Properties

Label 81.9.f.a.8.16
Level $81$
Weight $9$
Character 81.8
Analytic conductor $32.998$
Analytic rank $0$
Dimension $138$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(138\)
Relative dimension: \(23\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.16
Character \(\chi\) \(=\) 81.8
Dual form 81.9.f.a.71.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.24786 + 1.45432i) q^{2} +(-174.649 - 63.5671i) q^{4} +(-723.153 - 861.820i) q^{5} +(2191.55 - 797.660i) q^{7} +(-3204.82 - 1850.30i) q^{8} +(-4711.10 - 8159.87i) q^{10} +(-2798.09 + 3334.63i) q^{11} +(-6274.91 - 35586.8i) q^{13} +(19235.7 - 3391.77i) q^{14} +(12706.1 + 10661.7i) q^{16} +(-32378.2 + 18693.6i) q^{17} +(34340.1 - 59478.9i) q^{19} +(71514.6 + 196485. i) q^{20} +(-27927.9 + 23434.3i) q^{22} +(-148858. + 408984. i) q^{23} +(-151952. + 861764. i) q^{25} -302641. i q^{26} -433458. q^{28} +(-292777. - 51624.5i) q^{29} +(764612. + 278296. i) q^{31} +(698240. + 832130. i) q^{32} +(-294238. + 107094. i) q^{34} +(-2.27227e6 - 1.31189e6i) q^{35} +(-1.13655e6 - 1.96857e6i) q^{37} +(369734. - 440632. i) q^{38} +(722945. + 4.10002e6i) q^{40} +(-1.45417e6 + 256409. i) q^{41} +(1.39504e6 + 1.17057e6i) q^{43} +(700657. - 404524. i) q^{44} +(-1.82256e6 + 3.15676e6i) q^{46} +(647951. + 1.78023e6i) q^{47} +(-249448. + 209312. i) q^{49} +(-2.50656e6 + 6.88672e6i) q^{50} +(-1.16624e6 + 6.61408e6i) q^{52} +6.52907e6i q^{53} +4.89730e6 q^{55} +(-8.49944e6 - 1.49868e6i) q^{56} +(-2.33970e6 - 851583. i) q^{58} +(-1.53319e7 - 1.82719e7i) q^{59} +(1.95580e7 - 7.11851e6i) q^{61} +(5.90169e6 + 3.40734e6i) q^{62} +(2.42571e6 + 4.20146e6i) q^{64} +(-2.61317e7 + 3.11425e7i) q^{65} +(-370662. - 2.10213e6i) q^{67} +(6.84313e6 - 1.20663e6i) q^{68} +(-1.68334e7 - 1.41249e7i) q^{70} +(1.54472e7 - 8.91846e6i) q^{71} +(-1.66329e7 + 2.88091e7i) q^{73} +(-6.51120e6 - 1.78894e7i) q^{74} +(-9.77838e6 + 8.20503e6i) q^{76} +(-3.47226e6 + 9.53995e6i) q^{77} +(-9.65767e6 + 5.47714e7i) q^{79} -1.86604e7i q^{80} -1.23667e7 q^{82} +(5.73546e7 + 1.01132e7i) q^{83} +(3.95249e7 + 1.43859e7i) q^{85} +(9.80367e6 + 1.16836e7i) q^{86} +(1.51374e7 - 5.50958e6i) q^{88} +(4.54337e7 + 2.62311e7i) q^{89} +(-4.21380e7 - 7.29851e7i) q^{91} +(5.19959e7 - 6.19663e7i) q^{92} +(2.75518e6 + 1.56254e7i) q^{94} +(-7.60932e7 + 1.34173e7i) q^{95} +(-7.13382e7 - 5.98599e7i) q^{97} +(-2.36182e6 + 1.36360e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.24786 + 1.45432i 0.515491 + 0.0908950i 0.425341 0.905033i \(-0.360154\pi\)
0.0901503 + 0.995928i \(0.471265\pi\)
\(3\) 0 0
\(4\) −174.649 63.5671i −0.682223 0.248309i
\(5\) −723.153 861.820i −1.15704 1.37891i −0.912400 0.409299i \(-0.865773\pi\)
−0.244644 0.969613i \(-0.578671\pi\)
\(6\) 0 0
\(7\) 2191.55 797.660i 0.912767 0.332220i 0.157410 0.987533i \(-0.449686\pi\)
0.755357 + 0.655313i \(0.227463\pi\)
\(8\) −3204.82 1850.30i −0.782426 0.451734i
\(9\) 0 0
\(10\) −4711.10 8159.87i −0.471110 0.815987i
\(11\) −2798.09 + 3334.63i −0.191113 + 0.227760i −0.853089 0.521765i \(-0.825274\pi\)
0.661976 + 0.749525i \(0.269718\pi\)
\(12\) 0 0
\(13\) −6274.91 35586.8i −0.219702 1.24599i −0.872558 0.488510i \(-0.837541\pi\)
0.652856 0.757482i \(-0.273571\pi\)
\(14\) 19235.7 3391.77i 0.500721 0.0882906i
\(15\) 0 0
\(16\) 12706.1 + 10661.7i 0.193880 + 0.162685i
\(17\) −32378.2 + 18693.6i −0.387666 + 0.223819i −0.681148 0.732145i \(-0.738519\pi\)
0.293482 + 0.955964i \(0.405186\pi\)
\(18\) 0 0
\(19\) 34340.1 59478.9i 0.263504 0.456403i −0.703666 0.710531i \(-0.748455\pi\)
0.967171 + 0.254128i \(0.0817883\pi\)
\(20\) 71514.6 + 196485.i 0.446966 + 1.22803i
\(21\) 0 0
\(22\) −27927.9 + 23434.3i −0.119219 + 0.100037i
\(23\) −148858. + 408984.i −0.531938 + 1.46149i 0.324823 + 0.945775i \(0.394695\pi\)
−0.856761 + 0.515713i \(0.827527\pi\)
\(24\) 0 0
\(25\) −151952. + 861764.i −0.388998 + 2.20612i
\(26\) 302641.i 0.662268i
\(27\) 0 0
\(28\) −433458. −0.705204
\(29\) −292777. 51624.5i −0.413947 0.0729900i −0.0372036 0.999308i \(-0.511845\pi\)
−0.376743 + 0.926318i \(0.622956\pi\)
\(30\) 0 0
\(31\) 764612. + 278296.i 0.827932 + 0.301342i 0.721010 0.692925i \(-0.243678\pi\)
0.106922 + 0.994267i \(0.465901\pi\)
\(32\) 698240. + 832130.i 0.665894 + 0.793581i
\(33\) 0 0
\(34\) −294238. + 107094.i −0.220182 + 0.0801399i
\(35\) −2.27227e6 1.31189e6i −1.51421 0.874232i
\(36\) 0 0
\(37\) −1.13655e6 1.96857e6i −0.606432 1.05037i −0.991823 0.127618i \(-0.959267\pi\)
0.385391 0.922753i \(-0.374067\pi\)
\(38\) 369734. 440632.i 0.177319 0.211321i
\(39\) 0 0
\(40\) 722945. + 4.10002e6i 0.282400 + 1.60157i
\(41\) −1.45417e6 + 256409.i −0.514612 + 0.0907400i −0.424922 0.905230i \(-0.639699\pi\)
−0.0896896 + 0.995970i \(0.528587\pi\)
\(42\) 0 0
\(43\) 1.39504e6 + 1.17057e6i 0.408048 + 0.342393i 0.823595 0.567179i \(-0.191965\pi\)
−0.415546 + 0.909572i \(0.636410\pi\)
\(44\) 700657. 404524.i 0.186937 0.107928i
\(45\) 0 0
\(46\) −1.82256e6 + 3.15676e6i −0.407052 + 0.705034i
\(47\) 647951. + 1.78023e6i 0.132786 + 0.364825i 0.988210 0.153102i \(-0.0489262\pi\)
−0.855425 + 0.517927i \(0.826704\pi\)
\(48\) 0 0
\(49\) −249448. + 209312.i −0.0432709 + 0.0363086i
\(50\) −2.50656e6 + 6.88672e6i −0.401050 + 1.10188i
\(51\) 0 0
\(52\) −1.16624e6 + 6.61408e6i −0.159505 + 0.904599i
\(53\) 6.52907e6i 0.827462i 0.910399 + 0.413731i \(0.135775\pi\)
−0.910399 + 0.413731i \(0.864225\pi\)
\(54\) 0 0
\(55\) 4.89730e6 0.535187
\(56\) −8.49944e6 1.49868e6i −0.864247 0.152390i
\(57\) 0 0
\(58\) −2.33970e6 851583.i −0.206752 0.0752515i
\(59\) −1.53319e7 1.82719e7i −1.26528 1.50791i −0.768208 0.640200i \(-0.778851\pi\)
−0.497076 0.867707i \(-0.665593\pi\)
\(60\) 0 0
\(61\) 1.95580e7 7.11851e6i 1.41255 0.514126i 0.480673 0.876900i \(-0.340392\pi\)
0.931877 + 0.362773i \(0.118170\pi\)
\(62\) 5.90169e6 + 3.40734e6i 0.399401 + 0.230594i
\(63\) 0 0
\(64\) 2.42571e6 + 4.20146e6i 0.144584 + 0.250426i
\(65\) −2.61317e7 + 3.11425e7i −1.46391 + 1.74462i
\(66\) 0 0
\(67\) −370662. 2.10213e6i −0.0183941 0.104318i 0.974228 0.225564i \(-0.0724223\pi\)
−0.992623 + 0.121245i \(0.961311\pi\)
\(68\) 6.84313e6 1.20663e6i 0.320051 0.0564336i
\(69\) 0 0
\(70\) −1.68334e7 1.41249e7i −0.701101 0.588294i
\(71\) 1.54472e7 8.91846e6i 0.607879 0.350959i −0.164256 0.986418i \(-0.552522\pi\)
0.772135 + 0.635459i \(0.219189\pi\)
\(72\) 0 0
\(73\) −1.66329e7 + 2.88091e7i −0.585703 + 1.01447i 0.409084 + 0.912497i \(0.365848\pi\)
−0.994787 + 0.101971i \(0.967485\pi\)
\(74\) −6.51120e6 1.78894e7i −0.217137 0.596579i
\(75\) 0 0
\(76\) −9.77838e6 + 8.20503e6i −0.293098 + 0.245938i
\(77\) −3.47226e6 + 9.53995e6i −0.0987755 + 0.271383i
