 0.327502i
\(509\) −2.69504e10 + 7.40456e10i −0.401508 + 1.10313i 0.560033 + 0.828471i \(0.310789\pi\)
−0.961540 + 0.274663i \(0.911434\pi\)
\(510\) 0 0
\(511\) −5.70402e9 + 3.23491e10i −0.0836561 + 0.474437i
\(512\) 1.17095e10i 0.170395i
\(513\) 0 0
\(514\) 3.06921e10 0.439717
\(515\) −3.26192e9 5.75165e8i −0.0463708 0.00817643i
\(516\) 0 0
\(517\) 8.78146e10 + 3.19619e10i 1.22915 + 0.447374i
\(518\) 2.89001e10 + 3.44418e10i 0.401403 + 0.478374i
\(519\) 0 0
\(520\) −1.11623e11 + 4.06275e10i −1.52666 + 0.555657i
\(521\) 3.76198e10 + 2.17198e10i 0.510582 + 0.294785i 0.733073 0.680150i \(-0.238085\pi\)
−0.222491 + 0.974935i \(0.571419\pi\)
\(522\) 0 0
\(523\) −2.11930e9 3.67073e9i −0.0283260 0.0490621i 0.851515 0.524330i \(-0.175684\pi\)
−0.879841 + 0.475268i \(0.842351\pi\)
\(524\) 2.00782e10 2.39283e10i 0.266317 0.317385i
\(525\) 0 0
\(526\) −1.65857e10 9.40622e10i −0.216666 1.22877i
\(527\) −8.33632e10 + 1.46992e10i −1.08077 + 0.190568i
\(528\) 0 0
\(529\) 1.85100e10 + 1.55318e10i 0.236366 + 0.198335i
\(530\) 4.55608e9 2.63045e9i 0.0577415 0.0333371i
\(531\) 0 0
\(532\) −1.72144e10 + 2.98162e10i −0.214905 + 0.372226i
\(533\) 2.55100e10 + 7.00882e10i 0.316083 + 0.868432i
\(534\) 0 0
\(535\) −1.01056e11 + 8.47957e10i −1.23352 + 1.03504i
\(536\) 1.17503e10 3.22837e10i 0.142361 0.391133i
\(537\) 0 0
\(538\) −3.29944e10 + 1.87121e11i −0.393833 + 2.23354i
\(539\) 3.79928e10i 0.450139i
\(540\) 0 0
\(541\) −2.11172e10 −0.246517 −0.123258 0.992375i \(-0.539334\pi\)
−0.123258 + 0.992375i \(0.539334\pi\)
\(542\) 1.11395e11 + 1.96419e10i 1.29082 + 0.227607i
\(543\) 0 0
\(544\) −3.58505e10 1.30485e10i −0.409355 0.148993i
\(545\) −7.75101e10 9.23729e10i −0.878561 1.04703i
\(546\) 0 0
\(547\) 2.43115e10 8.84865e9i 0.271557 0.0988388i −0.202652 0.979251i \(-0.564956\pi\)
0.474210 + 0.880412i \(0.342734\pi\)
\(548\) 6.37397e9 + 3.68001e9i 0.0706785 + 0.0408063i
\(549\) 0 0
\(550\) −1.65218e10 2.86166e10i −0.180553 0.312728i
\(551\) 2.25359e10 2.68572e10i 0.244494 0.291377i
\(552\) 0 0
\(553\) −3.00429e8 1.70382e9i −0.00321248 0.0182189i
\(554\) 1.16247e11 2.04974e10i 1.23407 0.217601i
\(555\) 0 0
\(556\) 1.86528e9 + 1.56515e9i 0.0195184 + 0.0163779i
\(557\) 1.96099e10 1.13218e10i 0.203730 0.117623i −0.394664 0.918825i \(-0.629139\pi\)
0.598394 + 0.801202i \(0.295806\pi\)
\(558\) 0 0
\(559\) 2.36070e9 4.08884e9i 0.0241765 0.0418749i
\(560\) 3.44412e10 + 9.46264e10i 0.350208 + 0.962188i
\(561\) 0 0
\(562\) −1.86060e10 + 1.56122e10i −0.186512 + 0.156502i
\(563\) 4.81783e10 1.32369e11i 0.479532 1.31750i −0.430359 0.902658i \(-0.641613\pi\)
0.909891 0.414847i \(-0.136165\pi\)
\(564\) 0 0
\(565\) 5.04087e9 2.85882e10i 0.0494665 0.280539i
\(566\) 7.06019e10i 0.687940i
\(567\) 0 0
\(568\) 1.38771e11 1.33323
\(569\) −3.65522e10 6.44514e9i −0.348710 0.0614870i −0.00344997 0.999994i \(-0.501098\pi\)
−0.345260 + 0.938507i \(0.612209\pi\)
\(570\) 0 0
\(571\) 1.26055e11 + 4.58802e10i 1.18581 + 0.431599i 0.858250 0.513231i \(-0.171552\pi\)
0.327559 + 0.944831i \(0.393774\pi\)
