Properties

Label 81.9.f.a.71.13
Level $81$
Weight $9$
Character 81.71
Analytic conductor $32.998$
Analytic rank $0$
Dimension $138$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(138\)
Relative dimension: \(23\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 71.13
Character \(\chi\) \(=\) 81.71
Dual form 81.9.f.a.8.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.24198 - 0.571649i) q^{2} +(-230.378 + 83.8506i) q^{4} +(-387.667 + 462.003i) q^{5} +(-3862.15 - 1405.71i) q^{7} +(-1428.79 + 824.913i) q^{8} +(-992.706 + 1719.42i) q^{10} +(-11423.3 - 13613.8i) q^{11} +(-882.859 + 5006.94i) q^{13} +(-13324.6 - 2349.49i) q^{14} +(43917.7 - 36851.3i) q^{16} +(-23746.9 - 13710.3i) q^{17} +(92857.3 + 160834. i) q^{19} +(50570.5 - 138941. i) q^{20} +(-44816.5 - 37605.5i) q^{22} +(88410.2 + 242905. i) q^{23} +(4669.78 + 26483.6i) q^{25} +16737.1i q^{26} +1.00762e6 q^{28} +(234351. - 41322.5i) q^{29} +(-618503. + 225117. i) q^{31} +(392799. - 468120. i) q^{32} +(-84824.4 - 30873.6i) q^{34} +(2.14667e6 - 1.23938e6i) q^{35} +(779022. - 1.34931e6i) q^{37} +(392982. + 468338. i) q^{38} +(172782. - 979898. i) q^{40} +(-3.82274e6 - 674052. i) q^{41} +(-1.19676e6 + 1.00420e6i) q^{43} +(3.77320e6 + 2.17846e6i) q^{44} +(425481. + 736954. i) q^{46} +(-407155. + 1.11865e6i) q^{47} +(8.52411e6 + 7.15258e6i) q^{49} +(30278.7 + 83190.0i) q^{50} +(-216444. - 1.22752e6i) q^{52} -1.29944e7i q^{53} +1.07180e7 q^{55} +(6.67780e6 - 1.17748e6i) q^{56} +(736141. - 267934. i) q^{58} +(1.38268e7 - 1.64782e7i) q^{59} +(1.39731e7 + 5.08578e6i) q^{61} +(-1.87649e6 + 1.08339e6i) q^{62} +(-6.33245e6 + 1.09681e7i) q^{64} +(-1.97097e6 - 2.34891e6i) q^{65} +(-1.06177e6 + 6.02157e6i) q^{67} +(6.62036e6 + 1.16735e6i) q^{68} +(6.25098e6 - 5.24520e6i) q^{70} +(-3.07395e7 - 1.77475e7i) q^{71} +(6.89919e6 + 1.19498e7i) q^{73} +(1.75425e6 - 4.81975e6i) q^{74} +(-3.48782e7 - 2.92663e7i) q^{76} +(2.49816e7 + 6.86363e7i) q^{77} +(-7.76297e6 - 4.40260e7i) q^{79} +3.45761e7i q^{80} -1.27786e7 q^{82} +(4.57442e7 - 8.06593e6i) q^{83} +(1.55401e7 - 5.65612e6i) q^{85} +(-3.30581e6 + 3.93971e6i) q^{86} +(2.75517e7 + 1.00280e7i) q^{88} +(3.60126e6 - 2.07919e6i) q^{89} +(1.04480e7 - 1.80965e7i) q^{91} +(-4.07355e7 - 4.85466e7i) q^{92} +(-680516. + 3.85940e6i) q^{94} +(-1.10303e8 - 1.94495e7i) q^{95} +(-1.08572e8 + 9.11031e7i) q^{97} +(3.17238e7 + 1.83157e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.24198 0.571649i 0.202624 0.0357281i −0.0714149 0.997447i \(-0.522751\pi\)
0.274039 + 0.961719i \(0.411640\pi\)
\(3\) 0 0
\(4\) −230.378 + 83.8506i −0.899913 + 0.327541i
\(5\) −387.667 + 462.003i −0.620267 + 0.739206i −0.981116 0.193419i \(-0.938042\pi\)
0.360849 + 0.932624i \(0.382487\pi\)
\(6\) 0 0
\(7\) −3862.15 1405.71i −1.60856 0.585468i −0.627405 0.778693i \(-0.715883\pi\)
−0.981155 + 0.193225i \(0.938105\pi\)
\(8\) −1428.79 + 824.913i −0.348826 + 0.201395i
\(9\) 0 0
\(10\) −992.706 + 1719.42i −0.0992706 + 0.171942i
\(11\) −11423.3 13613.8i −0.780227 0.929839i 0.218716 0.975788i \(-0.429813\pi\)
−0.998944 + 0.0459497i \(0.985369\pi\)
\(12\) 0 0
\(13\) −882.859 + 5006.94i −0.0309113 + 0.175307i −0.996355 0.0853055i \(-0.972813\pi\)
0.965443 + 0.260612i \(0.0839245\pi\)
\(14\) −13324.6 2349.49i −0.346850 0.0611591i
\(15\) 0 0
\(16\) 43917.7 36851.3i 0.670130 0.562306i
\(17\) −23746.9 13710.3i −0.284322 0.164153i 0.351056 0.936354i \(-0.385823\pi\)
−0.635378 + 0.772201i \(0.719156\pi\)
\(18\) 0 0
\(19\) 92857.3 + 160834.i 0.712528 + 1.23413i 0.963905 + 0.266245i \(0.0857831\pi\)
−0.251378 + 0.967889i \(0.580884\pi\)
\(20\) 50570.5 138941.i 0.316066 0.868384i
\(21\) 0 0
\(22\) −44816.5 37605.5i −0.191314 0.160532i
\(23\) 88410.2 + 242905.i 0.315930 + 0.868011i 0.991429 + 0.130650i \(0.0417063\pi\)
−0.675498 + 0.737361i \(0.736072\pi\)
\(24\) 0 0
\(25\) 4669.78 + 26483.6i 0.0119546 + 0.0677981i
\(26\) 16737.1i 0.0366258i
\(27\) 0 0
\(28\) 1.00762e6 1.63933
\(29\) 234351. 41322.5i 0.331341 0.0584244i −0.00550273 0.999985i \(-0.501752\pi\)
0.336844 + 0.941560i \(0.390640\pi\)
\(30\) 0 0
\(31\) −618503. + 225117.i −0.669723 + 0.243759i −0.654429 0.756124i \(-0.727091\pi\)
−0.0152945 + 0.999883i \(0.504869\pi\)
\(32\) 392799. 468120.i 0.374602 0.446434i
\(33\) 0 0
\(34\) −84824.4 30873.6i −0.0634754 0.0231031i
\(35\) 2.14667e6 1.23938e6i 1.43052 0.825910i
\(36\) 0 0
\(37\) 779022. 1.34931e6i 0.415664 0.719952i −0.579834 0.814735i \(-0.696882\pi\)
0.995498 + 0.0947831i \(0.0302158\pi\)
\(38\) 392982. + 468338.i 0.188468 + 0.224608i
\(39\) 0 0
\(40\) 172782. 979898.i 0.0674931 0.382773i
\(41\) −3.82274e6 674052.i −1.35282 0.238538i −0.550201 0.835033i \(-0.685449\pi\)
−0.802617 + 0.596494i \(0.796560\pi\)
\(42\) 0 0
\(43\) −1.19676e6 + 1.00420e6i −0.350051 + 0.293728i −0.800811 0.598918i \(-0.795598\pi\)
0.450759 + 0.892645i \(0.351153\pi\)
\(44\) 3.77320e6 + 2.17846e6i 1.00670 + 0.581217i
\(45\) 0 0
\(46\) 425481. + 736954.i 0.0950274 + 0.164592i
\(47\) −407155. + 1.11865e6i −0.0834390 + 0.229247i −0.974395 0.224843i \(-0.927813\pi\)
0.890956 + 0.454089i \(0.150035\pi\)
\(48\) 0 0
\(49\) 8.52411e6 + 7.15258e6i 1.47865 + 1.24073i
\(50\) 30278.7 + 83190.0i 0.00484459 + 0.0133104i
\(51\) 0 0
\(52\) −216444. 1.22752e6i −0.0296028 0.167886i
\(53\) 1.29944e7i 1.64684i −0.567432 0.823420i \(-0.692063\pi\)
0.567432 0.823420i \(-0.307937\pi\)
\(54\) 0 0
\(55\) 1.07180e7 1.17129
\(56\) 6.67780e6 1.17748e6i 0.679018 0.119729i
\(57\) 0 0
\(58\) 736141. 267934.i 0.0650503 0.0236764i
\(59\) 1.38268e7 1.64782e7i 1.14107 1.35988i 0.217684 0.976019i \(-0.430150\pi\)
0.923391 0.383861i \(-0.125406\pi\)
\(60\) 0 0
\(61\) 1.39731e7 + 5.08578e6i 1.00919 + 0.367315i 0.793121 0.609064i \(-0.208455\pi\)
0.216068 + 0.976378i \(0.430677\pi\)
\(62\) −1.87649e6 + 1.08339e6i −0.126993 + 0.0733194i
\(63\) 0 0
\(64\) −6.33245e6 + 1.09681e7i −0.377443 + 0.653751i
\(65\) −1.97097e6 2.34891e6i −0.110415 0.131587i
\(66\) 0 0
\(67\) −1.06177e6 + 6.02157e6i −0.0526901 + 0.298821i −0.999753 0.0222278i \(-0.992924\pi\)
0.947063 + 0.321048i \(0.104035\pi\)
\(68\) 6.62036e6 + 1.16735e6i 0.309632 + 0.0545965i
\(69\) 0 0
\(70\) 6.25098e6 5.24520e6i 0.260349 0.218459i
\(71\) −3.07395e7 1.77475e7i −1.20966 0.698398i −0.246975 0.969022i \(-0.579437\pi\)
−0.962685 + 0.270624i \(0.912770\pi\)
\(72\) 0 0
\(73\) 6.89919e6 + 1.19498e7i 0.242944 + 0.420792i 0.961552 0.274624i \(-0.0885534\pi\)
−0.718607 + 0.695416i \(0.755220\pi\)