\(78\) 0 0
\(79\) −9.65767e6 + 5.47714e7i −0.247950 + 1.40619i 0.565591 + 0.824686i \(0.308648\pi\)
−0.813541 + 0.581508i \(0.802463\pi\)
\(80\) 1.86604e7i 0.455577i
\(81\) 0 0
\(82\) −1.23667e7 −0.273526
\(83\) 5.73546e7 + 1.01132e7i 1.20853 + 0.213096i 0.741381 0.671085i \(-0.234171\pi\)
0.467145 + 0.884181i \(0.345283\pi\)
\(84\) 0 0
\(85\) 3.95249e7 + 1.43859e7i 0.757173 + 0.275588i
\(86\) 9.80367e6 + 1.16836e7i 0.179223 + 0.213590i
\(87\) 0 0
\(88\) 1.51374e7 5.50958e6i 0.252419 0.0918729i
\(89\) 4.54337e7 + 2.62311e7i 0.724132 + 0.418078i 0.816272 0.577668i \(-0.196037\pi\)
−0.0921395 + 0.995746i \(0.529371\pi\)
\(90\) 0 0
\(91\) −4.21380e7 7.29851e7i −0.614480 1.06431i
\(92\) 5.19959e7 6.19663e7i 0.725801 0.864976i
\(93\) 0 0
\(94\) 2.75518e6 + 1.56254e7i 0.0352890 + 0.200134i
\(95\) −7.60932e7 + 1.34173e7i −0.934225 + 0.164729i
\(96\) 0 0
\(97\) −7.13382e7 5.98599e7i −0.805815 0.676159i 0.143790 0.989608i \(-0.454071\pi\)
−0.949605 + 0.313449i \(0.898515\pi\)
\(98\) −2.36182e6 + 1.36360e6i −0.0256061 + 0.0147837i
\(99\) 0 0
\(100\) 8.13181e7 1.40847e8i 0.813181 1.40847i
\(101\) −2.69891e7 7.41520e7i −0.259360 0.712586i −0.999207 0.0398109i \(-0.987324\pi\)
0.739847 0.672775i \(-0.234898\pi\)
\(102\) 0 0
\(103\) 1.12352e8 9.42747e7i 0.998234 0.837618i 0.0114956 0.999934i \(-0.496341\pi\)
0.986739 + 0.162316i \(0.0518963\pi\)
\(104\) −4.57363e7 + 1.25660e8i −0.390956 + 1.07414i
\(105\) 0 0
\(106\) −9.49536e6 + 5.38509e7i −0.0752122 + 0.426549i
\(107\) 1.20604e8i 0.920086i −0.887897 0.460043i \(-0.847834\pi\)
0.887897 0.460043i \(-0.152166\pi\)
\(108\) 0 0
\(109\) −2.72284e8 −1.92893 −0.964465 0.264212i \(-0.914888\pi\)
−0.964465 + 0.264212i \(0.914888\pi\)
\(110\) 4.03922e7 + 7.12224e6i 0.275884 + 0.0486459i
\(111\) 0 0
\(112\) 3.63506e7 + 1.32305e7i 0.231014 + 0.0840824i
\(113\) 4.31308e7 + 5.14013e7i 0.264529 + 0.315254i 0.881917 0.471406i \(-0.156253\pi\)
−0.617387 + 0.786659i \(0.711809\pi\)
\(114\) 0 0
\(115\) 4.60118e8 1.67469e8i 2.63074 0.957511i
\(116\) 4.78516e7 + 2.76271e7i 0.264280 + 0.152582i
\(117\) 0 0
\(118\) −9.98823e7 1.73001e8i −0.515182 0.892321i
\(119\) −5.60475e7 + 6.67948e7i −0.279491 + 0.333085i
\(120\) 0 0
\(121\) 3.39326e7 + 1.92441e8i 0.158298 + 0.897752i
\(122\) 1.71664e8 3.02690e7i 0.774889 0.136634i
\(123\) 0 0
\(124\) −1.15848e8 9.72083e7i −0.490008 0.411166i
\(125\) 4.71984e8 2.72500e8i 1.93324 1.11616i
\(126\) 0 0
\(127\) −2.33715e7 + 4.04807e7i −0.0898405 + 0.155608i −0.907444 0.420174i \(-0.861969\pi\)
0.817603 + 0.575782i \(0.195302\pi\)
\(128\) −8.12140e7 2.23134e8i −0.302546 0.831237i
\(129\) 0 0
\(130\) −2.60822e8 + 2.18855e8i −0.913209 + 0.766273i
\(131\) 6.93121e7 1.90433e8i 0.235355 0.646633i −0.764643 0.644455i \(-0.777084\pi\)
0.999998 0.00217818i \(-0.000693337\pi\)
\(132\) 0 0
\(133\) 2.78143e7 1.57743e8i 0.0888919 0.504131i
\(134\) 1.78771e7i 0.0554470i
\(135\) 0 0
\(136\) 1.38355e8 0.404426
\(137\) −5.65911e8 9.97854e7i −1.60645 0.283260i −0.702751 0.711436i \(-0.748045\pi\)
−0.903695 + 0.428176i \(0.859156\pi\)
\(138\) 0 0
\(139\) −3.84931e8 1.40103e8i −1.03115 0.375309i −0.229634 0.973277i \(-0.573753\pi\)
−0.801520 + 0.597968i \(0.795975\pi\)
\(140\) 3.13456e8 + 3.73563e8i 0.815952 + 0.972414i
\(141\) 0 0
\(142\) 1.40377e8 5.10930e7i 0.345257 0.125663i
\(143\) 1.36227e8 + 7.86505e7i 0.325775 + 0.188086i
\(144\) 0 0
\(145\) 1.67231e8 + 2.89653e8i 0.378308 + 0.655249i
\(146\) −1.79084e8 + 2.13424e8i −0.394135 + 0.469712i
\(147\) 0 0
\(148\) 7.33618e7 + 4.16056e8i 0.152906 + 0.867171i
\(149\) −7.36420e8 + 1.29851e8i −1.49410 + 0.263451i −0.860198 0.509960i \(-0.829660\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(150\) 0 0
\(151\) 5.25046e8 + 4.40566e8i 1.00993 + 0.847428i 0.988328 0.152338i \(-0.0486804\pi\)
0.0215973 + 0.999767i \(0.493125\pi\)
\(152\) −2.20108e8 + 1.27079e8i −0.412345 + 0.238068i
\(153\) 0 0
\(154\) −4.25129e7 + 7.36344e7i −0.0755853 + 0.130918i
\(155\) −3.13090e8 8.60209e8i −0.542429 1.49031i
\(156\) 0 0
\(157\) −6.35963e8 + 5.33636e8i −1.04673 + 0.878308i −0.992746 0.120234i \(-0.961635\pi\)
−0.0539807 + 0.998542i \(0.517191\pi\)
\(158\) −1.59310e8 + 4.37702e8i −0.255632 + 0.702344i
\(159\) 0 0
\(160\) 2.12212e8 1.20351e9i 0.323810 1.83642i
\(161\) 1.01505e9i 1.51072i
\(162\) 0 0
\(163\) −5.47300e8 −0.775310 −0.387655 0.921805i \(-0.626715\pi\)
−0.387655 + 0.921805i \(0.626715\pi\)
\(164\) 2.70269e8 + 4.76557e7i 0.373612 + 0.0658778i
\(165\) 0 0
\(166\) 4.58345e8 + 1.66824e8i 0.603615 + 0.219698i
\(167\) 2.33736e8 + 2.78556e8i 0.300511 + 0.358134i 0.895077 0.445912i \(-0.147121\pi\)
−0.594566 + 0.804047i \(0.702676\pi\)
\(168\) 0 0
\(169\) −4.60508e8 + 1.67611e8i −0.564535 + 0.205474i
\(170\) 3.05074e8 + 1.76135e8i 0.365267 + 0.210887i
\(171\) 0 0
\(172\) −1.69232e8 2.93118e8i −0.193361 0.334910i
\(173\) −3.34053e8 + 3.98109e8i −0.372933 + 0.444445i −0.919571 0.392925i \(-0.871463\pi\)
0.546637 + 0.837370i \(0.315908\pi\)
\(174\) 0 0
\(175\) 3.54383e8 + 2.00981e9i 0.377852 + 2.14290i
\(176\) −7.11057e7 + 1.25379e7i −0.0741061 + 0.0130669i
\(177\) 0 0
\(178\) 3.36582e8 + 2.82426e8i 0.335283 + 0.281336i
\(179\) 3.90561e8 2.25491e8i 0.380432 0.219642i −0.297574 0.954699i \(-0.596178\pi\)
0.678006 + 0.735056i \(0.262844\pi\)
\(180\) 0 0
\(181\) −5.83299e8 + 1.01030e9i −0.543472 + 0.941320i 0.455230 + 0.890374i \(0.349557\pi\)
−0.998701 + 0.0509464i \(0.983776\pi\)
\(182\) −2.41404e8 6.63253e8i −0.220019 0.604496i
\(183\) 0 0
\(184\) 1.23381e9 1.03529e9i 1.07641 0.903212i
\(185\) −8.74648e8 + 2.40308e9i −0.746701 + 2.05154i
\(186\) 0 0
\(187\) 2.82610e7 1.60276e8i 0.0231111 0.131070i
\(188\) 3.52104e8i 0.281864i
\(189\) 0 0
\(190\) −6.47120e8 −0.496558
\(191\) −6.23017e8 1.09855e8i −0.468130 0.0825439i −0.0653926 0.997860i \(-0.520830\pi\)
−0.402737 + 0.915316i \(0.631941\pi\)
\(192\) 0 0
\(193\) 4.83654e7 + 1.76036e7i 0.0348583 + 0.0126874i 0.359390 0.933187i \(-0.382985\pi\)
−0.324532 + 0.945875i \(0.605207\pi\)
\(194\) −5.01332e8 5.97465e8i −0.353931 0.421799i
\(195\) 0 0
\(196\) 5.68713e7 2.06994e7i 0.0385362 0.0140260i
\(197\) −1.06838e9 6.16830e8i −0.709351 0.409544i 0.101470 0.994839i \(-0.467646\pi\)
−0.810821 + 0.585295i \(0.800979\pi\)
\(198\) 0 0
\(199\) −1.12322e9 1.94548e9i −0.716231 1.24055i −0.962483 0.271343i \(-0.912532\pi\)
0.246251 0.969206i \(-0.420801\pi\)
\(200\) 2.08150e9 2.48064e9i 1.30094 1.55040i
\(201\) 0 0
\(202\) −1.14762e8 6.50846e8i −0.0689274 0.390906i
\(203\) −6.82815e8 + 1.20399e8i −0.402086 + 0.0708986i
\(204\) 0 0
\(205\) 1.27257e9 + 1.06781e9i 0.720551 + 0.604614i