\(572\) −3.95588e10 4.71443e10i −0.369537 0.440398i
\(573\) 0 0
\(574\) 4.33998e10 1.57962e10i 0.399798 0.145514i
\(575\) −2.57351e10 1.48582e10i −0.235426 0.135923i
\(576\) 0 0
\(577\) −8.40995e10 1.45665e11i −0.758735 1.31417i −0.943496 0.331384i \(-0.892484\pi\)
0.184761 0.982784i \(-0.440849\pi\)
\(578\) −4.36488e10 + 5.20186e10i −0.391075 + 0.466066i
\(579\) 0 0
\(580\) 1.57952e9 + 8.95789e9i 0.0139577 + 0.0791578i
\(581\) −4.37477e10 + 7.71390e9i −0.383929 + 0.0676970i
\(582\) 0 0
\(583\) −4.25702e9 3.57207e9i −0.0368495 0.0309204i
\(584\) 5.15521e10 2.97636e10i 0.443196 0.255879i
\(585\) 0 0
\(586\) −4.33140e8 + 7.50221e8i −0.00367315 + 0.00636208i
\(587\) −2.12822e10 5.84723e10i −0.179252 0.492490i 0.817229 0.576313i \(-0.195509\pi\)
−0.996481 + 0.0838232i \(0.973287\pi\)
\(588\) 0 0
\(589\) 2.64105e11 2.21610e11i 2.19440 1.84132i
\(590\) 2.41538e10 6.63619e10i 0.199332 0.547660i
\(591\) 0 0
\(592\) 1.93697e10 1.09851e11i 0.157701 0.894368i
\(593\) 1.16087e11i 0.938783i −0.882990 0.469391i \(-0.844473\pi\)
0.882990 0.469391i \(-0.155527\pi\)
\(594\) 0 0
\(595\) −7.22428e10 −0.576404
\(596\) −6.72862e10 1.18644e10i −0.533263 0.0940286i
\(597\) 0 0
\(598\) −2.10052e11 7.64526e10i −1.64256 0.597844i
\(599\) −1.03477e11 1.23319e11i −0.803779 0.957906i 0.195963 0.980611i \(-0.437217\pi\)
−0.999742 + 0.0227048i \(0.992772\pi\)
\(600\) 0 0
\(601\) 1.36871e11 4.98170e10i 1.04909 0.381838i 0.240772 0.970582i \(-0.422599\pi\)
0.808320 + 0.588743i \(0.200377\pi\)
\(602\) −2.53188e9 1.46178e9i −0.0192778 0.0111301i
\(603\) 0 0
\(604\) 1.11383e10 + 1.92920e10i 0.0836892 + 0.144954i
\(605\) 8.13606e9 9.69617e9i 0.0607285 0.0723734i
\(606\) 0 0
\(607\) 9.73305e9 + 5.51989e10i 0.0716959 + 0.406608i 0.999442 + 0.0333962i \(0.0106323\pi\)
−0.927746 + 0.373212i \(0.878257\pi\)
\(608\) 1.53024e11 2.69823e10i 1.11982 0.197454i
\(609\) 0 0
\(610\) −1.71063e10 1.43539e10i −0.123548 0.103669i
\(611\) 3.00455e11 1.73468e11i 2.15583 1.24467i
\(612\) 0 0
\(613\) −4.20804e7 + 7.28855e7i −0.000298015 + 0.000516177i −0.866174 0.499742i \(-0.833428\pi\)
0.865876 + 0.500258i \(0.166762\pi\)
\(614\) 1.28696e10 + 3.53591e10i 0.0905510 + 0.248787i
\(615\) 0 0
\(616\) 5.95192e10 4.99426e10i 0.413366 0.346855i
\(617\) −5.97309e10 + 1.64109e11i −0.412153 + 1.13238i 0.543890 + 0.839156i \(0.316951\pi\)
−0.956043 + 0.293225i \(0.905271\pi\)
\(618\) 0 0
\(619\) −1.84903e9 + 1.04864e10i −0.0125945 + 0.0714269i −0.990457 0.137820i \(-0.955990\pi\)
0.977863 + 0.209247i \(0.0671014\pi\)
\(620\) 8.94478e10i 0.605345i
\(621\) 0 0
\(622\) −4.59928e10 −0.307276
\(623\) 6.63796e10 + 1.17045e10i 0.440638 + 0.0776964i
\(624\) 0 0
\(625\) 1.74937e11 + 6.36718e10i 1.14647 + 0.417280i
\(626\) 1.71881e11 + 2.04840e11i 1.11926 + 1.33388i
\(627\) 0 0
\(628\) 5.22404e10 1.90139e10i 0.335867 0.122246i
\(629\) 6.93028e10 + 4.00120e10i 0.442739 + 0.255616i
\(630\) 0 0
\(631\) 4.31131e10 + 7.46741e10i 0.271952 + 0.471035i 0.969362 0.245638i \(-0.0789975\pi\)
−0.697410 + 0.716673i \(0.745664\pi\)
\(632\) −2.01532e9 + 2.40176e9i −0.0126321 + 0.0150543i