\(74\) 1.75425e6 4.81975e6i 0.0585011 0.160730i
\(75\) 0 0
\(76\) −3.48782e7 2.92663e7i −1.04544 0.877231i
\(77\) 2.49816e7 + 6.86363e7i 0.710652 + 1.95250i
\(78\) 0 0
\(79\) −7.76297e6 4.40260e7i −0.199306 1.13032i −0.906152 0.422952i \(-0.860994\pi\)
0.706846 0.707367i \(-0.250117\pi\)
\(80\) 3.45761e7i 0.844144i
\(81\) 0 0
\(82\) −1.27786e7 −0.282636
\(83\) 4.57442e7 8.06593e6i 0.963881 0.169958i 0.330506 0.943804i \(-0.392780\pi\)
0.633374 + 0.773846i \(0.281669\pi\)
\(84\) 0 0
\(85\) 1.55401e7 5.65612e6i 0.297699 0.108354i
\(86\) −3.30581e6 + 3.93971e6i −0.0604344 + 0.0720230i
\(87\) 0 0
\(88\) 2.75517e7 + 1.00280e7i 0.459428 + 0.167218i
\(89\) 3.60126e6 2.07919e6i 0.0573977 0.0331386i −0.471027 0.882119i \(-0.656116\pi\)
0.528424 + 0.848980i \(0.322783\pi\)
\(90\) 0 0
\(91\) 1.04480e7 1.80965e7i 0.152359 0.263894i
\(92\) −4.07355e7 4.85466e7i −0.568619 0.677654i
\(93\) 0 0
\(94\) −680516. + 3.85940e6i −0.00871619 + 0.0494320i
\(95\) −1.10303e8 1.94495e7i −1.35424 0.238788i
\(96\) 0 0
\(97\) −1.08572e8 + 9.11031e7i −1.22640 + 1.02907i −0.227937 + 0.973676i \(0.573198\pi\)
−0.998464 + 0.0553970i \(0.982358\pi\)
\(98\) 3.17238e7 + 1.83157e7i 0.343938 + 0.198573i
\(99\) 0 0
\(100\) −3.29648e6 5.70967e6i −0.0329648 0.0570967i
\(101\) −4.07022e7 + 1.11828e8i −0.391140 + 1.07465i 0.575342 + 0.817913i \(0.304869\pi\)
−0.966482 + 0.256735i \(0.917353\pi\)
\(102\) 0 0
\(103\) −2.77608e7 2.32941e7i −0.246651 0.206965i 0.511077 0.859535i \(-0.329247\pi\)
−0.757729 + 0.652570i \(0.773691\pi\)
\(104\) −2.86887e6 7.88216e6i −0.0245232 0.0673770i
\(105\) 0 0
\(106\) −7.42821e6 4.21275e7i −0.0588384 0.333689i
\(107\) 1.86649e8i 1.42394i −0.702212 0.711968i \(-0.747804\pi\)
0.702212 0.711968i \(-0.252196\pi\)
\(108\) 0 0
\(109\) 1.05606e8 0.748138 0.374069 0.927401i \(-0.377962\pi\)
0.374069 + 0.927401i \(0.377962\pi\)
\(110\) 3.47477e7 6.12696e6i 0.237332 0.0418480i
\(111\) 0 0
\(112\) −2.21419e8 + 8.05899e7i −1.40716 + 0.512163i
\(113\) −1.87685e8 + 2.23674e8i −1.15110 + 1.37183i −0.234462 + 0.972125i \(0.575333\pi\)
−0.916643 + 0.399708i \(0.869112\pi\)
\(114\) 0 0
\(115\) −1.46497e8 5.33204e7i −0.837599 0.304861i
\(116\) −5.05244e7 + 2.91703e7i −0.279042 + 0.161105i
\(117\) 0 0
\(118\) 3.54066e7 6.13260e7i 0.182623 0.316313i
\(119\) 7.24414e7 + 8.63323e7i 0.361243 + 0.430512i
\(120\) 0 0
\(121\) −1.76197e7 + 9.99263e7i −0.0821972 + 0.466164i
\(122\) 4.82078e7 + 8.50033e6i 0.217609 + 0.0383704i
\(123\) 0 0
\(124\) 1.23613e8 1.03724e8i 0.522851 0.438724i
\(125\) −2.18070e8 1.25903e8i −0.893215 0.515698i
\(126\) 0 0
\(127\) 1.44951e8 + 2.51062e8i 0.557192 + 0.965085i 0.997729 + 0.0673506i \(0.0214546\pi\)
−0.440537 + 0.897734i \(0.645212\pi\)
\(128\) −6.77648e7 + 1.86182e8i −0.252444 + 0.693583i
\(129\) 0 0
\(130\) −7.73260e6 6.48842e6i −0.0270740 0.0227178i
\(131\) −5.14222e7 1.41281e8i −0.174609 0.479733i 0.821258 0.570556i \(-0.193272\pi\)
−0.995867 + 0.0908232i \(0.971050\pi\)
\(132\) 0 0
\(133\) −1.32544e8 7.51694e8i −0.423598 2.40234i
\(134\) 2.01288e7i 0.0624307i
\(135\) 0 0
\(136\) 4.52391e7 0.132239
\(137\) 6.49465e8 1.14518e8i 1.84363 0.325082i 0.860707 0.509101i \(-0.170022\pi\)
0.982923 + 0.184020i \(0.0589110\pi\)
\(138\) 0 0
\(139\) −4.91164e8 + 1.78769e8i −1.31573 + 0.478887i −0.902088 0.431552i \(-0.857966\pi\)
−0.413643 + 0.910439i \(0.635744\pi\)
\(140\) −3.90622e8 + 4.65525e8i −1.01682 + 1.21180i
\(141\) 0 0
\(142\) −1.09802e8 3.99648e7i −0.270059 0.0982933i
\(143\) 7.82485e7 4.51768e7i 0.187125 0.108037i
\(144\) 0 0
\(145\) −7.17592e7 + 1.24291e8i −0.162332 + 0.281168i
\(146\) 2.91981e7 + 3.47970e7i 0.0642604 + 0.0765826i
\(147\) 0 0
\(148\) −6.63292e7 + 3.76171e8i −0.138248 + 0.784041i
\(149\) 5.15210e8 + 9.08454e7i 1.04530 + 0.184314i 0.669824 0.742520i \(-0.266370\pi\)
0.375472 + 0.926834i \(0.377481\pi\)
\(150\) 0 0
\(151\) 5.15851e8 4.32850e8i 0.992239 0.832588i 0.00634899 0.999980i \(-0.497979\pi\)
0.985890 + 0.167392i \(0.0535346\pi\)
\(152\) −2.65347e8 1.53198e8i −0.497096 0.286999i
\(153\) 0 0
\(154\) 1.20226e8 + 2.08237e8i 0.213754 + 0.370233i
\(155\) 1.35769e8 3.73021e8i 0.235219 0.646259i
\(156\) 0 0
\(157\) 4.46343e8 + 3.74526e8i 0.734633 + 0.616430i 0.931390 0.364022i \(-0.118597\pi\)
−0.196758 + 0.980452i \(0.563041\pi\)
\(158\) −5.03349e7 1.38294e8i −0.0807682 0.221909i
\(159\) 0 0
\(160\) 6.39977e7 + 3.62949e8i 0.0976528 + 0.553816i
\(161\) 1.06242e9i 1.58121i
\(162\) 0 0
\(163\) 1.04960e9 1.48687 0.743437 0.668806i \(-0.233194\pi\)
0.743437 + 0.668806i \(0.233194\pi\)
\(164\) 9.37194e8 1.65253e8i 1.29555 0.228440i
\(165\) 0 0
\(166\) 1.43691e8 5.22992e7i 0.189233 0.0688752i
\(167\) 1.58207e8 1.88544e8i 0.203404 0.242407i −0.654693 0.755895i \(-0.727202\pi\)
0.858097 + 0.513487i \(0.171647\pi\)
\(168\) 0 0
\(169\) 7.42246e8 + 2.70155e8i 0.909916 + 0.331182i
\(170\) 4.71473e7 2.72205e7i 0.0564496 0.0325912i
\(171\) 0 0
\(172\) 1.91503e8 3.31693e8i 0.218808 0.378986i
\(173\) 2.45942e8 + 2.93102e8i 0.274567 + 0.327216i 0.885653 0.464348i \(-0.153711\pi\)
−0.611086 + 0.791564i \(0.709267\pi\)
\(174\) 0 0
\(175\) 1.91929e7 1.08848e8i 0.0204639 0.116056i
\(176\) −1.00337e9 1.76921e8i −1.04571 0.184387i
\(177\) 0 0
\(178\) 1.04867e7 8.79935e6i 0.0104462 0.00876538i
\(179\) 1.76049e8 + 1.01642e8i 0.171483 + 0.0990057i 0.583285 0.812268i \(-0.301767\pi\)
−0.411802 + 0.911273i \(0.635100\pi\)
\(180\) 0 0
\(181\) 3.05406e8 + 5.28979e8i 0.284553 + 0.492861i 0.972501 0.232900i \(-0.0748214\pi\)
−0.687948 + 0.725760i \(0.741488\pi\)
\(182\) 2.35275e7 6.46413e7i 0.0214432 0.0589148i
\(183\) 0 0
\(184\) −3.26695e8 2.74130e8i −0.285017 0.239158i
\(185\) 3.21383e8 + 8.82992e8i 0.274369 + 0.753824i
\(186\) 0 0
\(187\) 8.46195e7 + 4.79901e8i 0.0691997 + 0.392451i
\(188\) 2.91852e8i 0.233632i
\(189\) 0 0
\(190\) −3.68720e8 −0.282932
\(191\) −1.58410e8 + 2.79319e7i −0.119028 + 0.0209878i −0.232845 0.972514i \(-0.574803\pi\)
0.113817 + 0.993502i \(0.463692\pi\)
\(192\) 0 0
\(193\) −1.24511e8 + 4.53181e7i −0.0897381 + 0.0326620i −0.386499 0.922290i \(-0.626316\pi\)
0.296761 + 0.954952i \(0.404094\pi\)
\(194\) −2.99911e8 + 3.57420e8i −0.211731 + 0.252332i
\(195\) 0 0
\(196\) −2.56351e9 9.33042e8i −1.73705 0.632233i
\(197\) 5.26529e7 3.03991e7i 0.0349588 0.0201835i −0.482419 0.875941i \(-0.660242\pi\)
0.517378 + 0.855757i \(0.326908\pi\)
\(198\) 0 0
\(199\) −3.16579e8 + 5.48332e8i −0.201869 + 0.349648i −0.949131 0.314882i \(-0.898035\pi\)