\(206\) 1.06377e9 6.14168e8i 0.590717 0.341050i
\(207\) 0 0
\(208\) 2.99686e8 5.19071e8i 0.160108 0.277315i
\(209\) 1.02253e8 + 2.80939e8i 0.0535911 + 0.147240i
\(210\) 0 0
\(211\) −2.64889e8 + 2.22268e8i −0.133639 + 0.112137i −0.707157 0.707056i \(-0.750023\pi\)
0.573518 + 0.819193i \(0.305578\pi\)
\(212\) 4.15034e8 1.14030e9i 0.205466 0.564513i
\(213\) 0 0
\(214\) 1.75398e8 9.94729e8i 0.0836312 0.474296i
\(215\) 2.04877e9i 0.958826i
\(216\) 0 0
\(217\) 1.89767e9 0.855821
\(218\) −2.24576e9 3.95988e8i −0.994346 0.175330i
\(219\) 0 0
\(220\) −8.55309e8 3.11307e8i −0.365117 0.132892i
\(221\) 8.68415e8 + 1.03494e9i 0.364048 + 0.433855i
\(222\) 0 0
\(223\) −1.74659e9 + 6.35708e8i −0.706273 + 0.257062i −0.670087 0.742283i \(-0.733743\pi\)
−0.0361862 + 0.999345i \(0.511521\pi\)
\(224\) 2.19399e9 + 1.26670e9i 0.871450 + 0.503132i
\(225\) 0 0
\(226\) 2.80983e8 + 4.86677e8i 0.107708 + 0.186555i
\(227\) −7.82998e8 + 9.33140e8i −0.294888 + 0.351434i −0.893063 0.449932i \(-0.851448\pi\)
0.598175 + 0.801365i \(0.295893\pi\)
\(228\) 0 0
\(229\) 2.81289e8 + 1.59527e9i 0.102285 + 0.580086i 0.992270 + 0.124097i \(0.0396033\pi\)
−0.889985 + 0.455989i \(0.849286\pi\)
\(230\) 4.03854e9 7.12104e8i 1.44316 0.254467i
\(231\) 0 0
\(232\) 8.42775e8 + 7.07172e8i 0.290911 + 0.244103i
\(233\) 2.41883e8 1.39651e8i 0.0820695 0.0473828i −0.458404 0.888744i \(-0.651579\pi\)
0.540473 + 0.841361i \(0.318245\pi\)
\(234\) 0 0
\(235\) 1.06567e9 1.84580e9i 0.349423 0.605218i
\(236\) 1.51622e9 + 4.16577e9i 0.488779 + 1.34291i
\(237\) 0 0
\(238\) −5.59413e8 + 4.69404e8i −0.174351 + 0.146298i
\(239\) 2.08449e8 5.72709e8i 0.0638864 0.175526i −0.903642 0.428288i \(-0.859117\pi\)
0.967528 + 0.252762i \(0.0813390\pi\)
\(240\) 0 0
\(241\) 5.19762e8 2.94772e9i 0.154076 0.873811i −0.805549 0.592529i \(-0.798129\pi\)
0.959625 0.281281i \(-0.0907594\pi\)
\(242\) 1.63658e9i 0.477172i
\(243\) 0 0
\(244\) −3.86828e9 −1.09134
\(245\) 3.60778e8 + 6.36150e7i 0.100133 + 0.0176561i
\(246\) 0 0
\(247\) −2.33214e9 8.48831e8i −0.626567 0.228052i
\(248\) −1.93551e9 2.30665e9i −0.511668 0.609783i
\(249\) 0 0
\(250\) 4.28916e9 1.56113e9i 1.09802 0.399648i
\(251\) −8.66654e8 5.00363e8i −0.218349 0.126064i 0.386837 0.922148i \(-0.373568\pi\)
−0.605185 + 0.796085i \(0.706901\pi\)
\(252\) 0 0
\(253\) −9.47294e8 1.64076e9i −0.231208 0.400464i
\(254\) −2.51637e8 + 2.99889e8i −0.0604560 + 0.0720487i
\(255\) 0 0
\(256\) −5.60999e8 3.18158e9i −0.130618 0.740770i
\(257\) −5.28366e8 + 9.31651e7i −0.121116 + 0.0213561i −0.233878 0.972266i \(-0.575142\pi\)
0.112761 + 0.993622i \(0.464030\pi\)
\(258\) 0 0
\(259\) −4.06106e9 3.40764e9i −0.902486 0.757276i
\(260\) 6.54351e9 3.77790e9i 1.43192 0.826717i
\(261\) 0 0
\(262\) 8.48627e8 1.46987e9i 0.180099 0.311941i
\(263\) −4.02022e7 1.10455e8i −0.00840286 0.0230867i 0.935420 0.353538i \(-0.115021\pi\)
−0.943823 + 0.330451i \(0.892799\pi\)
\(264\) 0 0
\(265\) 5.62688e9 4.72151e9i 1.14100 0.957410i
\(266\) 4.58818e8 1.26059e9i 0.0916460 0.251795i
\(267\) 0 0
\(268\) −6.88903e7 + 3.90696e8i −0.0133542 + 0.0757356i
\(269\) 3.54894e9i 0.677781i 0.940826 + 0.338890i \(0.110052\pi\)
−0.940826 + 0.338890i \(0.889948\pi\)
\(270\) 0 0
\(271\) 2.25698e9 0.418456 0.209228 0.977867i \(-0.432905\pi\)
0.209228 + 0.977867i \(0.432905\pi\)
\(272\) −6.10707e8 1.07684e8i −0.111573 0.0196733i
\(273\) 0 0
\(274\) −4.52244e9 1.64603e9i −0.802362 0.292036i
\(275\) −2.44849e9 2.91800e9i −0.428122 0.510216i
\(276\) 0 0
\(277\) −3.66946e9 + 1.33557e9i −0.623280 + 0.226855i −0.634304 0.773084i \(-0.718713\pi\)
0.0110239 + 0.999939i \(0.496491\pi\)
\(278\) −2.97110e9 1.71537e9i −0.497437 0.287195i
\(279\) 0 0
\(280\) 4.85480e9 + 8.40876e9i 0.789840 + 1.36804i
\(281\) −1.16091e8 + 1.38352e8i −0.0186198 + 0.0221902i −0.775274 0.631625i \(-0.782388\pi\)
0.756654 + 0.653815i \(0.226833\pi\)
\(282\) 0 0
\(283\) 1.07604e9 + 6.10253e9i 0.167758 + 0.951402i 0.946175 + 0.323655i \(0.104912\pi\)
−0.778417 + 0.627747i \(0.783977\pi\)
\(284\) −3.26476e9 + 5.75666e8i −0.501855 + 0.0884906i
\(285\) 0 0
\(286\) 1.00920e9 + 8.46815e8i 0.150838 + 0.126568i
\(287\) −2.98236e9 + 1.72187e9i −0.439575 + 0.253789i
\(288\) 0 0
\(289\) −2.78898e9 + 4.83065e9i −0.399810 + 0.692491i
\(290\) 9.58053e8 + 2.63223e9i 0.135456 + 0.372162i
\(291\) 0 0
\(292\) 4.73624e9 3.97418e9i 0.651482 0.546658i
\(293\) 2.18993e9 6.01679e9i 0.297139 0.816383i −0.697836 0.716258i \(-0.745853\pi\)
0.994975 0.100125i \(-0.0319244\pi\)
\(294\) 0 0
\(295\) −4.65974e9 + 2.64267e10i −0.615281 + 3.48943i
\(296\) 8.41185e9i 1.09578i
\(297\) 0 0
\(298\) −6.26274e9 −0.794144
\(299\) 1.54885e10 + 2.73104e9i 1.93787 + 0.341699i
\(300\) 0 0
\(301\) 3.99102e9 + 1.45261e9i 0.486203 + 0.176963i
\(302\) 3.68978e9 + 4.39731e9i 0.443581 + 0.528639i
\(303\) 0 0
\(304\) 1.07048e9 3.89622e8i 0.125338 0.0456193i
\(305\) −2.02783e10 1.17077e10i −2.34332 1.35292i
\(306\) 0 0
\(307\) 3.63881e8 + 6.30261e8i 0.0409644 + 0.0709524i 0.885781 0.464104i \(-0.153624\pi\)
−0.844816 + 0.535056i \(0.820290\pi\)
\(308\) 1.21285e9 1.44542e9i 0.134774 0.160617i
\(309\) 0 0
\(310\) −1.33131e9 7.55022e9i −0.144156 0.817547i
\(311\) −5.69479e9 + 1.00414e9i −0.608746 + 0.107338i −0.469519 0.882922i \(-0.655573\pi\)
−0.139227 + 0.990261i \(0.544462\pi\)
\(312\) 0 0
\(313\) −1.12798e10 9.46487e9i −1.17523 0.986137i −0.999999 0.00161011i \(-0.999487\pi\)
−0.175234 0.984527i \(-0.556068\pi\)
\(314\) −6.02141e9 + 3.47646e9i −0.619412 + 0.357618i
\(315\) 0 0
\(316\) 5.16836e9 8.95186e9i 0.518328 0.897770i
\(317\) 2.34590e9 + 6.44530e9i 0.232312 + 0.638272i 0.999997 0.00255559i \(-0.000813471\pi\)
−0.767685 + 0.640828i \(0.778591\pi\)
\(318\) 0 0
\(319\) 9.91364e8 8.31854e8i 0.0957350 0.0803312i
\(320\) 1.86674e9 5.12882e9i 0.178026 0.489123i
\(321\) 0 0
\(322\) −1.47621e9 + 8.37199e9i −0.137317 + 0.778763i
\(323\) 2.56776e9i 0.235909i
\(324\) 0 0
\(325\) 3.16209e10 2.83427
\(326\) −4.51406e9 7.95950e8i −0.399666 0.0704718i
\(327\) 0 0
\(328\) 5.13478e9 + 1.86891e9i 0.443636 + 0.161470i
\(329\) 2.84004e9 + 3.38463e9i 0.242405 + 0.288886i
\(330\) 0 0
\(331\) −7.96602e9 + 2.89939e9i −0.663635 + 0.241543i −0.651805 0.758387i \(-0.725988\pi\)
−0.0118300 + 0.999930i \(0.503766\pi\)
\(332\) −9.37407e9 5.41212e9i −0.771571 0.445467i
\(333\) 0 0
\(334\) 1.52271e9 + 2.63742e9i 0.122358 + 0.211930i
\(335\) −1.54361e9 + 1.83960e9i −0.122563 + 0.146065i
\(336\) 0 0
\(337\) −2.39583e9 1.35874e10i −0.185753 1.05346i −0.924984 0.380006i \(-0.875922\pi\)
0.739231 0.673452i \(-0.235189\pi\)
\(338\) −4.04197e9 + 7.12708e8i −0.309689 + 0.0546066i