\(633\) 0 0
\(634\) −3.24678e10 1.84134e11i −0.200954 1.13967i
\(635\) −2.85578e11 + 5.03551e10i −1.75643 + 0.309705i
\(636\) 0 0
\(637\) −1.08050e11 9.06644e10i −0.656244 0.550654i
\(638\) 3.36073e10 1.94032e10i 0.202839 0.117109i
\(639\) 0 0
\(640\) 1.15839e11 2.00639e11i 0.690453 1.19590i
\(641\) 4.73143e10 + 1.29995e11i 0.280260 + 0.770007i 0.997331 + 0.0730075i \(0.0232597\pi\)
−0.717072 + 0.696999i \(0.754518\pi\)
\(642\) 0 0
\(643\) −1.87441e11 + 1.57282e11i −1.09653 + 0.920099i −0.997187 0.0749536i \(-0.976119\pi\)
−0.0993448 + 0.995053i \(0.531675\pi\)
\(644\) −1.17214e10 + 3.22042e10i −0.0681451 + 0.187227i
\(645\) 0 0
\(646\) −4.29772e10 + 2.43736e11i −0.246779 + 1.39955i
\(647\) 3.44674e11i 1.96694i 0.181068 + 0.983471i \(0.442045\pi\)
−0.181068 + 0.983471i \(0.557955\pi\)
\(648\) 0 0
\(649\) −7.45975e10 −0.420480
\(650\) −1.20811e11 2.13022e10i −0.676788 0.119336i
\(651\) 0 0
\(652\) −1.55469e10 5.65862e9i −0.0860308 0.0313127i
\(653\) −1.09007e11 1.29909e11i −0.599515 0.714474i 0.377890 0.925850i \(-0.376650\pi\)
−0.977405 + 0.211377i \(0.932205\pi\)
\(654\) 0 0
\(655\) −2.50850e11 + 9.13020e10i −1.36285 + 0.496038i
\(656\) −9.92321e10 5.72917e10i −0.535842 0.309368i
\(657\) 0 0
\(658\) −1.07414e11 1.86047e11i −0.573005 0.992474i
\(659\) 9.46900e10 1.12847e11i 0.502068 0.598341i −0.454176 0.890912i \(-0.650066\pi\)
0.956244 + 0.292571i \(0.0945107\pi\)
\(660\) 0 0
\(661\) 6.13448e10 + 3.47903e11i 0.321345 + 1.82244i 0.534204 + 0.845356i \(0.320611\pi\)
−0.212859 + 0.977083i \(0.568277\pi\)
\(662\) 1.02649e11 1.80999e10i 0.534471 0.0942417i
\(663\) 0 0
\(664\) 6.16685e10 + 5.17460e10i 0.317242 + 0.266198i
\(665\) 2.54815e11 1.47117e11i 1.30298 0.752277i
\(666\) 0 0
\(667\) 1.74494e10 3.02233e10i 0.0881613 0.152700i
\(668\) −1.53717e10 4.22333e10i −0.0771996 0.212104i
\(669\) 0 0
\(670\) 1.10316e11 9.25662e10i 0.547444 0.459360i
\(671\) −8.06761e9 + 2.21656e10i −0.0397974 + 0.109342i
\(672\) 0 0
\(673\) 2.30661e10 1.30814e11i 0.112438 0.637669i −0.875549 0.483130i \(-0.839500\pi\)
0.987987 0.154539i \(-0.0493891\pi\)
\(674\) 1.99348e11i 0.965992i
\(675\) 0 0
\(676\) −1.59758e11 −0.765026
\(677\) 1.36374e11 + 2.40464e10i 0.649198 + 0.114471i 0.488543 0.872540i \(-0.337528\pi\)
0.160655 + 0.987011i \(0.448640\pi\)
\(678\) 0 0
\(679\) −2.38491e11 8.68038e10i −1.12200 0.408375i
\(680\) 8.41526e10 + 1.00289e11i 0.393579 + 0.469049i
\(681\) 0 0
\(682\) 3.58595e11 1.30518e11i 1.65755 0.603299i
\(683\) −1.73204e11 9.99994e10i −0.795931 0.459531i 0.0461155 0.998936i \(-0.485316\pi\)
−0.842046 + 0.539405i \(0.818649\pi\)
\(684\) 0 0
\(685\) −3.14500e10 5.44730e10i −0.142843 0.247411i
\(686\) −1.75636e11 + 2.09315e11i −0.793082 + 0.945158i
\(687\) 0 0
\(688\) 1.25951e9 + 7.14306e9i 0.00562146 + 0.0318809i
\(689\) −2.03175e10 + 3.58253e9i −0.0901560 + 0.0158969i
\(690\) 0 0
\(691\) 1.31119e11 + 1.10022e11i 0.575114 + 0.482578i 0.883339 0.468736i \(-0.155290\pi\)
−0.308224 + 0.951314i \(0.599735\pi\)
\(692\) −4.62063e10 + 2.66772e10i −0.201501 + 0.116337i