0.747261 + 0.664530i \(0.231368\pi\)
\(200\) −2.85188e7 3.39874e7i −0.0178243 0.0212421i
\(201\) 0 0
\(202\) −6.80292e7 + 3.85813e8i −0.0408592 + 0.231724i
\(203\) −9.63188e8 1.69836e8i −0.567188 0.100011i
\(204\) 0 0
\(205\) 1.79336e9 1.50481e9i 1.01544 0.852053i
\(206\) −1.03316e8 5.96496e7i −0.0573719 0.0331237i
\(207\) 0 0
\(208\) 1.45739e8 + 2.52428e8i 0.0778616 + 0.134860i
\(209\) 1.12881e9 3.10139e9i 0.591612 1.62544i
\(210\) 0 0
\(211\) −1.27463e9 1.06955e9i −0.643067 0.539597i 0.261892 0.965097i \(-0.415654\pi\)
−0.904958 + 0.425500i \(0.860098\pi\)
\(212\) 1.08958e9 + 2.99361e9i 0.539408 + 1.48201i
\(213\) 0 0
\(214\) −1.06698e8 6.05112e8i −0.0508745 0.288523i
\(215\) 9.42199e8i 0.440950i
\(216\) 0 0
\(217\) 2.70520e9 1.22000
\(218\) 3.42372e8 6.03695e7i 0.151591 0.0267295i
\(219\) 0 0
\(220\) −2.46920e9 + 8.98715e8i −1.05406 + 0.383646i
\(221\) 8.96116e7 1.06795e8i 0.0375660 0.0447695i
\(222\) 0 0
\(223\) −9.28099e7 3.37800e7i −0.0375297 0.0136597i 0.323187 0.946335i \(-0.395246\pi\)
−0.360717 + 0.932675i \(0.617468\pi\)
\(224\) −2.17509e9 + 1.25579e9i −0.863943 + 0.498798i
\(225\) 0 0
\(226\) −4.80607e8 + 8.32436e8i −0.184228 + 0.319093i
\(227\) 2.09551e9 + 2.49733e9i 0.789198 + 0.940529i 0.999310 0.0371480i \(-0.0118273\pi\)
−0.210112 + 0.977677i \(0.567383\pi\)
\(228\) 0 0
\(229\) −2.35578e8 + 1.33603e9i −0.0856630 + 0.485819i 0.911549 + 0.411192i \(0.134888\pi\)
−0.997212 + 0.0746264i \(0.976224\pi\)
\(230\) −5.05420e8 8.91192e7i −0.180610 0.0318464i
\(231\) 0 0
\(232\) −3.00752e8 + 2.52361e8i −0.103814 + 0.0871104i
\(233\) −6.27753e8 3.62433e8i −0.212993 0.122972i 0.389709 0.920938i \(-0.372576\pi\)
−0.602702 + 0.797967i \(0.705909\pi\)
\(234\) 0 0
\(235\) −3.58980e8 6.21771e8i −0.117706 0.203873i
\(236\) −1.80369e9 + 4.95559e9i −0.581451 + 1.59752i
\(237\) 0 0
\(238\) 2.84206e8 + 2.38477e8i 0.0885778 + 0.0743256i
\(239\) −7.45604e8 2.04853e9i −0.228516 0.627842i 0.771448 0.636292i \(-0.219533\pi\)
−0.999964 + 0.00844956i \(0.997310\pi\)
\(240\) 0 0
\(241\) −2.83147e8 1.60581e9i −0.0839352 0.476020i −0.997581 0.0695097i \(-0.977857\pi\)
0.913646 0.406511i \(-0.133255\pi\)
\(242\) 3.34032e8i 0.0973927i
\(243\) 0 0
\(244\) −3.64553e9 −1.02849
\(245\) −6.60903e9 + 1.16535e9i −1.83431 + 0.323439i
\(246\) 0 0
\(247\) −8.87265e8 + 3.22938e8i −0.238378 + 0.0867623i
\(248\) 6.98010e8 8.31856e8i 0.184525 0.219908i
\(249\) 0 0
\(250\) −7.78952e8 2.83515e8i −0.199412 0.0725799i
\(251\) 5.80211e8 3.34985e8i 0.146181 0.0843977i −0.425126 0.905134i \(-0.639770\pi\)
0.571307 + 0.820737i \(0.306437\pi\)
\(252\) 0 0
\(253\) 2.29692e9 3.97838e9i 0.560613 0.971010i
\(254\) 6.13446e8 + 7.31077e8i 0.147381 + 0.175642i
\(255\) 0 0
\(256\) 4.49743e8 2.55062e9i 0.104714 0.593862i
\(257\) −3.70746e9 6.53725e8i −0.849853 0.149852i −0.268275 0.963343i \(-0.586453\pi\)
−0.581578 + 0.813491i \(0.697565\pi\)
\(258\) 0 0
\(259\) −4.90543e9 + 4.11615e9i −1.09013 + 0.914728i
\(260\) 6.51025e8 + 3.75869e8i 0.142464 + 0.0822514i
\(261\) 0 0
\(262\) −2.47473e8 4.28636e8i −0.0525198 0.0909670i
\(263\) 8.27508e8 2.27356e9i 0.172961 0.475207i −0.822676 0.568510i \(-0.807520\pi\)
0.995638 + 0.0933024i \(0.0297423\pi\)
\(264\) 0 0
\(265\) 6.00344e9 + 5.03748e9i 1.21735 + 1.02148i
\(266\) −8.59411e8 2.36121e9i −0.171662 0.471638i
\(267\) 0 0
\(268\) −2.60305e8 1.47626e9i −0.0504596 0.286171i
\(269\) 2.83899e9i 0.542195i −0.962552 0.271097i \(-0.912613\pi\)
0.962552 0.271097i \(-0.0873865\pi\)
\(270\) 0 0
\(271\) −4.82586e9 −0.894741 −0.447370 0.894349i \(-0.647639\pi\)
−0.447370 + 0.894349i \(0.647639\pi\)
\(272\) −1.54815e9 + 2.72980e8i −0.282837 + 0.0498719i
\(273\) 0 0
\(274\) 2.04009e9 7.42532e8i 0.361949 0.131739i
\(275\) 3.07198e8 3.66104e8i 0.0537139 0.0640138i
\(276\) 0 0
\(277\) 1.86396e9 + 6.78426e8i 0.316605 + 0.115235i 0.495434 0.868645i \(-0.335009\pi\)
−0.178830 + 0.983880i \(0.557231\pi\)
\(278\) −1.49015e9 + 8.60339e8i −0.249489 + 0.144043i
\(279\) 0 0
\(280\) −2.04476e9 + 3.54163e9i −0.332668 + 0.576198i
\(281\) 7.81636e8 + 9.31518e8i 0.125366 + 0.149405i 0.825076 0.565021i \(-0.191132\pi\)
−0.699710 + 0.714427i \(0.746688\pi\)
\(282\) 0 0
\(283\) 1.67891e9 9.52155e9i 0.261746 1.48444i −0.516396 0.856350i \(-0.672727\pi\)
0.778143 0.628087i \(-0.216162\pi\)
\(284\) 8.56983e9 + 1.51109e9i 1.31734 + 0.232283i
\(285\) 0 0
\(286\) 2.27855e8 1.91193e8i 0.0340561 0.0285764i
\(287\) 1.38165e10 + 7.97695e9i 2.03643 + 1.17573i
\(288\) 0 0
\(289\) −3.11194e9 5.39003e9i −0.446107 0.772680i
\(290\) −1.61591e8 + 4.43969e8i −0.0228469 + 0.0627712i
\(291\) 0 0
\(292\) −2.59141e9 2.17445e9i −0.356456 0.299102i
\(293\) −1.75048e8 4.80940e8i −0.0237512 0.0652560i 0.927250 0.374442i \(-0.122166\pi\)
−0.951002 + 0.309186i \(0.899943\pi\)
\(294\) 0 0
\(295\) 2.25277e9 + 1.27761e10i 0.297460 + 1.68698i
\(296\) 2.57050e9i 0.334850i
\(297\) 0 0
\(298\) 1.72223e9 0.218387
\(299\) −1.29427e9 + 2.28214e8i −0.161934 + 0.0285534i
\(300\) 0 0
\(301\) 6.03366e9 2.19607e9i 0.735047 0.267535i
\(302\) 1.42494e9 1.69818e9i 0.171305 0.204153i
\(303\) 0 0
\(304\) 1.00050e10 + 3.64152e9i 1.17145 + 0.426372i
\(305\) −7.76655e9 + 4.48402e9i −0.897488 + 0.518165i
\(306\) 0 0
\(307\) 3.72843e8 6.45783e8i 0.0419733 0.0726998i −0.844276 0.535909i \(-0.819969\pi\)
0.886249 + 0.463209i \(0.153302\pi\)
\(308\) −1.15104e10 1.37175e10i −1.27905 1.52431i
\(309\) 0 0
\(310\) 2.26922e8 1.28694e9i 0.0245714 0.139351i
\(311\) 1.43070e10 + 2.52271e9i 1.52935 + 0.269666i 0.874101 0.485745i \(-0.161452\pi\)
0.655252 + 0.755411i \(0.272563\pi\)
\(312\) 0 0
\(313\) −4.83723e9 + 4.05892e9i −0.503988 + 0.422896i −0.859008 0.511963i \(-0.828919\pi\)
0.355020 + 0.934859i \(0.384474\pi\)
\(314\) 1.66113e9 + 9.59056e8i 0.170878 + 0.0986565i
\(315\) 0 0
\(316\) 5.48002e9 + 9.49168e9i 0.549584 + 0.951907i
\(317\) 3.91673e9 1.07611e10i 0.387870 1.06566i −0.580089 0.814553i \(-0.696982\pi\)
0.967958 0.251110i \(-0.0807957\pi\)
\(318\) 0 0
\(319\) −3.23962e9 2.71837e9i −0.312847 0.262510i
\(320\) −2.61243e9 7.17759e9i −0.249141 0.684509i
\(321\) 0 0
\(322\) −6.07329e8 3.44433e9i −0.0564937 0.320392i
\(323\) 5.09239e9i 0.467856i
\(324\) 0 0
\(325\) −1.36725e8 −0.0122550
\(326\) 3.40279e9 6.00004e8i 0.301276 0.0531232i
\(327\) 0 0
\(328\) 6.01793e9 2.19035e9i 0.519938 0.189242i
\(329\) 3.14499e9 3.74806e9i 0.268433 0.319906i
\(330\) 0 0
\(331\) 1.41536e10 + 5.15148e9i 1.17911 + 0.429161i 0.855888 0.517162i \(-0.173011\pi\)