\(339\) 0 0
\(340\) −5.98852e9 5.02497e9i −0.448130 0.376026i
\(341\) −3.06747e9 + 1.77100e9i −0.226862 + 0.130979i
\(342\) 0 0
\(343\) −7.10206e9 + 1.23011e10i −0.513107 + 0.888727i
\(344\) −2.30492e9 6.33271e9i −0.164597 0.452226i
\(345\) 0 0
\(346\) −3.33420e9 + 2.79773e9i −0.232642 + 0.195210i
\(347\) 1.10725e8 3.04213e8i 0.00763706 0.0209826i −0.935816 0.352490i \(-0.885335\pi\)
0.943453 + 0.331508i \(0.107557\pi\)
\(348\) 0 0
\(349\) 2.48752e9 1.41074e10i 0.167673 0.950923i −0.778592 0.627531i \(-0.784066\pi\)
0.946265 0.323392i \(-0.104823\pi\)
\(350\) 1.70920e10i 1.13899i
\(351\) 0 0
\(352\) −4.72859e9 −0.308007
\(353\) −7.08502e9 1.24928e9i −0.456291 0.0804565i −0.0592215 0.998245i \(-0.518862\pi\)
−0.397070 + 0.917788i \(0.629973\pi\)
\(354\) 0 0
\(355\) −1.88568e10 6.86331e9i −1.18728 0.432136i
\(356\) −6.26751e9 7.46933e9i −0.390207 0.465031i
\(357\) 0 0
\(358\) 3.54923e9 1.29181e9i 0.216074 0.0786444i
\(359\) 7.51187e9 + 4.33698e9i 0.452242 + 0.261102i 0.708776 0.705433i \(-0.249247\pi\)
−0.256535 + 0.966535i \(0.582581\pi\)
\(360\) 0 0
\(361\) 6.13329e9 + 1.06232e10i 0.361131 + 0.625497i
\(362\) −6.28027e9 + 7.48454e9i −0.365716 + 0.435844i
\(363\) 0 0
\(364\) 2.71991e9 + 1.54254e10i 0.154935 + 0.878679i
\(365\) 3.68564e10 6.49878e9i 2.07655 0.366151i
\(366\) 0 0
\(367\) 1.47566e10 + 1.23822e10i 0.813432 + 0.682551i 0.951424 0.307883i \(-0.0996204\pi\)
−0.137992 + 0.990433i \(0.544065\pi\)
\(368\) −6.25188e9 + 3.60952e9i −0.340894 + 0.196815i
\(369\) 0 0
\(370\) −1.07088e10 + 1.85482e10i −0.571393 + 0.989682i
\(371\) 5.20798e9 + 1.43088e10i 0.274899 + 0.755280i
\(372\) 0 0
\(373\) −8.42335e9 + 7.06803e9i −0.435161 + 0.365143i −0.833895 0.551923i \(-0.813894\pi\)
0.398734 + 0.917067i \(0.369450\pi\)
\(374\) 4.66185e8 1.28083e9i 0.0238271 0.0654645i
\(375\) 0 0
\(376\) 1.21740e9 6.90422e9i 0.0609090 0.345432i
\(377\) 1.07429e10i 0.531811i
\(378\) 0 0
\(379\) 3.72517e9 0.180546 0.0902732 0.995917i \(-0.471226\pi\)
0.0902732 + 0.995917i \(0.471226\pi\)
\(380\) 1.41425e10 + 2.49371e9i 0.678254 + 0.119594i
\(381\) 0 0
\(382\) −4.97879e9 1.81213e9i −0.233814 0.0851013i
\(383\) −1.28156e10 1.52730e10i −0.595586 0.709791i 0.381084 0.924541i \(-0.375551\pi\)
−0.976669 + 0.214749i \(0.931107\pi\)
\(384\) 0 0
\(385\) 1.07327e10 3.90638e9i 0.488501 0.177800i
\(386\) 3.73310e8 + 2.15531e8i 0.0168159 + 0.00970868i
\(387\) 0 0
\(388\) 8.65404e9 + 1.49892e10i 0.381849 + 0.661382i
\(389\) −1.15508e10 + 1.37657e10i −0.504446 + 0.601175i −0.956830 0.290648i \(-0.906129\pi\)
0.452384 + 0.891823i \(0.350573\pi\)
\(390\) 0 0
\(391\) −2.82562e9 1.60249e10i −0.120895 0.685627i
\(392\) 1.18673e9 2.09252e8i 0.0502581 0.00886186i
\(393\) 0 0
\(394\) −7.91479e9 6.64130e9i −0.328439 0.275593i
\(395\) 5.41870e10 3.12849e10i 2.22591 1.28513i
\(396\) 0 0
\(397\) 1.47034e10 2.54670e10i 0.591909 1.02522i −0.402066 0.915611i \(-0.631708\pi\)
0.993975 0.109606i \(-0.0349590\pi\)
\(398\) −6.43483e9 1.76796e10i −0.256451 0.704594i
\(399\) 0 0
\(400\) −1.11186e10 + 9.32961e9i −0.434320 + 0.364438i
\(401\) 9.86675e9 2.71087e10i 0.381590 1.04841i −0.589097 0.808062i \(-0.700517\pi\)
0.970687 0.240347i \(-0.0772613\pi\)
\(402\) 0 0
\(403\) 5.10579e9 2.89564e10i 0.193572 1.09780i
\(404\) 1.46662e10i 0.550544i
\(405\) 0 0
\(406\) −5.80686e9 −0.213716
\(407\) 9.74462e9 + 1.71824e9i 0.355130 + 0.0626190i
\(408\) 0 0
\(409\) −1.33883e10 4.87296e9i −0.478447 0.174140i 0.0915282 0.995802i \(-0.470825\pi\)
−0.569975 + 0.821662i \(0.693047\pi\)
\(410\) 8.94301e9 + 1.06579e10i 0.316482 + 0.377168i
\(411\) 0 0
\(412\) −2.56150e10 + 9.32309e9i −0.889007 + 0.323572i
\(413\) −4.81754e10 2.78141e10i −1.65587 0.956015i
\(414\) 0 0
\(415\) −3.27604e10 5.67427e10i −1.10448 1.91301i
\(416\) 2.52314e10 3.00697e10i 0.842498 1.00405i
\(417\) 0 0
\(418\) 4.34797e8 + 2.46586e9i 0.0142423 + 0.0807723i
\(419\) 3.80542e9 6.70998e8i 0.123466 0.0217703i −0.111574 0.993756i \(-0.535589\pi\)
0.235040 + 0.971986i \(0.424478\pi\)
\(420\) 0 0
\(421\) 2.36141e10 + 1.98145e10i 0.751696 + 0.630748i 0.935951 0.352131i \(-0.114543\pi\)
−0.184255 + 0.982878i \(0.558987\pi\)
\(422\) −2.50802e9 + 1.44801e9i −0.0790826 + 0.0456584i
\(423\) 0 0
\(424\) 1.20807e10 2.09245e10i 0.373792 0.647427i
\(425\) −1.11895e10 3.07429e10i −0.342969 0.942301i
\(426\) 0 0
\(427\) 3.71842e10 3.12012e10i 1.11853 0.938555i
\(428\) −7.66647e9 + 2.10635e10i −0.228465 + 0.627704i
\(429\) 0 0
\(430\) 2.97957e9 1.68980e10i 0.0871526 0.494267i
\(431\) 2.11816e9i 0.0613832i 0.999529 + 0.0306916i \(0.00977098\pi\)
−0.999529 + 0.0306916i \(0.990229\pi\)
\(432\) 0 0
\(433\) 2.28664e10 0.650497 0.325249 0.945629i \(-0.394552\pi\)
0.325249 + 0.945629i \(0.394552\pi\)
\(434\) 1.56518e10 + 2.75983e9i 0.441168 + 0.0777899i
\(435\) 0 0
\(436\) 4.75542e10 + 1.73083e10i 1.31596 + 0.478970i
\(437\) 1.92141e10 + 2.28985e10i 0.526859 + 0.627887i
\(438\) 0 0
\(439\) −3.91566e10 + 1.42518e10i −1.05426 + 0.383718i −0.810268 0.586060i \(-0.800678\pi\)
−0.243989 + 0.969778i \(0.578456\pi\)
\(440\) −1.56949e10 9.06148e9i −0.418744 0.241762i
\(441\) 0 0
\(442\) 5.65744e9 + 9.79897e9i 0.148228 + 0.256739i
\(443\) −2.04217e10 + 2.43376e10i −0.530245 + 0.631922i −0.962971 0.269604i \(-0.913107\pi\)
0.432726 + 0.901525i \(0.357552\pi\)
\(444\) 0 0
\(445\) −1.02490e10 5.81248e10i −0.261360 1.48225i
\(446\) −1.53302e10 + 2.70313e9i −0.387443 + 0.0683167i
\(447\) 0 0
\(448\) 8.66741e9 + 7.27282e9i 0.215168 + 0.180547i
\(449\) 6.82298e10 3.93925e10i 1.67876 0.969233i 0.716309 0.697784i \(-0.245830\pi\)
0.962453 0.271450i \(-0.0875030\pi\)
\(450\) 0 0
\(451\) 3.21387e9 5.56658e9i 0.0776822 0.134550i
\(452\) −4.26533e9 1.17189e10i −0.102188 0.280759i
\(453\) 0 0
\(454\) −7.81514e9 + 6.55768e9i −0.183956 + 0.154357i
\(455\) −3.24278e10 + 8.90947e10i −0.756610 + 2.07877i
\(456\) 0 0
\(457\) 4.45048e8 2.52399e9i 0.0102033 0.0578660i −0.979281 0.202506i \(-0.935091\pi\)
0.989484 + 0.144640i \(0.0462025\pi\)
\(458\) 1.35666e10i 0.308326i
\(459\) 0 0
\(460\) −9.10047e10 −2.03251
\(461\) 2.71507e10 + 4.78740e9i 0.601142 + 0.105998i 0.465934 0.884820i \(-0.345719\pi\)
0.135208 + 0.990817i \(0.456830\pi\)
\(462\) 0 0
\(463\) 6.49788e10 + 2.36504e10i 1.41399 + 0.514652i 0.932300 0.361687i \(-0.117799\pi\)
0.481695 + 0.876339i \(0.340021\pi\)
\(464\) −3.16965e9 3.77745e9i −0.0683817 0.0814942i
\(465\) 0 0
\(466\) 2.19811e9 8.00048e8i 0.0466130 0.0169657i
\(467\) −2.12274e10 1.22556e10i −0.446302 0.257673i 0.259965 0.965618i \(-0.416289\pi\)
−0.706267 + 0.707945i \(0.749622\pi\)
\(468\) 0 0