\(693\) 0 0
\(694\) −1.22915e11 + 2.12895e11i −0.529868 + 0.917759i
\(695\) −7.11726e9 1.95545e10i −0.0305052 0.0838122i
\(696\) 0 0
\(697\) 6.29715e10 5.28393e10i 0.266816 0.223886i
\(698\) −8.35957e10 + 2.29677e11i −0.352178 + 0.967601i
\(699\) 0 0
\(700\) −3.26596e9 + 1.85222e10i −0.0136025 + 0.0771435i
\(701\) 1.25718e11i 0.520627i 0.965524 + 0.260313i \(0.0838259\pi\)
−0.965524 + 0.260313i \(0.916174\pi\)
\(702\) 0 0
\(703\) −3.25926e11 −1.33444
\(704\) −1.13565e11 2.00245e10i −0.462330 0.0815213i
\(705\) 0 0
\(706\) 1.64697e11 + 5.99448e10i 0.662929 + 0.241286i
\(707\) −6.22905e10 7.42349e10i −0.249312 0.297119i
\(708\) 0 0
\(709\) −3.45306e11 + 1.25681e11i −1.36653 + 0.497377i −0.918068 0.396424i \(-0.870251\pi\)
−0.448464 + 0.893801i \(0.648029\pi\)
\(710\) 5.03751e11 + 2.90841e11i 1.98236 + 1.14452i
\(711\) 0 0
\(712\) −6.10742e10 1.05784e11i −0.237650 0.411622i
\(713\) 2.20594e11 2.62894e11i 0.853563 1.01724i
\(714\) 0 0
\(715\) 9.13308e10 + 5.17963e11i 0.349456 + 1.98187i
\(716\) −1.42615e11 + 2.51468e10i −0.542641 + 0.0956822i
\(717\) 0 0
\(718\) 6.93018e10 + 5.81511e10i 0.260763 + 0.218807i
\(719\) −3.16014e11 + 1.82451e11i −1.18247 + 0.682701i −0.956585 0.291453i \(-0.905861\pi\)
−0.225887 + 0.974153i \(0.572528\pi\)
\(720\) 0 0
\(721\) 4.02156e9 6.96555e9i 0.0148817 0.0257759i
\(722\) −2.37616e11 6.52844e11i −0.874433 2.40248i
\(723\) 0 0
\(724\) −1.22023e11 + 1.02390e11i −0.444108 + 0.372651i
\(725\) 6.55054e9 1.79974e10i 0.0237096 0.0651417i
\(726\) 0 0
\(727\) 8.91683e10 5.05698e11i 0.319207 1.81031i −0.228387 0.973570i \(-0.573345\pi\)
0.547594 0.836744i \(-0.315544\pi\)
\(728\) 2.88450e11i 1.02694i
\(729\) 0 0
\(730\) 2.49519e11 0.878641
\(731\) −5.12451e9 9.03589e8i −0.0179466 0.00316447i
\(732\) 0 0
\(733\) 4.03939e10 + 1.47022e10i 0.139927 + 0.0509291i 0.411034 0.911620i \(-0.365168\pi\)
−0.271108 + 0.962549i \(0.587390\pi\)
\(734\) 2.17905e10 + 2.59689e10i 0.0750730 + 0.0894685i
\(735\) 0 0
\(736\) 1.45345e11 5.29012e10i 0.495322 0.180283i
\(737\) −1.31737e11 7.60582e10i −0.446516 0.257796i
\(738\) 0 0
\(739\) 3.58339e10 + 6.20661e10i 0.120148 + 0.208102i 0.919826 0.392327i \(-0.128330\pi\)
−0.799678 + 0.600429i \(0.794996\pi\)
\(740\) 5.43544e10 6.47770e10i 0.181262 0.216020i
\(741\) 0 0
\(742\) 2.21837e9 + 1.25810e10i 0.00731843 + 0.0415049i
\(743\) −2.19616e11 + 3.87242e10i −0.720623 + 0.127065i −0.521920 0.852994i \(-0.674784\pi\)
−0.198703 + 0.980060i \(0.563673\pi\)
\(744\) 0 0
\(745\) 4.47302e11 + 3.75331e11i 1.45203 + 1.21840i
\(746\) 7.34394e10 4.24003e10i 0.237123 0.136903i
\(747\) 0 0
\(748\) −3.39138e10 + 5.87404e10i −0.108335 + 0.187642i
\(749\) −1.09562e11 3.01020e11i −0.348123 0.956461i
\(750\) 0 0
\(751\) −2.85366e11 + 2.39451e11i −0.897103 + 0.752759i −0.969622 0.244608i \(-0.921341\pi\)
0.0725187 + 0.997367i \(0.476896\pi\)
\(752\) −1.82290e11 + 5.00838e11i −0.570022 + 1.56612i
\(753\) 0 0
\(754\) 2.50174e10 1.41880e11i 0.0774027 0.438972i
\(755\) 1.90379e11i 0.585910i
\(756\) 0 0
\(757\) 8.96073e10 0.272873 0.136436 0.990649i \(-0.456435\pi\)