0.323223 + 0.946323i \(0.395234\pi\)
\(332\) −9.86210e9 + 5.69389e9i −0.811740 + 0.468658i
\(333\) 0 0
\(334\) 4.05123e8 7.01694e8i 0.0325538 0.0563848i
\(335\) −2.37038e9 2.82490e9i −0.188208 0.224297i
\(336\) 0 0
\(337\) −9.05604e8 + 5.13594e9i −0.0702132 + 0.398199i 0.929365 + 0.369162i \(0.120355\pi\)
−0.999578 + 0.0290371i \(0.990756\pi\)
\(338\) 2.56078e9 + 4.51535e8i 0.196203 + 0.0345959i
\(339\) 0 0
\(340\) −3.10581e9 + 2.60609e9i −0.232413 + 0.195017i
\(341\) 1.01300e10 + 5.84858e9i 0.749193 + 0.432547i
\(342\) 0 0
\(343\) −1.10203e10 1.90877e10i −0.796188 1.37904i
\(344\) 8.81538e8 2.42201e9i 0.0629517 0.172958i
\(345\) 0 0
\(346\) 9.64890e8 + 8.09639e8i 0.0673246 + 0.0564920i
\(347\) −5.88556e9 1.61705e10i −0.405948 1.11533i −0.959301 0.282386i \(-0.908874\pi\)
0.553353 0.832947i \(-0.313348\pi\)
\(348\) 0 0
\(349\) 1.33644e9 + 7.57932e9i 0.0900840 + 0.510891i 0.996143 + 0.0877409i \(0.0279648\pi\)
−0.906059 + 0.423151i \(0.860924\pi\)
\(350\) 3.63855e8i 0.0242469i
\(351\) 0 0
\(352\) −1.08599e10 −0.707387
\(353\) −1.16353e10 + 2.05161e9i −0.749337 + 0.132128i −0.535259 0.844688i \(-0.679786\pi\)
−0.214078 + 0.976817i \(0.568675\pi\)
\(354\) 0 0
\(355\) 2.01161e10 7.32165e9i 1.26657 0.460995i
\(356\) −6.55309e8 + 7.80966e8i −0.0407987 + 0.0486219i
\(357\) 0 0
\(358\) 6.28850e8 + 2.28883e8i 0.0382838 + 0.0139342i
\(359\) 7.89075e9 4.55572e9i 0.475051 0.274271i −0.243301 0.969951i \(-0.578230\pi\)
0.718352 + 0.695680i \(0.244897\pi\)
\(360\) 0 0
\(361\) −8.75319e9 + 1.51610e10i −0.515392 + 0.892684i
\(362\) 1.29251e9 + 1.54036e9i 0.0752662 + 0.0896988i
\(363\) 0 0
\(364\) −8.89589e8 + 5.04511e9i −0.0506739 + 0.287386i
\(365\) −8.19542e9 1.44507e9i −0.461742 0.0814176i
\(366\) 0 0
\(367\) 4.80686e9 4.03344e9i 0.264971 0.222337i −0.500616 0.865669i \(-0.666893\pi\)
0.765587 + 0.643333i \(0.222449\pi\)
\(368\) 1.28341e10 + 7.40979e9i 0.699802 + 0.404031i
\(369\) 0 0
\(370\) 1.54668e9 + 2.67893e9i 0.0825265 + 0.142940i
\(371\) −1.82663e10 + 5.01862e10i −0.964172 + 2.64904i
\(372\) 0 0
\(373\) 1.92922e10 + 1.61881e10i 0.996660 + 0.836297i 0.986518 0.163651i \(-0.0523272\pi\)
0.0101421 + 0.999949i \(0.496772\pi\)
\(374\) 5.48670e8 + 1.50746e9i 0.0280430 + 0.0770476i
\(375\) 0 0
\(376\) −3.41049e8 1.93419e9i −0.0170634 0.0967713i
\(377\) 1.20987e9i 0.0598924i
\(378\) 0 0
\(379\) −4.03794e9 −0.195705 −0.0978527 0.995201i \(-0.531197\pi\)
−0.0978527 + 0.995201i \(0.531197\pi\)
\(380\) 2.70423e10 4.76828e9i 1.29691 0.228680i
\(381\) 0 0
\(382\) −4.97594e8 + 1.81109e8i −0.0233680 + 0.00850526i
\(383\) 1.68071e10 2.00299e10i 0.781082 0.930857i −0.217900 0.975971i \(-0.569921\pi\)
0.998982 + 0.0451138i \(0.0143650\pi\)
\(384\) 0 0
\(385\) −4.13947e10 1.50665e10i −1.88409 0.685754i
\(386\) −3.77755e8 + 2.18097e8i −0.0170161 + 0.00982427i
\(387\) 0 0
\(388\) 1.73736e10 3.00920e10i 0.766590 1.32777i
\(389\) −5.81049e8 6.92467e8i −0.0253755 0.0302413i 0.753207 0.657783i \(-0.228506\pi\)
−0.778583 + 0.627542i \(0.784061\pi\)
\(390\) 0 0
\(391\) 1.23083e9 6.98036e9i 0.0526611 0.298656i
\(392\) −1.80794e10 3.18789e9i −0.765668 0.135008i
\(393\) 0 0
\(394\) 1.53322e8 1.28652e8i 0.00636238 0.00533867i
\(395\) 2.33496e10 + 1.34809e10i 0.959161 + 0.553772i
\(396\) 0 0
\(397\) −1.45975e10 2.52837e10i −0.587648 1.01784i −0.994540 0.104360i \(-0.966721\pi\)
0.406892 0.913476i \(-0.366613\pi\)
\(398\) −7.12892e8 + 1.95865e9i −0.0284113 + 0.0780594i
\(399\) 0 0
\(400\) 1.18104e9 + 9.91012e8i 0.0461344 + 0.0387114i
\(401\) 7.29919e9 + 2.00544e10i 0.282291 + 0.775589i 0.997088 + 0.0762567i \(0.0242968\pi\)
−0.714797 + 0.699332i \(0.753481\pi\)
\(402\) 0 0
\(403\) −5.81096e8 3.29556e9i −0.0220307 0.124942i
\(404\) 2.91756e10i 1.09520i
\(405\) 0 0
\(406\) −3.21973e9 −0.118499
\(407\) −2.72681e10 + 4.80811e9i −0.993752 + 0.175225i
\(408\) 0 0
\(409\) −4.86243e10 + 1.76978e10i −1.73764 + 0.632450i −0.999127 0.0417856i \(-0.986695\pi\)
−0.738516 + 0.674236i \(0.764473\pi\)
\(410\) 4.95383e9 5.90375e9i 0.175310 0.208926i
\(411\) 0 0
\(412\) 8.34869e9 + 3.03868e9i 0.289754 + 0.105462i
\(413\) −7.65648e10 + 4.42047e10i −2.63165 + 1.51939i
\(414\) 0 0
\(415\) −1.40070e10 + 2.42609e10i −0.472229 + 0.817925i
\(416\) 1.99706e9 + 2.38001e9i 0.0666835 + 0.0794703i
\(417\) 0 0
\(418\) 1.88669e9 1.06999e10i 0.0618009 0.350490i
\(419\) −3.61100e10 6.36717e9i −1.17158 0.206581i −0.446202 0.894932i \(-0.647224\pi\)
−0.725378 + 0.688351i \(0.758335\pi\)
\(420\) 0 0
\(421\) −6.06361e9 + 5.08797e9i −0.193020 + 0.161963i −0.734176 0.678959i \(-0.762431\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(422\) −4.74375e9 2.73881e9i −0.149579 0.0863597i
\(423\) 0 0
\(424\) 1.07192e10 + 1.85662e10i 0.331665 + 0.574460i
\(425\) 2.52205e8 6.92927e8i 0.00773032 0.0212389i
\(426\) 0 0
\(427\) −4.68170e10 3.92841e10i −1.40829 1.18170i
\(428\) 1.56506e10 + 4.29997e10i 0.466398 + 1.28142i
\(429\) 0 0
\(430\) −5.38607e8 3.05459e9i −0.0157543 0.0893469i
\(431\) 5.13707e10i 1.48870i −0.667791 0.744349i \(-0.732760\pi\)
0.667791 0.744349i \(-0.267240\pi\)
\(432\) 0 0
\(433\) −1.87525e9 −0.0533468 −0.0266734 0.999644i \(-0.508491\pi\)
−0.0266734 + 0.999644i \(0.508491\pi\)
\(434\) 8.77022e9 1.54643e9i 0.247202 0.0435884i
\(435\) 0 0
\(436\) −2.43292e10 + 8.85511e9i −0.673259 + 0.245046i
\(437\) −3.08578e10 + 3.67748e10i −0.846133 + 1.00838i
\(438\) 0 0
\(439\) −1.43069e10 5.20730e9i −0.385202 0.140202i 0.142158 0.989844i \(-0.454596\pi\)
−0.527360 + 0.849642i \(0.676818\pi\)
\(440\) −1.53139e10 + 8.84146e9i −0.408577 + 0.235892i
\(441\) 0 0
\(442\) 2.29470e8 3.97454e8i 0.00601225 0.0104135i
\(443\) −2.80078e10 3.33784e10i −0.727217 0.866663i 0.268094 0.963393i \(-0.413606\pi\)
−0.995311 + 0.0967298i \(0.969162\pi\)
\(444\) 0 0
\(445\) −4.35497e8 + 2.46983e9i −0.0111057 + 0.0629835i
\(446\) −3.20198e8 5.64596e7i −0.00809245 0.00142692i
\(447\) 0 0
\(448\) 3.98749e10 3.34590e10i 0.989891 0.830617i
\(449\) 4.37682e10 + 2.52696e10i 1.07690 + 0.621746i 0.930057 0.367415i \(-0.119757\pi\)
0.146838 + 0.989161i \(0.453090\pi\)
\(450\) 0 0
\(451\) 3.44920e10 + 5.97418e10i 0.833703 + 1.44402i
\(452\) 2.44832e10 6.72669e10i 0.586562 1.61156i
\(453\) 0 0
\(454\) 8.22120e9 + 6.89840e9i 0.193514 + 0.162377i
\(455\) 4.31030e9 + 1.18425e10i 0.100569 + 0.276310i
\(456\) 0 0
\(457\) 6.63960e9 + 3.76550e10i 0.152222 + 0.863293i 0.961282 + 0.275567i \(0.0888656\pi\)
−0.809060 + 0.587726i \(0.800023\pi\)
\(458\) 4.46605e9i 0.101499i