\(469\) −2.48911e9 4.31126e9i −0.0514461 0.0891072i
\(470\) 1.14739e10 1.36740e10i 0.235136 0.280224i
\(471\) 0 0
\(472\) 1.53275e10 + 8.69266e10i 0.308818 + 1.75140i
\(473\) −7.80687e9 + 1.37656e9i −0.155967 + 0.0275012i
\(474\) 0 0
\(475\) 4.60387e10 + 3.86311e10i 0.904375 + 0.758861i
\(476\) 1.40346e10 8.10288e9i 0.273384 0.157838i
\(477\) 0 0
\(478\) 2.55216e9 4.42047e9i 0.0488874 0.0846754i
\(479\) 1.34160e10 + 3.68601e10i 0.254847 + 0.700187i 0.999465 + 0.0326963i \(0.0104094\pi\)
−0.744618 + 0.667491i \(0.767368\pi\)
\(480\) 0 0
\(481\) −6.29232e10 + 5.27988e10i −1.17552 + 0.986379i
\(482\) 8.57385e9 2.35564e10i 0.158850 0.436437i
\(483\) 0 0
\(484\) 6.30663e9 3.57667e10i 0.114925 0.651774i
\(485\) 1.04768e11i 1.89349i
\(486\) 0 0
\(487\) −4.28638e10 −0.762036 −0.381018 0.924568i \(-0.624426\pi\)
−0.381018 + 0.924568i \(0.624426\pi\)
\(488\) −7.58510e10 1.33746e10i −1.33746 0.235831i
\(489\) 0 0
\(490\) 2.88313e9 + 1.04937e9i 0.0500127 + 0.0182031i
\(491\) −3.85804e10 4.59783e10i −0.663805 0.791092i 0.324121 0.946016i \(-0.394931\pi\)
−0.987927 + 0.154923i \(0.950487\pi\)
\(492\) 0 0
\(493\) 1.04446e10 3.80154e9i 0.176810 0.0643535i
\(494\) −1.80007e10 1.03927e10i −0.302261 0.174510i
\(495\) 0 0
\(496\) 6.74815e9 + 1.16881e10i 0.111496 + 0.193116i
\(497\) 2.67395e10 3.18669e10i 0.438256 0.522293i
\(498\) 0 0
\(499\) −1.66640e8 9.45061e8i −0.00268767 0.0152426i 0.983434 0.181264i \(-0.0580189\pi\)
−0.986122 + 0.166022i \(0.946908\pi\)
\(500\) −9.97535e10 + 1.75892e10i −1.59606 + 0.281428i
\(501\) 0 0
\(502\) −6.42035e9 5.38731e9i −0.101098 0.0848316i
\(503\) 1.04601e11 6.03911e10i 1.63404 0.943412i 0.651206 0.758901i \(-0.274263\pi\)
0.982830 0.184511i \(-0.0590701\pi\)
\(504\) 0 0
\(505\) −4.43884e10 + 7.68829e10i −0.682502 + 1.18213i
\(506\) −5.42696e9 1.49104e10i −0.0827855 0.227451i
\(507\) 0 0
\(508\) 6.65505e9 5.58425e9i 0.0999302 0.0838514i
\(509\) 1.07658e9 2.95787e9i 0.0160389 0.0440664i −0.931415 0.363959i \(-0.881425\pi\)
0.947454 + 0.319893i \(0.103647\pi\)
\(510\) 0 0
\(511\) −1.34721e10 + 7.64041e10i −0.197584 + 1.12056i
\(512\) 3.37310e10i 0.490851i
\(513\) 0 0
\(514\) −4.49338e9 −0.0643755
\(515\) −1.62496e11 2.86523e10i −2.31000 0.407316i
\(516\) 0 0
\(517\) −7.74944e9 2.82057e9i −0.108470 0.0394797i
\(518\) −2.85393e10 3.40118e10i −0.396391 0.472401i
\(519\) 0 0
\(520\) 1.41370e11 5.14546e10i 1.93350 0.703737i
\(521\) 3.84871e10 + 2.22205e10i 0.522354 + 0.301581i 0.737897 0.674913i \(-0.235819\pi\)
−0.215544 + 0.976494i \(0.569152\pi\)
\(522\) 0 0
\(523\) −8.50074e9 1.47237e10i −0.113619 0.196793i 0.803608 0.595159i \(-0.202911\pi\)
−0.917227 + 0.398366i \(0.869578\pi\)
\(524\) −2.42106e10 + 2.88530e10i −0.321129 + 0.382707i
\(525\) 0 0
\(526\) −1.70946e8 9.69483e8i −0.00223314 0.0126648i
\(527\) −2.99592e10 + 5.28261e9i −0.388407 + 0.0684866i
\(528\) 0 0
\(529\) −8.51198e10 7.14240e10i −1.08695 0.912055i
\(530\) 5.32763e10 3.07591e10i 0.675198 0.389826i
\(531\) 0 0
\(532\) −1.48850e10 + 2.57816e10i −0.185824 + 0.321857i
\(533\) 1.82496e10 + 5.01403e10i 0.226123 + 0.621267i
\(534\) 0 0
\(535\) −1.03939e11 + 8.72154e10i −1.26872 + 1.06458i
\(536\) −2.70167e9 + 7.42276e9i −0.0327320 + 0.0899304i
\(537\) 0 0
\(538\) −5.16129e9 + 2.92711e10i −0.0616069 + 0.349390i
\(539\) 1.41749e9i 0.0167944i
\(540\) 0 0
\(541\) 6.17429e10 0.720772 0.360386 0.932803i \(-0.382645\pi\)
0.360386 + 0.932803i \(0.382645\pi\)
\(542\) 1.86152e10 + 3.28237e9i 0.215711 + 0.0380356i
\(543\) 0 0
\(544\) −3.81633e10 1.38903e10i −0.435763 0.158605i
\(545\) 1.96903e11 + 2.34660e11i 2.23186 + 2.65982i
\(546\) 0 0
\(547\) 8.78250e10 3.19657e10i 0.980999 0.357054i 0.198771 0.980046i \(-0.436305\pi\)
0.782229 + 0.622992i \(0.214083\pi\)
\(548\) 9.24928e10 + 5.34008e10i 1.02562 + 0.592141i
\(549\) 0 0
\(550\) −1.59511e10 2.76281e10i −0.174317 0.301926i
\(551\) −1.31246e10 + 1.56412e10i −0.142390 + 0.169693i
\(552\) 0 0
\(553\) 2.25237e10 + 1.27738e11i 0.240845 + 1.36590i
\(554\) −3.22076e10 + 5.67906e9i −0.341915 + 0.0602889i
\(555\) 0 0
\(556\) 5.83219e10 + 4.89379e10i 0.610284 + 0.512089i
\(557\) −6.24314e10 + 3.60448e10i −0.648608 + 0.374474i −0.787923 0.615774i \(-0.788843\pi\)
0.139315 + 0.990248i \(0.455510\pi\)
\(558\) 0 0
\(559\) 3.29032e10 5.69901e10i 0.336970 0.583649i
\(560\) −1.48847e10 4.08953e10i −0.151352 0.415836i
\(561\) 0 0
\(562\) −1.15871e9 + 9.72277e8i −0.0116153 + 0.00974641i
\(563\) 2.67337e10 7.34502e10i 0.266088 0.731071i −0.732638 0.680618i \(-0.761711\pi\)
0.998726 0.0504528i \(-0.0160664\pi\)
\(564\) 0 0
\(565\) 1.31085e10 7.43420e10i 0.128635 0.729525i
\(566\) 5.18977e10i 0.505688i
\(567\) 0 0
\(568\) −6.60073e10 −0.634160
\(569\) −9.51210e10 1.67724e10i −0.907460 0.160010i −0.299610 0.954062i \(-0.596857\pi\)
−0.607850 + 0.794052i \(0.707968\pi\)
\(570\) 0 0
\(571\) 6.27444e10 + 2.28371e10i 0.590243 + 0.214831i 0.619836 0.784731i \(-0.287199\pi\)
−0.0295935 + 0.999562i \(0.509421\pi\)
\(572\) −1.87923e10 2.23958e10i −0.175548 0.209210i
\(573\) 0 0
\(574\) −2.71023e10 + 9.86442e9i −0.249665 + 0.0908708i
\(575\) −3.29829e11 1.90427e11i −3.01729 1.74203i
\(576\) 0 0
\(577\) −2.51942e10 4.36376e10i −0.227299 0.393693i 0.729708 0.683759i \(-0.239656\pi\)
−0.957007 + 0.290066i \(0.906323\pi\)
\(578\) −3.00284e10 + 3.57865e10i −0.269043 + 0.320633i
\(579\) 0 0
\(580\) −1.07944e10 6.12181e10i −0.0953864 0.540963i
\(581\) 1.33763e11 2.35859e10i 1.17390 0.206990i
\(582\) 0 0
\(583\) −2.17721e10 1.82689e10i −0.188463 0.158139i
\(584\) 1.06611e11 6.15519e10i 0.916539 0.529164i
\(585\) 0 0
\(586\) 2.68126e10 4.64408e10i 0.227378 0.393830i
\(587\) −2.77982e10 7.63749e10i −0.234134 0.643277i −1.00000 0.000277290i \(-0.999912\pi\)
0.765866 0.643000i \(-0.222310\pi\)
\(588\) 0 0
\(589\) 4.28096e10 3.59216e10i 0.355697 0.298465i
\(590\) −7.68657e10 + 2.11187e11i −0.634344 + 1.74285i
\(591\) 0 0
\(592\) 6.54710e9 3.71304e10i 0.0533042 0.302303i
\(593\) 1.67268e11i 1.35268i −0.736589 0.676340i \(-0.763565\pi\)
0.736589 0.676340i \(-0.236435\pi\)
\(594\) 0 0
\(595\) 9.80960e10 0.782679
\(596\) 1.36869e11 + 2.41338e10i 1.08473 + 0.191267i
\(597\) 0 0
\(598\) 1.23775e11 + 4.50505e10i 0.967897 + 0.352286i
\(599\) −7.02335e10 8.37010e10i −0.545553 0.650165i 0.420870 0.907121i \(-0.361725\pi\)
−0.966423 + 0.256956i \(0.917280\pi\)
\(600\) 0 0
\(601\) 3.89186e9 1.41652e9i 0.0298304 0.0108574i −0.327062 0.945003i \(-0.606059\pi\)
0.356892 + 0.934146i \(0.383836\pi\)
\(602\) 3.08048e10 + 1.77852e10i 0.234548 + 0.135417i
\(603\) 0 0
\(604\) −6.36933e10 1.10320e11i −0.478571 0.828909i