0.136436 + 0.990649i \(0.456435\pi\)
\(758\) −4.04252e11 7.12805e10i −1.22455 0.215920i
\(759\) 0 0
\(760\) −5.01055e11 1.82369e11i −1.50186 0.546634i
\(761\) 2.51712e11 + 2.99978e11i 0.750524 + 0.894439i 0.997209 0.0746562i \(-0.0237859\pi\)
−0.246686 + 0.969096i \(0.579341\pi\)
\(762\) 0 0
\(763\) 2.75156e11 1.00149e11i 0.811859 0.295492i
\(764\) −3.41392e10 1.97103e10i −0.100203 0.0578521i
\(765\) 0 0
\(766\) 1.95195e11 + 3.38088e11i 0.566962 + 0.982007i
\(767\) −1.78016e11 + 2.12152e11i −0.514373 + 0.613006i
\(768\) 0 0
\(769\) 9.04648e10 + 5.13051e11i 0.258687 + 1.46709i 0.786429 + 0.617681i \(0.211928\pi\)
−0.527742 + 0.849405i \(0.676961\pi\)
\(770\) 3.20731e11 5.65536e10i 0.912386 0.160878i
\(771\) 0 0
\(772\) −8.53073e10 7.15813e10i −0.240169 0.201526i
\(773\) −3.85204e11 + 2.22398e11i −1.07888 + 0.622891i −0.930594 0.366053i \(-0.880709\pi\)
−0.148286 + 0.988945i \(0.547376\pi\)
\(774\) 0 0
\(775\) 9.41695e10 1.63106e11i 0.261038 0.452131i
\(776\) 1.57305e11 + 4.32193e11i 0.433807 + 1.19188i
\(777\) 0 0
\(778\) 1.97923e11 1.66077e11i 0.540228 0.453305i
\(779\) −1.14509e11 + 3.14612e11i −0.310950 + 0.854329i
\(780\) 0 0
\(781\) 1.06696e11 6.05102e11i 0.286776 1.62639i
\(782\) 2.46361e11i 0.658787i
\(783\) 0 0
\(784\) 2.16686e11 0.573545
\(785\) −4.67890e11 8.25016e10i −1.23215 0.217262i
\(786\) 0 0
\(787\) −2.60751e11 9.49055e10i −0.679715 0.247396i −0.0209896 0.999780i \(-0.506682\pi\)
−0.658725 + 0.752384i \(0.728904\pi\)
\(788\) 6.47818e10 + 7.72040e10i 0.168015 + 0.200233i
\(789\) 0 0
\(790\) −1.23495e10 + 4.49485e9i −0.0317059 + 0.0115400i
\(791\) 6.10475e10 + 3.52458e10i 0.155942 + 0.0900329i
\(792\) 0 0
\(793\) 4.37856e10 + 7.58388e10i 0.110723 + 0.191778i
\(794\) 1.28871e11 1.53582e11i 0.324244 0.386419i
\(795\) 0 0
\(796\) 1.69075e10 + 9.58873e10i 0.0421141 + 0.238841i
\(797\) 1.40117e11 2.47064e10i 0.347262 0.0612317i 0.00270314 0.999996i \(-0.499140\pi\)
0.344559 + 0.938765i \(0.388028\pi\)
\(798\) 0 0
\(799\) −2.92910e11 2.45780e11i −0.718698 0.603059i
\(800\) 7.35119e10 4.24421e10i 0.179472 0.103618i
\(801\) 0 0
\(802\) −7.68623e10 + 1.33129e11i −0.185787 + 0.321793i
\(803\) −9.01459e10 2.47674e11i −0.216812 0.595687i
\(804\) 0 0
\(805\) 2.24364e11 1.88263e11i 0.534280 0.448314i
\(806\) 4.84549e11 1.33129e12i 1.14815 3.15451i
\(807\) 0 0
\(808\) −3.04951e10 + 1.72946e11i −0.0715458 + 0.405756i
\(809\) 2.00653e10i 0.0468437i −0.999726 0.0234218i \(-0.992544\pi\)
0.999726 0.0234218i \(-0.00745608\pi\)
\(810\) 0 0
\(811\) −5.31469e11 −1.22855 −0.614277 0.789091i \(-0.710552\pi\)
−0.614277 + 0.789091i \(0.710552\pi\)
\(812\) −2.17525e10 3.83554e9i −0.0500362 0.00882273i
\(813\) 0 0
\(814\) −3.39001e11 1.23386e11i −0.772154 0.281041i
\(815\) 9.08862e10 + 1.08314e11i 0.206000 + 0.245501i
\(816\) 0 0
\(817\) 1.99153e10 7.24856e9i 0.0446990 0.0162691i
\(818\) 1.53050e11 + 8.83636e10i 0.341838 + 0.197360i
\(819\) 0 0
\(820\) −4.34317e10 7.52259e10i −0.0960619 0.166384i
\(821\) 3.02377e11 3.60358e11i 0.665542 0.793162i −0.322628 0.946526i \(-0.604566\pi\)