\(459\) 0 0
\(460\) 3.82205e10 0.853621
\(461\) 5.77035e10 1.01747e10i 1.27761 0.225277i 0.506646 0.862154i \(-0.330885\pi\)
0.770965 + 0.636877i \(0.219774\pi\)
\(462\) 0 0
\(463\) 6.30183e10 2.29368e10i 1.37133 0.499124i 0.451793 0.892123i \(-0.350785\pi\)
0.919539 + 0.392999i \(0.128562\pi\)
\(464\) 8.76938e9 1.04509e10i 0.189190 0.225467i
\(465\) 0 0
\(466\) −2.24235e9 8.16148e8i −0.0475510 0.0173071i
\(467\) 7.50725e9 4.33431e9i 0.157839 0.0911281i −0.419000 0.907986i \(-0.637619\pi\)
0.576839 + 0.816858i \(0.304286\pi\)
\(468\) 0 0
\(469\) 1.25653e10 2.17637e10i 0.259705 0.449823i
\(470\) −1.51924e9 1.81056e9i −0.0311340 0.0371041i
\(471\) 0 0
\(472\) −6.16259e9 + 3.49498e10i −0.124164 + 0.704168i
\(473\) 2.73418e10 + 4.82110e9i 0.546239 + 0.0963167i
\(474\) 0 0
\(475\) −3.82583e9 + 3.21026e9i −0.0751539 + 0.0630616i
\(476\) −2.39279e10 1.38148e10i −0.466097 0.269101i
\(477\) 0 0
\(478\) −3.58827e9 6.21507e9i −0.0687344 0.119051i
\(479\) −1.03071e10 + 2.83185e10i −0.195792 + 0.537933i −0.998273 0.0587442i \(-0.981290\pi\)
0.802482 + 0.596677i \(0.203513\pi\)
\(480\) 0 0
\(481\) 6.06813e9 + 5.09176e9i 0.113364 + 0.0951235i
\(482\) −1.83592e9 5.04414e9i −0.0340146 0.0934543i
\(483\) 0 0
\(484\) −4.31970e9 2.44982e10i −0.0787176 0.446429i
\(485\) 8.54785e10i 1.54486i
\(486\) 0 0
\(487\) 2.41067e10 0.428570 0.214285 0.976771i \(-0.431258\pi\)
0.214285 + 0.976771i \(0.431258\pi\)
\(488\) −2.41599e10 + 4.26005e9i −0.426007 + 0.0751165i
\(489\) 0 0
\(490\) −2.07602e10 + 7.55609e9i −0.360120 + 0.131073i
\(491\) −3.30867e10 + 3.94312e10i −0.569282 + 0.678444i −0.971483 0.237108i \(-0.923801\pi\)
0.402202 + 0.915551i \(0.368245\pi\)
\(492\) 0 0
\(493\) −6.13166e9 2.23174e9i −0.103798 0.0377795i
\(494\) −2.69189e9 + 1.55416e9i −0.0452011 + 0.0260969i
\(495\) 0 0
\(496\) −1.88674e10 + 3.26793e10i −0.311735 + 0.539940i
\(497\) 9.37729e10 + 1.11754e11i 1.53692 + 1.83163i
\(498\) 0 0
\(499\) −5.22963e9 + 2.96587e10i −0.0843468 + 0.478355i 0.913149 + 0.407626i \(0.133643\pi\)
−0.997496 + 0.0707282i \(0.977468\pi\)
\(500\) 6.07955e10 + 1.07199e10i 0.972728 + 0.171518i
\(501\) 0 0
\(502\) 1.68954e9 1.41769e9i 0.0266044 0.0223238i
\(503\) 1.24574e10 + 7.19230e9i 0.194606 + 0.112356i 0.594137 0.804364i \(-0.297494\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(504\) 0 0
\(505\) −3.58862e10 6.21567e10i −0.551774 0.955701i
\(506\) 5.17233e9 1.42109e10i 0.0789013 0.216779i
\(507\) 0 0
\(508\) −5.44450e10 4.56848e10i −0.817529 0.685989i
\(509\) −2.93880e10 8.07429e10i −0.437824 1.20291i −0.940905 0.338671i \(-0.890023\pi\)
0.503081 0.864239i \(-0.332200\pi\)
\(510\) 0 0
\(511\) −9.84787e9 5.58500e10i −0.144430 0.819105i
\(512\) 5.92477e10i 0.862168i
\(513\) 0 0
\(514\) −1.23932e10 −0.177554
\(515\) 2.15239e10 3.79524e9i 0.305979 0.0539524i
\(516\) 0 0
\(517\) 1.98801e10 7.23577e9i 0.278264 0.101280i
\(518\) −1.35503e10 + 1.61487e10i −0.188205 + 0.224294i
\(519\) 0 0
\(520\) 4.75375e9 + 1.73022e9i 0.0650164 + 0.0236640i
\(521\) −3.91268e8 + 2.25899e8i −0.00531036 + 0.00306594i −0.502653 0.864488i \(-0.667643\pi\)
0.497342 + 0.867554i \(0.334309\pi\)
\(522\) 0 0
\(523\) 3.63173e10 6.29034e10i 0.485408 0.840751i −0.514452 0.857519i \(-0.672004\pi\)
0.999859 + 0.0167684i \(0.00533780\pi\)
\(524\) 2.36931e10 + 2.82363e10i 0.314265 + 0.374526i
\(525\) 0 0
\(526\) 1.38309e9 7.84388e9i 0.0180679 0.102468i
\(527\) 1.77739e10 + 3.13402e9i 0.230431 + 0.0406312i
\(528\) 0 0
\(529\) 8.80320e9 7.38676e9i 0.112413 0.0943260i
\(530\) 2.23427e10 + 1.28996e10i 0.283160 + 0.163483i
\(531\) 0 0
\(532\) 9.35652e10 + 1.62060e11i 1.16807 + 2.02315i
\(533\) 6.74988e9 1.85451e10i 0.0836349 0.229785i
\(534\) 0 0
\(535\) 8.62324e10 + 7.23576e10i 1.05258 + 0.883220i
\(536\) −3.45023e9 9.47943e9i −0.0418012 0.114848i
\(537\) 0 0
\(538\) −1.62291e9 9.20397e9i −0.0193716 0.109862i
\(539\) 1.97751e11i 2.34296i
\(540\) 0 0
\(541\) 1.03907e11 1.21298 0.606491 0.795091i \(-0.292577\pi\)
0.606491 + 0.795091i \(0.292577\pi\)
\(542\) −1.56453e10 + 2.75870e9i −0.181296 + 0.0319674i
\(543\) 0 0
\(544\) −1.57458e10 + 5.73100e9i −0.179791 + 0.0654387i
\(545\) −4.09399e10 + 4.87902e10i −0.464045 + 0.553028i
\(546\) 0 0
\(547\) 2.07308e10 + 7.54538e9i 0.231561 + 0.0842814i 0.455195 0.890392i \(-0.349570\pi\)
−0.223633 + 0.974673i \(0.571792\pi\)
\(548\) −1.40020e11 + 8.08405e10i −1.55263 + 0.896410i
\(549\) 0 0
\(550\) 7.86646e8 1.36251e9i 0.00859664 0.0148898i
\(551\) 2.84073e10 + 3.38545e10i 0.308193 + 0.367291i
\(552\) 0 0
\(553\) −3.19060e10 + 1.80948e11i −0.341170 + 1.93487i
\(554\) 6.43075e9 + 1.13391e9i 0.0682688 + 0.0120376i
\(555\) 0 0
\(556\) 9.81633e10 8.23688e10i 1.02719 0.861913i
\(557\) 1.00807e11 + 5.82008e10i 1.04729 + 0.604656i 0.921891 0.387450i \(-0.126644\pi\)
0.125404 + 0.992106i \(0.459977\pi\)
\(558\) 0 0
\(559\) −3.97139e9 6.87865e9i −0.0406720 0.0704459i
\(560\) 4.86040e10 1.33538e11i 0.494219 1.35786i
\(561\) 0 0
\(562\) 3.06655e9 + 2.57314e9i 0.0307401 + 0.0257940i
\(563\) 1.04359e10 + 2.86725e10i 0.103872 + 0.285386i 0.980731 0.195361i \(-0.0625879\pi\)
−0.876860 + 0.480747i \(0.840366\pi\)
\(564\) 0 0
\(565\) −3.05790e10 1.73422e11i −0.300074 1.70181i
\(566\) 3.18284e10i 0.310134i
\(567\) 0 0
\(568\) 5.85604e10 0.562615
\(569\) 7.50849e10 1.32395e10i 0.716314 0.126305i 0.196400 0.980524i \(-0.437075\pi\)
0.519914 + 0.854219i \(0.325964\pi\)
\(570\) 0 0
\(571\) −1.53807e11 + 5.59810e10i −1.44687 + 0.526619i −0.941716 0.336408i \(-0.890788\pi\)
−0.505157 + 0.863027i \(0.668566\pi\)
\(572\) −1.42386e10 + 1.69689e10i −0.133010 + 0.158515i
\(573\) 0 0
\(574\) 4.93528e10 + 1.79630e10i 0.454637 + 0.165474i
\(575\) −6.02015e9 + 3.47573e9i −0.0550726 + 0.0317962i
\(576\) 0 0
\(577\) −3.03217e10 + 5.25187e10i −0.273559 + 0.473818i −0.969770 0.244019i \(-0.921534\pi\)
0.696212 + 0.717836i \(0.254867\pi\)
\(578\) −1.31701e10 1.56955e10i −0.117998 0.140625i
\(579\) 0 0
\(580\) 6.10987e9 3.46508e10i 0.0539909 0.306197i
\(581\) −1.88009e11 3.31511e10i −1.64996 0.290933i
\(582\) 0 0
\(583\) −1.76902e11 + 1.48439e11i −1.53130 + 1.28491i
\(584\) −1.97150e10 1.13825e10i −0.169491 0.0978554i
\(585\) 0 0
\(586\) −8.42431e8 1.45913e9i −0.00714404 0.0123738i
\(587\) −2.20481e10 + 6.05765e10i −0.185703 + 0.510214i −0.997253 0.0740686i \(-0.976402\pi\)
0.811551 + 0.584282i \(0.198624\pi\)
\(588\) 0 0
\(589\) −9.36389e10 7.85724e10i −0.778028 0.652843i
\(590\) 1.46069e10 + 4.01320e10i 0.120545 + 0.331194i