\(605\) 1.41311e11 1.68408e11i 1.05476 1.25702i
\(606\) 0 0
\(607\) −3.22230e10 1.82746e11i −0.237362 1.34615i −0.837582 0.546312i \(-0.816031\pi\)
0.600220 0.799835i \(-0.295080\pi\)
\(608\) 7.34719e10 1.29551e10i 0.537659 0.0948037i
\(609\) 0 0
\(610\) −1.50226e11 1.26054e11i −1.08499 0.910413i
\(611\) 5.92869e10 3.42293e10i 0.425396 0.245603i
\(612\) 0 0
\(613\) 3.54611e10 6.14205e10i 0.251137 0.434982i −0.712702 0.701467i \(-0.752529\pi\)
0.963839 + 0.266485i \(0.0858622\pi\)
\(614\) 2.08464e9 + 5.72751e9i 0.0146676 + 0.0402988i
\(615\) 0 0
\(616\) 2.87797e10 2.41491e10i 0.199877 0.167717i
\(617\) 2.38334e10 6.54817e10i 0.164454 0.451834i −0.829904 0.557906i \(-0.811605\pi\)
0.994359 + 0.106072i \(0.0338273\pi\)
\(618\) 0 0
\(619\) −4.48234e10 + 2.54206e11i −0.305311 + 1.73150i 0.316728 + 0.948516i \(0.397416\pi\)
−0.622039 + 0.782986i \(0.713695\pi\)
\(620\) 1.70137e11i 1.15141i
\(621\) 0 0
\(622\) −4.84302e10 −0.323560
\(623\) 1.20494e11 + 2.12463e10i 0.799858 + 0.141037i
\(624\) 0 0
\(625\) −2.54957e11 9.27966e10i −1.67088 0.608152i
\(626\) −7.92692e10 9.44694e10i −0.516187 0.615168i
\(627\) 0 0
\(628\) 1.44992e11 5.27728e10i 0.932192 0.339290i
\(629\) 7.35991e10 + 4.24925e10i 0.470186 + 0.271462i
\(630\) 0 0
\(631\) 2.54957e10 + 4.41599e10i 0.160824 + 0.278555i 0.935164 0.354214i \(-0.115252\pi\)
−0.774341 + 0.632769i \(0.781918\pi\)
\(632\) 1.32295e11 1.57663e11i 0.829228 0.988235i
\(633\) 0 0
\(634\) 9.97510e9 + 5.65716e10i 0.0617391 + 0.350140i
\(635\) 5.17882e10 9.13166e9i 0.318519 0.0561636i
\(636\) 0 0
\(637\) 9.01400e9 + 7.56365e9i 0.0547470 + 0.0459381i
\(638\) 9.38642e9 5.41925e9i 0.0566523 0.0327082i
\(639\) 0 0
\(640\) −1.33571e11 + 2.31351e11i −0.796144 + 1.37896i
\(641\) −1.59959e10 4.39484e10i −0.0947495 0.260322i 0.883260 0.468884i \(-0.155344\pi\)
−0.978009 + 0.208562i \(0.933122\pi\)
\(642\) 0 0
\(643\) 1.15582e11 9.69848e10i 0.676155 0.567362i −0.238725 0.971087i \(-0.576729\pi\)
0.914880 + 0.403726i \(0.132285\pi\)
\(644\) 6.45237e10 1.77277e11i 0.375125 1.03065i
\(645\) 0 0
\(646\) −3.73435e9 + 2.11785e10i −0.0214430 + 0.121609i
\(647\) 2.93630e11i 1.67565i 0.545937 + 0.837826i \(0.316174\pi\)
−0.545937 + 0.837826i \(0.683826\pi\)
\(648\) 0 0
\(649\) 1.03830e11 0.585253
\(650\) 2.60805e11 + 4.59869e10i 1.46104 + 0.257621i
\(651\) 0 0
\(652\) 9.55855e10 + 3.47903e10i 0.528934 + 0.192516i
\(653\) 6.83847e10 + 8.14977e10i 0.376102 + 0.448221i 0.920580 0.390554i \(-0.127717\pi\)
−0.544478 + 0.838775i \(0.683272\pi\)
\(654\) 0 0
\(655\) −2.14242e11 + 7.79779e10i −1.16397 + 0.423649i
\(656\) −2.12106e10 1.22460e10i −0.114535 0.0661268i
\(657\) 0 0
\(658\) 1.85019e10 + 3.20463e10i 0.0986991 + 0.170952i
\(659\) −1.69892e11 + 2.02470e11i −0.900808 + 1.07354i 0.0961314 + 0.995369i \(0.469353\pi\)
−0.996940 + 0.0781730i \(0.975091\pi\)
\(660\) 0 0
\(661\) −3.22461e9 1.82877e10i −0.0168916 0.0957971i 0.975196 0.221341i \(-0.0710434\pi\)
−0.992088 + 0.125544i \(0.959932\pi\)
\(662\) −6.99193e10 + 1.23287e10i −0.364053 + 0.0641924i
\(663\) 0 0
\(664\) −1.65099e11 1.38534e11i −0.849319 0.712663i
\(665\) −1.56060e11 + 9.01013e10i −0.798004 + 0.460728i
\(666\) 0 0
\(667\) 6.46958e10 1.12056e11i 0.326868 0.566153i
\(668\) −2.31148e10 6.35074e10i −0.116087 0.318947i
\(669\) 0 0
\(670\) −1.54069e10 + 1.29279e10i −0.0764565 + 0.0641547i
\(671\) −3.09873e10 + 8.51368e10i −0.152860 + 0.419979i
\(672\) 0 0
\(673\) 2.78834e10 1.58135e11i 0.135921 0.770845i −0.838293 0.545220i \(-0.816446\pi\)
0.974214 0.225626i \(-0.0724426\pi\)
\(674\) 1.15551e11i 0.559933i
\(675\) 0 0
\(676\) 9.10819e10 0.436160
\(677\) −1.93835e11 3.41783e10i −0.922735 0.162703i −0.307954 0.951401i \(-0.599644\pi\)
−0.614781 + 0.788698i \(0.710755\pi\)
\(678\) 0 0
\(679\) −2.04089e11 7.42824e10i −0.960155 0.349468i
\(680\) −1.00052e11 1.19237e11i −0.467939 0.557668i
\(681\) 0 0
\(682\) −2.78757e10 + 1.01459e10i −0.128851 + 0.0468979i
\(683\) −1.70433e11 9.83995e10i −0.783196 0.452179i 0.0543656 0.998521i \(-0.482686\pi\)
−0.837562 + 0.546343i \(0.816020\pi\)
\(684\) 0 0
\(685\) 3.23243e11 + 5.59874e11i 1.46814 + 2.54289i
\(686\) −7.64666e10 + 9.11294e10i −0.345283 + 0.411492i
\(687\) 0 0
\(688\) 5.24518e9 + 2.97469e10i 0.0234103 + 0.132766i
\(689\) 2.32349e11 4.09693e10i 1.03101 0.181795i
\(690\) 0 0
\(691\) 1.49376e11 + 1.25341e11i 0.655191 + 0.549771i 0.908641 0.417578i \(-0.137121\pi\)
−0.253450 + 0.967349i \(0.581565\pi\)
\(692\) 8.36488e10 4.82946e10i 0.364783 0.210608i
\(693\) 0 0
\(694\) 1.35566e9 2.34808e9i 0.00584406 0.0101222i
\(695\) 1.57620e11 + 4.33057e11i 0.675572 + 1.85612i
\(696\) 0 0
\(697\) 4.22903e10 3.54857e10i 0.179188 0.150357i
\(698\) 4.10334e10 1.12738e11i 0.172868 0.474952i
\(699\) 0 0
\(700\) 6.58649e10 3.73538e11i 0.274323 1.55576i
\(701\) 1.28248e11i 0.531102i 0.964097 + 0.265551i \(0.0855539\pi\)
−0.964097 + 0.265551i \(0.914446\pi\)
\(702\) 0 0
\(703\) −1.56117e11 −0.639190
\(704\) −2.07977e10 3.66719e9i −0.0846690 0.0149294i
\(705\) 0 0
\(706\) −5.66194e10 2.06078e10i −0.227901 0.0829492i
\(707\) −1.18296e11 1.40980e11i −0.473471 0.564260i
\(708\) 0 0
\(709\) −2.19859e11 + 8.00221e10i −0.870079 + 0.316683i −0.738199 0.674583i \(-0.764324\pi\)
−0.131880 + 0.991266i \(0.542101\pi\)
\(710\) −1.45547e11 8.40315e10i −0.572756 0.330681i
\(711\) 0 0
\(712\) −9.70710e10 1.68132e11i −0.377720 0.654230i
\(713\) −2.27638e11 + 2.71288e11i −0.880817 + 1.04972i
\(714\) 0 0
\(715\) −3.07301e10 1.74279e11i −0.117582 0.666839i
\(716\) −8.25449e10 + 1.45549e10i −0.314079 + 0.0553805i
\(717\) 0 0
\(718\) 5.56495e10 + 4.66955e10i 0.209394 + 0.175702i
\(719\) −2.15794e11 + 1.24589e11i −0.807466 + 0.466191i −0.846075 0.533064i \(-0.821041\pi\)
0.0386092 + 0.999254i \(0.487707\pi\)
\(720\) 0 0
\(721\) 1.71027e11 2.96227e11i 0.632882 1.09618i
\(722\) 3.51370e10 + 9.65382e10i 0.129305 + 0.355263i
\(723\) 0 0
\(724\) 1.66095e11 1.39370e11i 0.604507 0.507242i
\(725\) 8.89762e10 2.44460e11i 0.322049 0.884822i
\(726\) 0 0
\(727\) −5.77710e10 + 3.27636e11i −0.206811 + 1.17288i 0.687755 + 0.725943i \(0.258596\pi\)
−0.894565 + 0.446937i \(0.852515\pi\)
\(728\) 3.11872e11i 1.11033i
\(729\) 0 0
\(730\) 3.13438e11 1.10372
\(731\) −6.70510e10 1.18229e10i −0.234820 0.0414052i
\(732\) 0 0
\(733\) −2.51734e11 9.16237e10i −0.872019 0.317389i −0.133035 0.991111i \(-0.542472\pi\)
−0.738984 + 0.673722i \(0.764694\pi\)
\(734\) 1.03702e11 + 1.23588e11i 0.357277 + 0.425786i
\(735\) 0 0
\(736\) −4.44267e11 + 1.61700e11i −1.51402 + 0.551060i
\(737\) 8.04697e9 + 4.64592e9i 0.0272748 + 0.0157471i
\(738\) 0 0