0.988170 + 0.153364i \(0.0490107\pi\)
\(822\) 0 0
\(823\) 1.54464e10 + 8.76008e10i 0.0336688 + 0.190945i 0.997003 0.0773576i \(-0.0246483\pi\)
−0.963335 + 0.268303i \(0.913537\pi\)
\(824\) −1.43543e10 + 2.53104e9i −0.0311367 + 0.00549024i
\(825\) 0 0
\(826\) 1.31368e11 + 1.10231e11i 0.282208 + 0.236801i
\(827\) −3.15470e11 + 1.82137e11i −0.674429 + 0.389381i −0.797753 0.602985i \(-0.793978\pi\)
0.123324 + 0.992366i \(0.460645\pi\)
\(828\) 0 0
\(829\) 1.27431e11 2.20717e11i 0.269810 0.467324i −0.699003 0.715119i \(-0.746373\pi\)
0.968813 + 0.247795i \(0.0797059\pi\)
\(830\) 1.15411e11 + 3.17089e11i 0.243184 + 0.668143i
\(831\) 0 0
\(832\) −3.27954e11 + 2.75186e11i −0.684416 + 0.574293i
\(833\) −5.31682e10 + 1.46078e11i −0.110426 + 0.303393i
\(834\) 0 0
\(835\) −6.66978e10 + 3.78262e11i −0.137204 + 0.778120i
\(836\) 2.76252e11i 0.565562i
\(837\) 0 0
\(838\) 3.57772e11 0.725488
\(839\) −7.22478e10 1.27392e10i −0.145806 0.0257096i 0.100269 0.994960i \(-0.468030\pi\)
−0.246075 + 0.969251i \(0.579141\pi\)
\(840\) 0 0
\(841\) −4.48942e11 1.63401e11i −0.897441 0.326642i
\(842\) −2.51580e10 2.99822e10i −0.0500528 0.0596506i
\(843\) 0 0
\(844\) 2.00625e11 7.30216e10i 0.395381 0.143907i
\(845\) 1.18240e12 + 6.82660e11i 2.31920 + 1.33899i
\(846\) 0 0
\(847\) 1.53680e10 + 2.66182e10i 0.0298597 + 0.0517185i
\(848\) 2.03728e10 2.42793e10i 0.0393973 0.0469519i
\(849\) 0 0
\(850\) 2.34777e10 + 1.33149e11i 0.0449759 + 0.255071i
\(851\) −3.19503e11 + 5.63370e10i −0.609196 + 0.107418i
\(852\) 0 0
\(853\) −3.00375e11 2.52045e11i −0.567372 0.476081i 0.313401 0.949621i \(-0.398532\pi\)
−0.880773 + 0.473539i \(0.842976\pi\)
\(854\) 4.69607e10 2.71128e10i 0.0882883 0.0509733i
\(855\) 0 0
\(856\) −2.90258e11 + 5.02741e11i −0.540616 + 0.936374i
\(857\) 1.62312e11 + 4.45949e11i 0.300904 + 0.826726i 0.994344 + 0.106211i \(0.0338720\pi\)
−0.693440 + 0.720514i \(0.743906\pi\)
\(858\) 0 0
\(859\) 4.56874e11 3.83363e11i 0.839120 0.704105i −0.118246 0.992984i \(-0.537727\pi\)
0.957366 + 0.288879i \(0.0932826\pi\)
\(860\) −1.88061e9 + 5.16694e9i −0.00343800 + 0.00944582i
\(861\) 0 0
\(862\) −1.75575e11 + 9.95733e11i −0.318004 + 1.80349i
\(863\) 3.12216e11i 0.562875i −0.959580 0.281438i \(-0.909189\pi\)
0.959580 0.281438i \(-0.0908112\pi\)
\(864\) 0 0
\(865\) 4.55977e11 0.814476
\(866\) 8.12352e11 + 1.43239e11i 1.44435 + 0.254678i
\(867\) 0 0
\(868\) −2.04107e11 7.42888e10i −0.359566 0.130871i
\(869\) 8.92323e9 + 1.06343e10i 0.0156474 + 0.0186479i
\(870\) 0 0
\(871\) −5.30676e11 + 1.93150e11i −0.922055 + 0.335601i
\(872\) −4.59546e11 2.65319e11i −0.794809 0.458883i
\(873\) 0 0
\(874\) −5.01697e11 8.68964e11i −0.859796 1.48921i
\(875\) −2.12716e11 + 2.53505e11i −0.362884 + 0.432469i
\(876\) 0 0
\(877\) −1.36932e11 7.76578e11i −0.231476 1.31276i −0.849910 0.526927i \(-0.823344\pi\)
0.618435 0.785836i \(-0.287767\pi\)
\(878\) −6.56128e11 + 1.15693e11i −1.10410 + 0.194683i
\(879\) 0 0
\(880\) −6.18961e11 5.19370e11i −1.03213 0.866057i