\(591\) 0 0
\(592\) −1.55108e10 8.79663e10i −0.126284 0.716192i
\(593\) 8.45828e10i 0.684011i 0.939698 + 0.342006i \(0.111106\pi\)
−0.939698 + 0.342006i \(0.888894\pi\)
\(594\) 0 0
\(595\) −6.79690e10 −0.542304
\(596\) −1.26310e11 + 2.22719e10i −1.00105 + 0.176511i
\(597\) 0 0
\(598\) −4.06553e9 + 1.47973e9i −0.0317916 + 0.0115712i
\(599\) −1.36255e10 + 1.62383e10i −0.105839 + 0.126134i −0.816364 0.577538i \(-0.804013\pi\)
0.710524 + 0.703673i \(0.248458\pi\)
\(600\) 0 0
\(601\) 8.36696e9 + 3.04533e9i 0.0641313 + 0.0233419i 0.373887 0.927474i \(-0.378025\pi\)
−0.309755 + 0.950816i \(0.600247\pi\)
\(602\) 1.83056e10 1.05688e10i 0.139380 0.0804708i
\(603\) 0 0
\(604\) −8.25458e10 + 1.42973e11i −0.620222 + 1.07426i
\(605\) −3.93357e10 4.68785e10i −0.293606 0.349907i
\(606\) 0 0
\(607\) 3.13171e10 1.77608e11i 0.230689 1.30830i −0.620817 0.783955i \(-0.713199\pi\)
0.851506 0.524345i \(-0.175690\pi\)
\(608\) 1.11764e11 + 1.97070e10i 0.817874 + 0.144213i
\(609\) 0 0
\(610\) −2.26157e10 + 1.89769e10i −0.163340 + 0.137058i
\(611\) −5.24156e9 3.02621e9i −0.0376093 0.0217138i
\(612\) 0 0
\(613\) −9.37926e10 1.62454e11i −0.664243 1.15050i −0.979490 0.201492i \(-0.935421\pi\)
0.315248 0.949009i \(-0.397912\pi\)
\(614\) 8.39590e8 2.30675e9i 0.00590736 0.0162303i
\(615\) 0 0
\(616\) −9.23124e10 7.74593e10i −0.641117 0.537961i
\(617\) −6.58893e9 1.81029e10i −0.0454647 0.124913i 0.914882 0.403720i \(-0.132283\pi\)
−0.960347 + 0.278807i \(0.910061\pi\)
\(618\) 0 0
\(619\) 3.75319e10 + 2.12854e11i 0.255646 + 1.44984i 0.794410 + 0.607382i \(0.207780\pi\)
−0.538764 + 0.842457i \(0.681109\pi\)
\(620\) 9.73200e10i 0.658621i
\(621\) 0 0
\(622\) 4.78252e10 0.319518
\(623\) −1.68313e10 + 2.96782e9i −0.111729 + 0.0197009i
\(624\) 0 0
\(625\) 1.32835e11 4.83479e10i 0.870547 0.316853i
\(626\) −1.33620e10 + 1.59242e10i −0.0870107 + 0.103695i
\(627\) 0 0
\(628\) −1.34232e11 4.88563e10i −0.863011 0.314110i
\(629\) −3.69987e10 + 2.13612e10i −0.236365 + 0.136466i
\(630\) 0 0
\(631\) 1.52109e11 2.63460e11i 0.959482 1.66187i 0.235722 0.971820i \(-0.424254\pi\)
0.723760 0.690052i \(-0.242412\pi\)
\(632\) 4.74093e10 + 5.65002e10i 0.297163 + 0.354145i
\(633\) 0 0
\(634\) 6.54638e9 3.71263e10i 0.0405176 0.229787i
\(635\) −1.72184e11 3.03607e10i −1.05900 0.186731i
\(636\) 0 0
\(637\) −4.33381e10 + 3.63650e10i −0.263216 + 0.220865i
\(638\) −1.20568e10 6.96097e9i −0.0727692 0.0420133i
\(639\) 0 0
\(640\) −5.97467e10 1.03484e11i −0.356118 0.616814i
\(641\) −7.60783e10 + 2.09023e11i −0.450639 + 1.23812i 0.481637 + 0.876371i \(0.340042\pi\)
−0.932276 + 0.361749i \(0.882180\pi\)
\(642\) 0 0
\(643\) 2.07474e11 + 1.74091e11i 1.21372 + 1.01844i 0.999129 + 0.0417321i \(0.0132876\pi\)
0.214595 + 0.976703i \(0.431157\pi\)
\(644\) 8.90842e10 + 2.44757e11i 0.517913 + 1.42295i
\(645\) 0 0
\(646\) −2.91106e9 1.65095e10i −0.0167156 0.0947988i
\(647\) 2.00279e9i 0.0114293i −0.999984 0.00571463i \(-0.998181\pi\)
0.999984 0.00571463i \(-0.00181903\pi\)
\(648\) 0 0
\(649\) −3.82278e11 −2.15477
\(650\) −4.43259e8 + 7.81586e7i −0.00248316 + 0.000437848i
\(651\) 0 0
\(652\) −2.41805e11 + 8.80098e10i −1.33806 + 0.487013i
\(653\) 1.92647e11 2.29588e11i 1.05952 1.26269i 0.0959083 0.995390i \(-0.469424\pi\)
0.963614 0.267299i \(-0.0861311\pi\)
\(654\) 0 0
\(655\) 8.52072e10 + 3.10129e10i 0.462925 + 0.168491i
\(656\) −1.92726e11 + 1.11270e11i −1.04070 + 0.600846i
\(657\) 0 0
\(658\) 8.05344e9 1.39490e10i 0.0429614 0.0744112i
\(659\) −1.37639e11 1.64032e11i −0.729794 0.869734i 0.265749 0.964042i \(-0.414381\pi\)
−0.995543 + 0.0943079i \(0.969936\pi\)
\(660\) 0 0
\(661\) 3.06780e10 1.73984e11i 0.160702 0.911386i −0.792684 0.609633i \(-0.791317\pi\)
0.953386 0.301753i \(-0.0975719\pi\)
\(662\) 4.88305e10 + 8.61014e9i 0.254249 + 0.0448310i
\(663\) 0 0
\(664\) −5.87052e10 + 4.92595e10i −0.301998 + 0.253406i
\(665\) 3.98668e11 + 2.30171e11i 2.03857 + 1.17697i
\(666\) 0 0
\(667\) 3.07565e10 + 5.32718e10i 0.155394 + 0.269150i
\(668\) −2.06378e10 + 5.67020e10i −0.103647 + 0.284769i
\(669\) 0 0
\(670\) −9.29957e9 7.80327e9i −0.0461491 0.0387237i
\(671\) −9.03821e10 2.48323e11i −0.445853 1.22497i
\(672\) 0 0
\(673\) 5.10778e10 + 2.89676e11i 0.248984 + 1.41206i 0.811055 + 0.584970i \(0.198894\pi\)
−0.562071 + 0.827089i \(0.689995\pi\)
\(674\) 1.71683e10i 0.0831932i
\(675\) 0 0
\(676\) −1.93650e11 −0.927320
\(677\) −1.66165e11 + 2.92994e10i −0.791015 + 0.139477i −0.554537 0.832159i \(-0.687104\pi\)
−0.236479 + 0.971637i \(0.575993\pi\)
\(678\) 0 0
\(679\) 5.47388e11 1.99233e11i 2.57523 0.937307i
\(680\) −1.75377e10 + 2.09006e10i −0.0820232 + 0.0977515i
\(681\) 0 0
\(682\) 3.61848e10 + 1.31702e10i 0.167259 + 0.0608771i
\(683\) −5.30164e10 + 3.06090e10i −0.243628 + 0.140659i −0.616843 0.787086i \(-0.711589\pi\)
0.373215 + 0.927745i \(0.378255\pi\)
\(684\) 0 0
\(685\) −1.98868e11 + 3.44450e11i −0.903240 + 1.56446i
\(686\) −4.66389e10 5.55821e10i −0.210597 0.250980i
\(687\) 0 0
\(688\) −1.55527e10 + 8.82040e10i −0.0694150 + 0.393672i
\(689\) 6.50620e10 + 1.14722e10i 0.288703 + 0.0509060i
\(690\) 0 0
\(691\) 2.97075e11 2.49275e11i 1.30303 1.09337i 0.313414 0.949616i \(-0.398527\pi\)
0.989613 0.143754i \(-0.0459173\pi\)
\(692\) −8.12362e10 4.69018e10i −0.354263 0.204534i
\(693\) 0 0
\(694\) −2.83247e10 4.90599e10i −0.122103 0.211489i
\(695\) 1.07816e11 2.96222e11i 0.462109 1.26963i
\(696\) 0 0
\(697\) 8.15367e10 + 6.84174e10i 0.345479 + 0.289892i
\(698\) 8.66543e9 + 2.38081e10i 0.0365063 + 0.100300i
\(699\) 0 0
\(700\) 4.70537e9 + 2.66855e10i 0.0195976 + 0.111143i
\(701\) 5.50796e10i 0.228096i −0.993475 0.114048i \(-0.963618\pi\)
0.993475 0.114048i \(-0.0363818\pi\)
\(702\) 0 0
\(703\) 2.89352e11 1.18469
\(704\) 2.21655e11 3.90838e10i 0.902375 0.159113i
\(705\) 0 0
\(706\) −3.65485e10 + 1.33026e10i −0.147113 + 0.0535447i
\(707\) 3.14396e11 3.74682e11i 1.25834 1.49964i
\(708\) 0 0
\(709\) 9.30404e10 + 3.38639e10i 0.368202 + 0.134015i 0.519493 0.854475i \(-0.326121\pi\)
−0.151291 + 0.988489i \(0.548343\pi\)
\(710\) 6.10306e10 3.52360e10i 0.240167 0.138661i
\(711\) 0 0
\(712\) −3.43030e9 + 5.94145e9i −0.0133479 + 0.0231192i
\(713\) −1.09364e11 1.30335e11i −0.423171 0.504316i
\(714\) 0 0
\(715\) −9.46253e9 + 5.36646e10i −0.0362062 + 0.205336i
\(716\) −4.90804e10 8.65420e9i −0.186748 0.0329287i
\(717\) 0 0
\(718\) 2.29774e10 1.92803e10i 0.0864576 0.0725465i
\(719\) −2.21541e11 1.27907e11i −0.828968 0.478605i 0.0245313 0.999699i \(-0.492191\pi\)