\(739\) 2.13852e11 + 3.70403e11i 0.717028 + 1.24193i 0.962172 + 0.272443i \(0.0878315\pi\)
−0.245144 + 0.969487i \(0.578835\pi\)
\(740\) 3.05513e11 3.64096e11i 1.01883 1.21420i
\(741\) 0 0
\(742\) 2.21451e10 + 1.25591e11i 0.0730571 + 0.414327i
\(743\) −1.08760e10 + 1.91774e9i −0.0356874 + 0.00629265i −0.191463 0.981500i \(-0.561323\pi\)
0.155776 + 0.987792i \(0.450212\pi\)
\(744\) 0 0
\(745\) 6.44452e11 + 5.40760e11i 2.09202 + 1.75541i
\(746\) −7.97538e10 + 4.60459e10i −0.257511 + 0.148674i
\(747\) 0 0
\(748\) −1.51240e10 + 2.61956e10i −0.0483127 + 0.0836800i
\(749\) −9.62014e10 2.64311e11i −0.305671 0.839824i
\(750\) 0 0
\(751\) −1.54799e11 + 1.29892e11i −0.486641 + 0.408340i −0.852821 0.522204i \(-0.825110\pi\)
0.366180 + 0.930544i \(0.380666\pi\)
\(752\) −1.07473e10 + 2.95281e10i −0.0336070 + 0.0923345i
\(753\) 0 0
\(754\) −1.56237e10 + 8.86062e10i −0.0483390 + 0.274144i
\(755\) 7.71091e11i 2.37311i
\(756\) 0 0
\(757\) 8.13103e9 0.0247607 0.0123803 0.999923i \(-0.496059\pi\)
0.0123803 + 0.999923i \(0.496059\pi\)
\(758\) 3.07247e10 + 5.41759e9i 0.0930702 + 0.0164108i
\(759\) 0 0
\(760\) 2.68691e11 + 9.77955e10i 0.805376 + 0.293133i
\(761\) −3.03699e11 3.61934e11i −0.905533 1.07917i −0.996523 0.0833201i \(-0.973448\pi\)
0.0909901 0.995852i \(-0.470997\pi\)
\(762\) 0 0
\(763\) −5.96725e11 + 2.17190e11i −1.76066 + 0.640829i
\(764\) 1.01826e11 + 5.87894e10i 0.298872 + 0.172554i
\(765\) 0 0
\(766\) −8.34895e10 1.44608e11i −0.242503 0.420027i
\(767\) −5.54030e11 + 6.60267e11i −1.60085 + 1.90782i
\(768\) 0 0
\(769\) −4.67617e10 2.65199e11i −0.133717 0.758344i −0.975745 0.218911i \(-0.929750\pi\)
0.842028 0.539433i \(-0.181362\pi\)
\(770\) 9.42029e10 1.66105e10i 0.267979 0.0472520i
\(771\) 0 0
\(772\) −7.32797e9 6.14890e9i −0.0206307 0.0173112i
\(773\) 3.80987e10 2.19963e10i 0.106707 0.0616072i −0.445697 0.895184i \(-0.647044\pi\)
0.552404 + 0.833577i \(0.313711\pi\)
\(774\) 0 0
\(775\) −3.56010e11 + 6.16628e11i −0.986860 + 1.70929i
\(776\) 1.17867e11 + 3.23837e11i 0.325046 + 0.893058i
\(777\) 0 0
\(778\) −1.15289e11 + 9.67392e10i −0.314681 + 0.264049i
\(779\) −3.46855e10 + 9.52976e10i −0.0941885 + 0.258781i
\(780\) 0 0
\(781\) −1.34829e10 + 7.64654e10i −0.0362393 + 0.205523i
\(782\) 1.36280e11i 0.364424i
\(783\) 0 0
\(784\) −5.40114e9 −0.0142962
\(785\) 9.19796e11 + 1.62185e11i 2.42222 + 0.427102i
\(786\) 0 0
\(787\) 1.72186e11 + 6.26704e10i 0.448847 + 0.163367i 0.556546 0.830817i \(-0.312126\pi\)
−0.107700 + 0.994183i \(0.534348\pi\)
\(788\) 1.47382e11 + 1.75643e11i 0.382242 + 0.455539i
\(789\) 0 0
\(790\) 4.92425e11 1.79228e11i 1.26425 0.460149i
\(791\) 1.35524e11 + 7.82450e10i 0.346187 + 0.199871i
\(792\) 0 0
\(793\) −3.76049e11 6.51337e11i −0.950938 1.64707i
\(794\) 1.58309e11 1.88665e11i 0.398311 0.474689i
\(795\) 0 0
\(796\) 7.25014e10 + 4.11176e11i 0.180590 + 1.02418i
\(797\) −6.11243e11 + 1.07779e11i −1.51489 + 0.267116i −0.868422 0.495826i \(-0.834865\pi\)
−0.646467 + 0.762942i \(0.723754\pi\)
\(798\) 0 0
\(799\) −5.42584e10 4.55282e10i −0.133131 0.111710i
\(800\) −8.23199e11 + 4.75274e11i −2.00976 + 1.16034i
\(801\) 0 0
\(802\) 1.20804e11 2.09239e11i 0.292001 0.505761i
\(803\) −4.95273e10 1.36075e11i −0.119119 0.327278i
\(804\) 0 0
\(805\) 8.74790e11 7.34036e11i 2.08315 1.74797i
\(806\) 8.42237e10 2.31403e11i 0.199569 0.548313i
\(807\) 0 0
\(808\) −5.07084e10 + 2.87581e11i −0.118969 + 0.674707i
\(809\) 5.19353e11i 1.21246i −0.795288 0.606231i \(-0.792681\pi\)
0.795288 0.606231i \(-0.207319\pi\)
\(810\) 0 0
\(811\) −3.87789e11 −0.896422 −0.448211 0.893928i \(-0.647939\pi\)
−0.448211 + 0.893928i \(0.647939\pi\)
\(812\) 1.26906e11 + 2.23770e10i 0.291917 + 0.0514729i
\(813\) 0 0
\(814\) 7.78734e10 + 2.83436e10i 0.177375 + 0.0645591i
\(815\) 3.95782e11 + 4.71674e11i 0.897068 + 1.06908i
\(816\) 0 0
\(817\) 1.17530e11 4.27775e10i 0.263792 0.0960123i
\(818\) −1.03338e11 5.96624e10i −0.230807 0.133256i
\(819\) 0 0
\(820\) −1.54375e11 2.67385e11i −0.341446 0.591401i
\(821\) 9.20066e10 1.09649e11i 0.202510 0.241342i −0.655225 0.755433i \(-0.727426\pi\)
0.857735 + 0.514092i \(0.171871\pi\)
\(822\) 0 0
\(823\) 5.72758e10 + 3.24827e11i 0.124845 + 0.708033i 0.981400 + 0.191976i \(0.0614895\pi\)
−0.856554 + 0.516057i \(0.827399\pi\)
\(824\) −5.34504e11 + 9.42476e10i −1.15942 + 0.204438i
\(825\) 0 0
\(826\) −3.56894e11 2.99469e11i −0.766688 0.643328i
\(827\) −1.91636e10 + 1.10641e10i −0.0409691 + 0.0236535i −0.520345 0.853956i \(-0.674197\pi\)
0.479376 + 0.877610i \(0.340863\pi\)
\(828\) 0 0
\(829\) 1.96260e11 3.39932e11i 0.415540 0.719736i −0.579945 0.814656i \(-0.696926\pi\)
0.995485 + 0.0949194i \(0.0302593\pi\)
\(830\) −1.87681e11 5.15650e11i −0.395465 1.08653i
\(831\) 0 0
\(832\) 1.34295e11 1.12687e11i 0.280264 0.235169i
\(833\) 4.16390e9 1.14402e10i 0.00864810 0.0237605i
\(834\) 0 0
\(835\) 7.10380e10 4.02877e11i 0.146132 0.828755i
\(836\) 5.55657e10i 0.113758i
\(837\) 0 0
\(838\) 3.23624e10 0.0656243
\(839\) −8.15516e11 1.43797e11i −1.64583 0.290204i −0.727525 0.686081i \(-0.759330\pi\)
−0.918303 + 0.395877i \(0.870441\pi\)
\(840\) 0 0
\(841\) −3.87025e11 1.40865e11i −0.773668 0.281592i
\(842\) 1.65949e11 + 1.97770e11i 0.330161 + 0.393471i
\(843\) 0 0
\(844\) 6.03916e10 2.19807e10i 0.119016 0.0433184i
\(845\) 4.77469e11 + 2.75667e11i 0.936522 + 0.540701i
\(846\) 0 0
\(847\) 2.27868e11 + 3.94678e11i 0.442740 + 0.766849i
\(848\) −6.96110e10 + 8.29592e10i −0.134615 + 0.160428i
\(849\) 0 0
\(850\) −4.75795e10 2.69837e11i −0.0911473 0.516922i
\(851\) 9.74298e11 1.71795e11i 1.85769 0.327561i
\(852\) 0 0
\(853\) −4.34350e11 3.64463e11i −0.820434 0.688426i 0.132640 0.991164i \(-0.457655\pi\)
−0.953074 + 0.302738i \(0.902099\pi\)
\(854\) 3.52066e11 2.03266e11i 0.661901 0.382149i
\(855\) 0 0
\(856\) −2.23155e11 + 3.86515e11i −0.415634 + 0.719899i
\(857\) 3.15301e11 + 8.66281e11i 0.584523 + 1.60596i 0.780363 + 0.625327i \(0.215035\pi\)
−0.195840 + 0.980636i \(0.562743\pi\)
\(858\) 0 0
\(859\) −4.09903e11 + 3.43949e11i −0.752850 + 0.631716i −0.936255 0.351321i \(-0.885732\pi\)
0.183405 + 0.983037i \(0.441288\pi\)
\(860\) −1.30235e11 + 3.57816e11i −0.238085 + 0.654134i
\(861\) 0 0
\(862\) −3.08048e9 + 1.74703e10i −0.00557943 + 0.0316425i
\(863\) 6.95049e11i 1.25306i 0.779397 + 0.626530i \(0.215525\pi\)
−0.779397 + 0.626530i \(0.784475\pi\)
\(864\) 0 0
\(865\) 5.84670e11 1.04435
\(866\) 1.88599e11 + 3.32550e10i 0.335326 + 0.0591270i
\(867\) 0 0
\(868\) −3.31427e11 1.20630e11i −0.583861 0.212508i
\(869\) −1.55619e11 1.85460e11i −0.272888 0.325215i
\(870\) 0 0
\(871\) −7.24821e10 + 2.63813e10i −0.125938 + 0.0458378i