\(881\) −4.17051e11 + 2.40784e11i −0.692285 + 0.399691i −0.804468 0.593997i \(-0.797549\pi\)
0.112182 + 0.993688i \(0.464216\pi\)
\(882\) 0 0
\(883\) −3.71364e11 + 6.43221e11i −0.610881 + 1.05808i 0.380211 + 0.924900i \(0.375851\pi\)
−0.991092 + 0.133178i \(0.957482\pi\)
\(884\) 8.61243e10 + 2.36625e11i 0.141032 + 0.387481i
\(885\) 0 0
\(886\) 9.74189e11 8.17442e11i 1.58091 1.32654i
\(887\) −1.36860e11 + 3.76021e11i −0.221097 + 0.607460i −0.999801 0.0199316i \(-0.993655\pi\)
0.778704 + 0.627391i \(0.215877\pi\)
\(888\) 0 0
\(889\) 1.22277e11 6.93469e11i 0.195767 1.11025i
\(890\) 5.12006e11i 0.816047i
\(891\) 0 0
\(892\) 2.02211e11 0.319408
\(893\) 1.53366e12 + 2.70427e11i 2.41171 + 0.425249i
\(894\) 0 0
\(895\) 1.16298e12 + 4.23289e11i 1.81250 + 0.659697i
\(896\) 3.61621e11 + 4.30963e11i 0.561076 + 0.668664i
\(897\) 0 0
\(898\) 3.31576e11 1.20684e11i 0.509891 0.185585i
\(899\) 1.91552e11 + 1.10593e11i 0.293257 + 0.169312i
\(900\) 0 0
\(901\) 1.13690e10 + 1.96916e10i 0.0172513 + 0.0298801i
\(902\) −2.38206e11 + 2.83883e11i −0.359854 + 0.428857i
\(903\) 0 0
\(904\) −2.21826e10 1.25804e11i −0.0332154 0.188374i
\(905\) 1.34064e12 2.36391e11i 1.99856 0.352400i
\(906\) 0 0
\(907\) 6.75477e11 + 5.66793e11i 0.998117 + 0.837520i 0.986723 0.162415i \(-0.0519284\pi\)
0.0113948 + 0.999935i \(0.496373\pi\)
\(908\) −1.82014e11 + 1.05086e11i −0.267770 + 0.154597i
\(909\) 0 0
\(910\) 6.04544e11 1.04710e12i 0.881581 1.52694i
\(911\) −3.16540e11 8.69688e11i −0.459574 1.26267i −0.925803 0.378006i \(-0.876610\pi\)
0.466229 0.884664i \(-0.345612\pi\)
\(912\) 0 0
\(913\) 2.73049e11 2.29116e11i 0.392969 0.329740i
\(914\) 8.15897e10 2.24166e11i 0.116910 0.321207i
\(915\) 0 0
\(916\) −5.80545e10 + 3.29244e11i −0.0824620 + 0.467666i
\(917\) 6.48233e11i 0.916756i
\(918\) 0 0
\(919\) −5.89783e11 −0.826857 −0.413428 0.910537i \(-0.635669\pi\)
−0.413428 + 0.910537i \(0.635669\pi\)
\(920\) −5.22703e11 9.21666e10i −0.729631 0.128654i
\(921\) 0 0
\(922\) 1.51191e12 + 5.50289e11i 2.09219 + 0.761496i
\(923\) −1.46626e12 1.74743e12i −2.02025 2.40764i
\(924\) 0 0
\(925\) −1.67311e11 + 6.08960e10i −0.228537 + 0.0831806i
\(926\) −5.76916e11 3.33083e11i −0.784636 0.453010i
\(927\) 0 0
\(928\) 4.98441e10 + 8.63325e10i 0.0672081 + 0.116408i
\(929\) −4.01390e11 + 4.78358e11i −0.538895 + 0.642230i −0.964939 0.262472i \(-0.915462\pi\)
0.426045 + 0.904702i \(0.359907\pi\)
\(930\) 0 0
\(931\) −1.09944e11 6.23521e11i −0.146343 0.829951i
\(932\) 4.04473e10 7.13195e9i 0.0536075 0.00945245i
\(933\) 0 0
\(934\) −1.02546e12 8.60460e11i −1.34750 1.13069i
\(935\) 5.02005e11 2.89833e11i 0.656844 0.379229i
\(936\) 0 0
\(937\) 5.31480e11 9.20551e11i 0.689491 1.19423i −0.282511 0.959264i \(-0.591167\pi\)
0.972003 0.234970i \(-0.0754992\pi\)
\(938\) 1.19602e11 + 3.28604e11i 0.154500 + 0.424484i
\(939\) 0 0
\(940\) −3.09514e11 + 2.59713e11i −0.396432 + 0.332646i
\(941\) 1.57084e11 4.31586e11i 0.200343 0.550438i −0.798314 0.602241i \(-0.794275\pi\)
0.998657 + 0.0518029i \(0.0164968\pi\)
\(942\) 0 0
\(943\) −5.78713e10 + 3.28205e11i −0.0731841 + 0.415048i