−0.853499 + 0.521094i \(0.825524\pi\)
\(720\) 0 0
\(721\) 7.44718e10 + 1.28989e11i 0.275582 + 0.477322i
\(722\) −1.97109e10 + 5.41553e10i −0.0725368 + 0.199293i
\(723\) 0 0
\(724\) −1.14714e11 9.62564e10i −0.417505 0.350329i
\(725\) 2.18874e9 + 6.01351e9i 0.00792213 + 0.0217659i
\(726\) 0 0
\(727\) 1.05428e10 + 5.97912e10i 0.0377414 + 0.214042i 0.997846 0.0655987i \(-0.0208957\pi\)
−0.960105 + 0.279641i \(0.909785\pi\)
\(728\) 3.44749e10i 0.122738i
\(729\) 0 0
\(730\) −2.73955e10 −0.0964689
\(731\) 4.21870e10 7.43871e9i 0.147744 0.0260512i
\(732\) 0 0
\(733\) −4.73428e10 + 1.72314e10i −0.163998 + 0.0596903i −0.422714 0.906263i \(-0.638923\pi\)
0.258717 + 0.965953i \(0.416700\pi\)
\(734\) 1.32781e10 1.58242e10i 0.0457457 0.0545176i
\(735\) 0 0
\(736\) 1.48436e11 + 5.40263e10i 0.505858 + 0.184117i
\(737\) 9.41051e10 5.43316e10i 0.318965 0.184155i
\(738\) 0 0
\(739\) 2.34907e11 4.06871e11i 0.787624 1.36420i −0.139796 0.990180i \(-0.544645\pi\)
0.927419 0.374024i \(-0.122022\pi\)
\(740\) −1.48079e11 1.76473e11i −0.493817 0.588508i
\(741\) 0 0
\(742\) −3.05301e10 + 1.73145e11i −0.100719 + 0.571207i
\(743\) 5.04740e11 + 8.89993e10i 1.65620 + 0.292033i 0.922083 0.386991i \(-0.126486\pi\)
0.734116 + 0.679024i \(0.237597\pi\)
\(744\) 0 0
\(745\) −2.41701e11 + 2.02811e11i −0.784608 + 0.658364i
\(746\) 7.17990e10 + 4.14532e10i 0.231827 + 0.133845i
\(747\) 0 0
\(748\) −5.97344e10 1.03463e11i −0.190818 0.330506i
\(749\) −2.62374e11 + 7.20866e11i −0.833668 + 2.29049i
\(750\) 0 0
\(751\) 2.12965e10 + 1.78699e10i 0.0669498 + 0.0561776i 0.675649 0.737224i \(-0.263864\pi\)
−0.608699 + 0.793401i \(0.708308\pi\)
\(752\) 2.33424e10 + 6.41327e10i 0.0729918 + 0.200543i
\(753\) 0 0
\(754\) 6.91619e8 + 3.92237e9i 0.00213984 + 0.0121356i
\(755\) 4.06127e11i 1.24990i
\(756\) 0 0
\(757\) −3.59044e11 −1.09336 −0.546681 0.837341i \(-0.684109\pi\)
−0.546681 + 0.837341i \(0.684109\pi\)
\(758\) −1.30909e10 + 2.30828e9i −0.0396546 + 0.00699218i
\(759\) 0 0
\(760\) 1.73645e11 6.32015e10i 0.520484 0.189441i
\(761\) −4.75589e10 + 5.66785e10i −0.141806 + 0.168997i −0.832273 0.554367i \(-0.812961\pi\)
0.690467 + 0.723364i \(0.257405\pi\)
\(762\) 0 0
\(763\) −4.07866e11 1.48451e11i −1.20343 0.438011i
\(764\) 3.41519e10 1.97176e10i 0.100240 0.0578737i
\(765\) 0 0
\(766\) 4.30381e10 7.45443e10i 0.125008 0.216521i
\(767\) 7.02981e10 + 8.37780e10i 0.203124 + 0.242074i
\(768\) 0 0
\(769\) 6.71441e10 3.80793e11i 0.192000 1.08889i −0.724626 0.689143i \(-0.757987\pi\)
0.916626 0.399746i \(-0.130902\pi\)
\(770\) −1.42814e11 2.51819e10i −0.406263 0.0716351i
\(771\) 0 0
\(772\) 2.48845e10 2.08806e10i 0.0700583 0.0587859i
\(773\) 3.24557e11 + 1.87383e11i 0.909020 + 0.524823i 0.880116 0.474759i \(-0.157465\pi\)
0.0289045 + 0.999582i \(0.490798\pi\)
\(774\) 0 0
\(775\) −8.85018e9 1.53290e10i −0.0245327 0.0424919i
\(776\) 7.99752e10 2.19730e11i 0.220551 0.605958i
\(777\) 0 0
\(778\) −2.27960e9 1.91281e9i −0.00622214 0.00522100i
\(779\) −2.46559e11 6.77416e11i −0.669532 1.83952i
\(780\) 0 0
\(781\) 1.09537e11 + 6.21215e11i 0.294413 + 1.66970i
\(782\) 2.33338e10i 0.0623963i
\(783\) 0 0
\(784\) 6.37941e11 1.68856
\(785\) −3.46065e11 + 6.10206e10i −0.911337 + 0.160693i
\(786\) 0 0
\(787\) 1.64892e11 6.00158e10i 0.429834 0.156447i −0.118038 0.993009i \(-0.537660\pi\)
0.547872 + 0.836562i \(0.315438\pi\)
\(788\) −9.58105e9 + 1.14183e10i −0.0248490 + 0.0296139i
\(789\) 0 0
\(790\) 8.34054e10 + 3.03571e10i 0.214134 + 0.0779384i
\(791\) 1.03929e12 6.00032e11i 2.65479 1.53274i
\(792\) 0 0
\(793\) −3.78005e10 + 6.54723e10i −0.0955883 + 0.165564i
\(794\) −6.17783e10 7.36245e10i −0.155437 0.185242i
\(795\) 0 0
\(796\) 2.69549e10 1.52869e11i 0.0671406 0.380773i
\(797\) −1.75652e10 3.09722e9i −0.0435331 0.00767606i 0.151839 0.988405i \(-0.451480\pi\)
−0.195372 + 0.980729i \(0.562592\pi\)
\(798\) 0 0
\(799\) 2.50057e10 2.09822e10i 0.0613552 0.0514831i
\(800\) 1.42318e10 + 8.21673e9i 0.0347456 + 0.0200604i
\(801\) 0 0
\(802\) 3.51279e10 + 6.08433e10i 0.0849092 + 0.147067i
\(803\) 8.38696e10 2.30430e11i 0.201717 0.554213i
\(804\) 0 0
\(805\) 4.90840e11 + 4.11863e11i 1.16884 + 0.980775i
\(806\) −3.76781e9 1.03520e10i −0.00892788 0.0245291i
\(807\) 0 0
\(808\) −3.40937e10 1.93355e11i −0.0799887 0.453638i
\(809\) 1.94607e11i 0.454323i −0.973857 0.227161i \(-0.927056\pi\)
0.973857 0.227161i \(-0.0729445\pi\)
\(810\) 0 0
\(811\) −8.64952e10 −0.199944 −0.0999720 0.994990i \(-0.531875\pi\)
−0.0999720 + 0.994990i \(0.531875\pi\)
\(812\) 2.36138e11 4.16375e10i 0.543177 0.0957768i
\(813\) 0 0
\(814\) −8.56543e10 + 3.11756e10i −0.195097 + 0.0710097i
\(815\) −4.06896e11 + 4.84920e11i −0.922259 + 1.09911i
\(816\) 0 0
\(817\) −2.72636e11 9.92315e10i −0.611921 0.222721i
\(818\) −1.47522e11 + 8.51721e10i −0.329492 + 0.190232i
\(819\) 0 0
\(820\) −2.86972e11 + 4.97050e11i −0.634722 + 1.09937i
\(821\) 1.63679e11 + 1.95065e11i 0.360264 + 0.429346i 0.915482 0.402359i \(-0.131810\pi\)
−0.555218 + 0.831705i \(0.687365\pi\)
\(822\) 0 0
\(823\) 4.26800e10 2.42050e11i 0.0930304 0.527602i −0.902303 0.431103i \(-0.858125\pi\)
0.995333 0.0964986i \(-0.0307643\pi\)
\(824\) 5.88800e10 + 1.03821e10i 0.127720 + 0.0225205i
\(825\) 0 0
\(826\) −2.22952e11 + 1.87079e11i −0.478951 + 0.401888i
\(827\) −5.42919e11 3.13454e11i −1.16068 0.670120i −0.209214 0.977870i \(-0.567091\pi\)
−0.951467 + 0.307750i \(0.900424\pi\)
\(828\) 0 0
\(829\) −3.00938e11 5.21239e11i −0.637174 1.10362i −0.986050 0.166449i \(-0.946770\pi\)
0.348876 0.937169i \(-0.386564\pi\)
\(830\) −3.15418e10 + 8.66604e10i −0.0664621 + 0.182603i
\(831\) 0 0
\(832\) −4.93261e10 4.13895e10i −0.102940 0.0863768i
\(833\) −1.04357e11 2.86719e11i −0.216742 0.595493i
\(834\) 0 0
\(835\) 2.57762e10 + 1.46184e11i 0.0530241 + 0.300715i
\(836\) 8.09143e11i 1.65653i
\(837\) 0 0
\(838\) −1.20708e11 −0.244771
\(839\) −2.19890e11 + 3.87726e10i −0.443770 + 0.0782486i −0.391068 0.920362i \(-0.627894\pi\)
−0.0527018 + 0.998610i \(0.516783\pi\)
\(840\) 0 0
\(841\) −4.16865e11 + 1.51726e11i −0.833319 + 0.303303i
\(842\) −1.67496e10 + 1.99614e10i −0.0333239 + 0.0397138i
\(843\) 0 0
\(844\) 3.83329e11 + 1.39520e11i 0.755444 + 0.274959i
\(845\) −4.12557e11 + 2.38190e11i −0.809202 + 0.467193i
\(846\) 0 0
\(847\) 2.08517e11 3.61162e11i 0.405143 0.701728i
\(848\) −4.78859e11 5.70682e11i −0.926028 1.10360i
\(849\) 0 0
\(850\) 4.21533e8 2.39063e9i 0.000807524 0.00457970i