\(872\) 8.72620e11 + 5.03808e11i 1.50924 + 0.871362i
\(873\) 0 0
\(874\) 1.25174e11 + 2.16807e11i 0.214520 + 0.371559i
\(875\) 8.17015e11 9.73681e11i 1.39379 1.66106i
\(876\) 0 0
\(877\) 1.09110e9 + 6.18796e9i 0.00184445 + 0.0104604i 0.985716 0.168416i \(-0.0538650\pi\)
−0.983872 + 0.178876i \(0.942754\pi\)
\(878\) −3.43685e11 + 6.06009e10i −0.578338 + 0.101977i
\(879\) 0 0
\(880\) 6.22257e10 + 5.22135e10i 0.103762 + 0.0870668i
\(881\) 1.32363e11 7.64201e10i 0.219717 0.126854i −0.386102 0.922456i \(-0.626179\pi\)
0.605819 + 0.795602i \(0.292845\pi\)
\(882\) 0 0
\(883\) 2.95623e11 5.12034e11i 0.486290 0.842278i −0.513586 0.858038i \(-0.671683\pi\)
0.999876 + 0.0157597i \(0.00501669\pi\)
\(884\) −8.58800e10 2.35953e11i −0.140632 0.386382i
\(885\) 0 0
\(886\) −2.03830e11 + 1.71034e11i −0.330775 + 0.277554i
\(887\) 1.89777e11 5.21408e11i 0.306584 0.842332i −0.686733 0.726910i \(-0.740956\pi\)
0.993317 0.115422i \(-0.0368220\pi\)
\(888\) 0 0
\(889\) −1.89301e10 + 1.07358e11i −0.0303072 + 0.171881i
\(890\) 4.94310e11i 0.787843i
\(891\) 0 0
\(892\) 3.45451e11 0.545667
\(893\) 1.28137e11 + 2.25940e10i 0.201497 + 0.0355293i
\(894\) 0 0
\(895\) −4.76767e11 1.73529e11i −0.743044 0.270446i
\(896\) −3.55970e11 4.24228e11i −0.552307 0.658214i
\(897\) 0 0
\(898\) 6.20040e11 2.25676e11i 0.953485 0.347040i
\(899\) −2.09494e11 1.20951e11i −0.320725 0.185171i
\(900\) 0 0
\(901\) −1.22052e11 2.11400e11i −0.185202 0.320779i
\(902\) 3.46031e10 4.12384e10i 0.0522744 0.0622982i
\(903\) 0 0
\(904\) −4.31184e10 2.44537e11i −0.0645638 0.366160i
\(905\) 1.29251e12 2.27905e11i 1.92682 0.339750i
\(906\) 0 0
\(907\) −3.64411e11 3.05777e11i −0.538471 0.451831i 0.332543 0.943088i \(-0.392093\pi\)
−0.871015 + 0.491257i \(0.836538\pi\)
\(908\) 1.96067e11 1.13199e11i 0.288444 0.166533i
\(909\) 0 0
\(910\) −3.97032e11 + 6.87680e11i −0.578976 + 1.00282i
\(911\) −2.57051e11 7.06242e11i −0.373204 1.02537i −0.974115 0.226053i \(-0.927418\pi\)
0.600911 0.799316i \(-0.294805\pi\)
\(912\) 0 0
\(913\) −1.94207e11 + 1.62959e11i −0.279500 + 0.234528i
\(914\) 7.34139e9 2.01703e10i 0.0105195 0.0289020i
\(915\) 0 0
\(916\) 5.22797e10 2.96493e11i 0.0742594 0.421146i
\(917\) 4.72632e11i 0.668415i
\(918\) 0 0
\(919\) −7.46604e11 −1.04671 −0.523357 0.852113i \(-0.675321\pi\)
−0.523357 + 0.852113i \(0.675321\pi\)
\(920\) −1.78446e12 3.14649e11i −2.49090 0.439212i
\(921\) 0 0
\(922\) 2.16973e11 + 7.89716e10i 0.300249 + 0.109282i
\(923\) −4.14309e11 4.93754e11i −0.570844 0.680306i
\(924\) 0 0
\(925\) 1.86914e12 6.80312e11i 2.55314 0.929268i
\(926\) 5.01541e11 + 2.89565e11i 0.682123 + 0.393824i
\(927\) 0 0
\(928\) −1.61470e11 2.79675e11i −0.217721 0.377104i
\(929\) −2.90198e11 + 3.45844e11i −0.389611 + 0.464320i −0.924823 0.380398i \(-0.875787\pi\)
0.535212 + 0.844718i \(0.320232\pi\)
\(930\) 0 0
\(931\) 3.88355e9 + 2.20247e10i 0.00516928 + 0.0293164i
\(932\) −5.11219e10 + 9.01416e9i −0.0677553 + 0.0119471i
\(933\) 0 0
\(934\) −1.57257e11 1.31954e11i −0.206644 0.173395i
\(935\) −1.58566e11 + 9.15481e10i −0.207474 + 0.119785i
\(936\) 0 0
\(937\) 3.20942e11 5.55887e11i 0.416359 0.721154i −0.579211 0.815177i \(-0.696639\pi\)
0.995570 + 0.0940230i \(0.0299727\pi\)
\(938\) −1.42599e10 3.91787e10i −0.0184206 0.0506102i
\(939\) 0 0
\(940\) −3.03450e11 + 2.54625e11i −0.388666 + 0.326129i
\(941\) −4.64465e11 + 1.27611e12i −0.592372 + 1.62753i 0.173717 + 0.984796i \(0.444422\pi\)
−0.766089 + 0.642734i \(0.777800\pi\)
\(942\) 0 0
\(943\) 1.11598e11 6.32902e11i 0.141126 0.800367i
\(944\) 3.95629e11i 0.498195i
\(945\) 0 0
\(946\) −6.63919e10 −0.0828993
\(947\) −2.88970e11 5.09532e10i −0.359296 0.0633536i −0.00891360 0.999960i \(-0.502837\pi\)
−0.350383 + 0.936607i \(0.613948\pi\)
\(948\) 0 0
\(949\) 1.12959e12 + 4.11138e11i 1.39270 + 0.506901i
\(950\) 3.23539e11 + 3.85579e11i 0.397221 + 0.473389i
\(951\) 0 0
\(952\) 3.03213e11 1.10360e11i 0.369147 0.134359i
\(953\) 9.42582e11 + 5.44200e11i 1.14274 + 0.659761i 0.947108 0.320916i \(-0.103991\pi\)
0.195632 + 0.980677i \(0.437324\pi\)
\(954\) 0 0
\(955\) 3.55861e11 + 6.16370e11i 0.427826 + 0.741016i
\(956\) −7.28109e10 + 8.67726e10i −0.0871695 + 0.103885i
\(957\) 0 0
\(958\) 5.70467e10 + 3.23528e11i 0.0677280 + 0.384105i
\(959\) −1.31982e12 + 2.32720e11i −1.56042 + 0.275143i
\(960\) 0 0
\(961\) −1.46169e11 1.22651e11i −0.171381 0.143806i
\(962\) −5.95768e11 + 3.43967e11i −0.695628 + 0.401621i
\(963\) 0 0
\(964\) −2.78154e11 + 4.81776e11i −0.322089 + 0.557875i
\(965\) −1.98045e10 5.44124e10i −0.0228378 0.0627463i
\(966\) 0 0
\(967\) −1.16061e12 + 9.73866e11i −1.32733 + 1.11376i −0.342640 + 0.939467i \(0.611321\pi\)
−0.984693 + 0.174297i \(0.944235\pi\)
\(968\) 2.47326e11 6.79524e11i 0.281688 0.773933i
\(969\) 0 0
\(970\) −1.52367e11 + 8.64116e11i −0.172109 + 0.976079i
\(971\) 7.60219e11i 0.855188i −0.903971 0.427594i \(-0.859361\pi\)
0.903971 0.427594i \(-0.140639\pi\)
\(972\) 0 0
\(973\) −9.55351e11 −1.06589
\(974\) −3.53535e11 6.23378e10i −0.392823 0.0692653i
\(975\) 0 0
\(976\) 3.24401e11 + 1.18072e11i 0.357506 + 0.130122i
\(977\) 1.00716e12 + 1.20028e12i 1.10540 + 1.31736i 0.943804 + 0.330507i \(0.107220\pi\)
0.161596 + 0.986857i \(0.448336\pi\)
\(978\) 0 0
\(979\) −2.14599e11 + 7.81076e10i −0.233613 + 0.0850281i
\(980\) −5.89658e10 3.40439e10i −0.0639287 0.0369093i
\(981\) 0 0
\(982\) −2.51339e11 4.35331e11i −0.270280 0.468138i
\(983\) 9.63142e11 1.14783e12i 1.03152 1.22931i 0.0585695 0.998283i \(-0.481346\pi\)
0.972947 0.231030i \(-0.0742095\pi\)
\(984\) 0 0
\(985\) 2.41006e11 + 1.36681e12i 0.256026 + 1.45199i
\(986\) 9.16747e10 1.61647e10i 0.0969933 0.0171025i
\(987\) 0 0
\(988\) 3.53349e11 + 2.96495e11i 0.370831 + 0.311164i
\(989\) −6.86409e11 + 3.96298e11i −0.717460 + 0.414226i
\(990\) 0 0
\(991\) 3.29931e11 5.71457e11i 0.342081 0.592501i −0.642738 0.766086i \(-0.722202\pi\)
0.984819 + 0.173585i \(0.0555351\pi\)
\(992\) 3.02304e11 + 8.30575e11i 0.312175 + 0.857693i
\(993\) 0 0
\(994\) 2.66889e11 2.23946e11i 0.273391 0.229402i
\(995\) −8.64390e11 + 2.37489e12i −0.881896 + 2.42299i
\(996\) 0 0
\(997\) 3.24379e10 1.83965e11i 0.0328301 0.186189i −0.963983 0.265965i \(-0.914309\pi\)
0.996813 + 0.0797761i \(0.0254205\pi\)
\(998\) 8.03708e9i 0.00810170i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.f.a.8.16 138
3.2 odd 2 27.9.f.a.2.8 138
27.13 even 9 27.9.f.a.14.8 yes 138
27.14 odd 18 inner 81.9.f.a.71.16 138
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.f.a.2.8 138 3.2 odd 2
27.9.f.a.14.8 yes 138 27.13 even 9
81.9.f.a.8.16 138 1.1 even 1 trivial
81.9.f.a.71.16 138 27.14 odd 18 inner