\(944\) 4.25456e11i 0.535756i
\(945\) 0 0
\(946\) 2.34583e10 0.0292908
\(947\) 7.66319e11 + 1.35123e11i 0.952818 + 0.168007i 0.628386 0.777902i \(-0.283716\pi\)
0.324432 + 0.945909i \(0.394827\pi\)
\(948\) 0 0
\(949\) −9.19492e11 3.34668e11i −1.13366 0.412619i
\(950\) −3.53959e11 4.21831e11i −0.434568 0.517898i
\(951\) 0 0
\(952\) −2.98736e11 + 1.08731e11i −0.363697 + 0.132375i
\(953\) 2.60374e11 + 1.50327e11i 0.315664 + 0.182249i 0.649458 0.760397i \(-0.274996\pi\)
−0.333794 + 0.942646i \(0.608329\pi\)
\(954\) 0 0
\(955\) 1.68447e11 + 2.91759e11i 0.202512 + 0.350761i
\(956\) 6.43668e10 7.67094e10i 0.0770603 0.0918369i
\(957\) 0 0
\(958\) −4.68260e10 2.65563e11i −0.0555936 0.315287i
\(959\) 1.50420e11 2.65230e10i 0.177840 0.0313580i
\(960\) 0 0
\(961\) 1.01284e12 + 8.49875e11i 1.18754 + 0.996464i
\(962\) −1.15988e12 + 6.69659e11i −1.35430 + 0.781903i
\(963\) 0 0
\(964\) 5.17872e10 8.96980e10i 0.0599672 0.103866i
\(965\) 3.25503e11 + 8.94313e11i 0.375359 + 1.03129i
\(966\) 0 0
\(967\) 2.63774e11 2.21332e11i 0.301665 0.253127i −0.479372 0.877612i \(-0.659135\pi\)
0.781037 + 0.624485i \(0.214691\pi\)
\(968\) 1.90505e10 5.23407e10i 0.0216972 0.0596126i
\(969\) 0 0
\(970\) −3.34772e11 + 1.89859e12i −0.378148 + 2.14459i
\(971\) 4.73806e11i 0.532996i 0.963835 + 0.266498i \(0.0858666\pi\)
−0.963835 + 0.266498i \(0.914133\pi\)
\(972\) 0 0
\(973\) 5.05316e10 0.0563783
\(974\) 9.16058e10 + 1.61526e10i 0.101786 + 0.0179476i
\(975\) 0 0
\(976\) −1.26418e11 4.60124e10i −0.139319 0.0507079i
\(977\) 2.73124e11 + 3.25496e11i 0.299765 + 0.357246i 0.894811 0.446446i \(-0.147310\pi\)
−0.595046 + 0.803692i \(0.702866\pi\)
\(978\) 0 0
\(979\) −5.08220e11 + 1.84977e11i −0.553250 + 0.201366i
\(980\) 1.42258e11 + 8.21328e10i 0.154232 + 0.0890456i
\(981\) 0 0
\(982\) 1.00195e12 + 1.73543e12i 1.07746 + 1.86621i
\(983\) −4.17022e11 + 4.96987e11i −0.446627 + 0.532269i −0.941642 0.336615i \(-0.890718\pi\)
0.495016 + 0.868884i \(0.335162\pi\)
\(984\) 0 0
\(985\) −1.49564e11 8.48221e11i −0.158885 0.901081i
\(986\) −1.56370e11 + 2.75723e10i −0.165442 + 0.0291719i
\(987\) 0 0
\(988\) −7.85647e11 6.59236e11i −0.824517 0.691852i
\(989\) 1.82699e10 1.05481e10i 0.0190963 0.0110253i
\(990\) 0 0
\(991\) −2.65986e10 + 4.60702e10i −0.0275781 + 0.0477667i −0.879485 0.475926i \(-0.842113\pi\)
0.851907 + 0.523693i \(0.175446\pi\)
\(992\) 3.35282e11 + 9.21180e11i 0.346229 + 0.951257i
\(993\) 0 0
\(994\) −1.08204e12 + 9.07936e11i −1.10840 + 0.930058i
\(995\) 2.84599e11 7.81929e11i 0.290363 0.797765i
\(996\) 0 0
\(997\) −1.49115e11 + 8.45675e11i −0.150918 + 0.855899i 0.811505 + 0.584345i \(0.198649\pi\)
−0.962423 + 0.271554i \(0.912462\pi\)
\(998\) 1.16379e12i 1.17315i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.f.a.8.17 138
3.2 odd 2 27.9.f.a.2.7 138
27.13 even 9 27.9.f.a.14.7 yes 138
27.14 odd 18 inner 81.9.f.a.71.17 138
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.f.a.2.7 138 3.2 odd 2
27.9.f.a.14.7 yes 138 27.13 even 9
81.9.f.a.8.17 138 1.1 even 1 trivial
81.9.f.a.71.17 138 27.14 odd 18 inner