\(851\) 3.96627e11 + 6.99360e10i 0.756247 + 0.133347i
\(852\) 0 0
\(853\) 1.07390e10 9.01105e9i 0.0202846 0.0170208i −0.632589 0.774488i \(-0.718008\pi\)
0.652874 + 0.757467i \(0.273563\pi\)
\(854\) −1.74237e11 1.00596e11i −0.327573 0.189124i
\(855\) 0 0
\(856\) 1.53969e11 + 2.66682e11i 0.286773 + 0.496706i
\(857\) 3.56164e10 9.78554e10i 0.0660279 0.181410i −0.902291 0.431128i \(-0.858116\pi\)
0.968319 + 0.249718i \(0.0803379\pi\)
\(858\) 0 0
\(859\) −2.94212e11 2.46873e11i −0.540365 0.453420i 0.331298 0.943526i \(-0.392514\pi\)
−0.871663 + 0.490106i \(0.836958\pi\)
\(860\) 7.90040e10 + 2.17062e11i 0.144429 + 0.396816i
\(861\) 0 0
\(862\) −2.93660e10 1.66543e11i −0.0531883 0.301646i
\(863\) 2.17241e11i 0.391650i 0.980639 + 0.195825i \(0.0627384\pi\)
−0.980639 + 0.195825i \(0.937262\pi\)
\(864\) 0 0
\(865\) −2.30758e11 −0.412184
\(866\) −6.07954e9 + 1.07199e9i −0.0108093 + 0.00190598i
\(867\) 0 0
\(868\) −6.23218e11 + 2.26833e11i −1.09790 + 0.399602i
\(869\) −5.10681e11 + 6.08606e11i −0.895511 + 1.06723i
\(870\) 0 0
\(871\) −2.92123e10 1.06324e10i −0.0507566 0.0184739i
\(872\) −1.50889e11 + 8.71156e10i −0.260970 + 0.150671i
\(873\) 0 0
\(874\) −7.90180e10 + 1.36863e11i −0.135419 + 0.234553i
\(875\) 6.65237e11 + 7.92799e11i 1.13487 + 1.35248i
\(876\) 0 0
\(877\) −2.14413e10 + 1.21600e11i −0.0362454 + 0.205558i −0.997553 0.0699210i \(-0.977725\pi\)
0.961307 + 0.275479i \(0.0888364\pi\)
\(878\) −4.93596e10 8.70343e9i −0.0830603 0.0146458i
\(879\) 0 0
\(880\) 4.70712e11 3.94974e11i 0.784918 0.658624i
\(881\) −7.64992e11 4.41668e11i −1.26985 0.733150i −0.294893 0.955530i \(-0.595284\pi\)
−0.974960 + 0.222381i \(0.928617\pi\)
\(882\) 0 0
\(883\) 8.16461e10 + 1.41415e11i 0.134305 + 0.232623i 0.925332 0.379158i \(-0.123786\pi\)
−0.791027 + 0.611782i \(0.790453\pi\)
\(884\) −1.16897e10 + 3.21172e10i −0.0191423 + 0.0525930i
\(885\) 0 0
\(886\) −1.09881e11 9.22015e10i −0.178316 0.149625i
\(887\) 3.73853e11 + 1.02715e12i 0.603957 + 1.65936i 0.743175 + 0.669097i \(0.233319\pi\)
−0.139218 + 0.990262i \(0.544459\pi\)
\(888\) 0 0
\(889\) −2.06901e11 1.17340e12i −0.331251 1.87862i
\(890\) 8.25609e9i 0.0131587i
\(891\) 0 0
\(892\) 2.42138e10 0.0382475
\(893\) −2.17724e11 + 3.83906e10i −0.342374 + 0.0603697i
\(894\) 0 0
\(895\) −1.15207e11 + 4.19320e10i −0.179551 + 0.0653511i
\(896\) 5.23436e11 6.23807e11i 0.812141 0.967872i
\(897\) 0 0
\(898\) 1.56341e11 + 5.69035e10i 0.240419 + 0.0875052i
\(899\) −1.35645e11 + 7.83146e10i −0.207665 + 0.119896i
\(900\) 0 0
\(901\) −1.78156e11 + 3.08575e11i −0.270334 + 0.468233i
\(902\) 1.45974e11 + 1.73965e11i 0.220520 + 0.262806i
\(903\) 0 0
\(904\) 8.36507e10 4.74407e11i 0.125255 0.710357i
\(905\) −3.62786e11 6.39690e10i −0.540824 0.0953619i
\(906\) 0 0
\(907\) −2.36599e11 + 1.98531e11i −0.349611 + 0.293358i −0.800634 0.599154i \(-0.795504\pi\)
0.451023 + 0.892512i \(0.351059\pi\)
\(908\) −6.92161e11 3.99619e11i −1.01827 0.587899i
\(909\) 0 0
\(910\) 2.07437e10 + 3.59291e10i 0.0302496 + 0.0523939i
\(911\) 2.99551e11 8.23009e11i 0.434907 1.19490i −0.507858 0.861441i \(-0.669563\pi\)
0.942765 0.333457i \(-0.108215\pi\)
\(912\) 0 0
\(913\) −6.32357e11 5.30611e11i −0.910080 0.763648i
\(914\) 4.30509e10 + 1.18282e11i 0.0616876 + 0.169485i
\(915\) 0 0
\(916\) −5.77550e10 3.27545e11i −0.0820366 0.465253i
\(917\) 6.17935e11i 0.873907i
\(918\) 0 0
\(919\) −5.59623e11 −0.784574 −0.392287 0.919843i \(-0.628316\pi\)
−0.392287 + 0.919843i \(0.628316\pi\)
\(920\) 2.53298e11 4.46632e10i 0.353574 0.0623446i
\(921\) 0 0
\(922\) 1.81258e11 6.59723e10i 0.250826 0.0912932i
\(923\) 1.15999e11 1.38242e11i 0.159826 0.190474i
\(924\) 0 0
\(925\) 3.93724e10 + 1.43304e10i 0.0537805 + 0.0195745i
\(926\) 1.91192e11 1.10385e11i 0.260032 0.150130i
\(927\) 0 0
\(928\) 7.27092e10 1.25936e11i 0.0980386 0.169808i
\(929\) 4.11643e11 + 4.90577e11i 0.552660 + 0.658634i 0.967976 0.251043i \(-0.0807736\pi\)
−0.415316 + 0.909677i \(0.636329\pi\)
\(930\) 0 0
\(931\) −3.58849e11 + 2.03513e12i −0.477653 + 2.70891i
\(932\) 1.75011e11 + 3.08591e10i 0.231953 + 0.0408996i
\(933\) 0 0
\(934\) 2.18607e10 1.83433e10i 0.0287260 0.0241040i
\(935\) −2.54520e11 1.46947e11i −0.333024 0.192272i
\(936\) 0 0
\(937\) 1.69447e11 + 2.93491e11i 0.219824 + 0.380747i 0.954754 0.297396i \(-0.0961182\pi\)
−0.734930 + 0.678143i \(0.762785\pi\)
\(938\) 2.82952e10 7.77404e10i 0.0365512 0.100424i
\(939\) 0 0
\(940\) 1.34837e11 + 1.13141e11i 0.172702 + 0.144914i
\(941\) 2.45934e11 + 6.75699e11i 0.313661 + 0.861777i 0.991910 + 0.126945i \(0.0405170\pi\)
−0.678249 + 0.734833i \(0.737261\pi\)
\(942\) 0 0
\(943\) −1.74239e11 9.88156e11i −0.220342 1.24962i
\(944\) 1.23322e12i 1.55293i
\(945\) 0 0
\(946\) 9.13977e10 0.114122
\(947\) 4.79075e11 8.44739e10i 0.595667 0.105032i 0.132317 0.991207i \(-0.457758\pi\)
0.463350 + 0.886175i \(0.346647\pi\)
\(948\) 0 0
\(949\) −6.59227e10 + 2.39939e10i −0.0812775 + 0.0295826i
\(950\) −1.05681e10 + 1.25946e10i −0.0129749 + 0.0154629i
\(951\) 0 0
\(952\) −1.74720e11 6.35930e10i −0.212714 0.0774215i
\(953\) 7.27038e11 4.19755e11i 0.881425 0.508891i 0.0102969 0.999947i \(-0.496722\pi\)
0.871128 + 0.491056i \(0.163389\pi\)
\(954\) 0 0
\(955\) 4.85055e10 8.40140e10i 0.0583147 0.101004i
\(956\) 3.43541e11 + 4.09416e11i 0.411289 + 0.490155i
\(957\) 0 0
\(958\) −1.72272e10 + 9.77001e10i −0.0204527 + 0.115993i
\(959\) −2.66931e12 4.70672e11i −3.15591 0.556473i
\(960\) 0 0
\(961\) −3.21484e11 + 2.69757e11i −0.376934 + 0.316285i
\(962\) 2.25835e10 + 1.30386e10i 0.0263688 + 0.0152240i
\(963\) 0 0
\(964\) 1.99879e11 + 3.46200e11i 0.231451 + 0.400884i
\(965\) 2.73315e10 7.50926e10i 0.0315177 0.0865940i
\(966\) 0 0
\(967\) 3.58024e11 + 3.00417e11i 0.409455 + 0.343573i 0.824135 0.566394i \(-0.191662\pi\)
−0.414680 + 0.909967i \(0.636106\pi\)
\(968\) −5.72556e10 1.57309e11i −0.0652104 0.179164i
\(969\) 0 0
\(970\) −4.88637e10 2.77120e11i −0.0551950 0.313026i
\(971\) 9.07616e11i 1.02100i 0.859878 + 0.510500i \(0.170539\pi\)
−0.859878 + 0.510500i \(0.829461\pi\)
\(972\) 0 0
\(973\) 2.14825e12 2.39681
\(974\) 7.81535e10 1.37806e10i 0.0868386 0.0153120i
\(975\) 0 0
\(976\) 8.01083e11 2.91570e11i 0.882832 0.321325i
\(977\) −1.09047e11 + 1.29957e11i −0.119684 + 0.142634i −0.822559 0.568679i \(-0.807455\pi\)
0.702876 + 0.711313i \(0.251899\pi\)
\(978\) 0 0
\(979\) −6.94439e10 2.52755e10i −0.0755968 0.0275150i
\(980\) 1.42486e12 8.22642e11i 1.54478 0.891880i
\(981\) 0 0
\(982\) −8.47257e10 + 1.46749e11i −0.0911106 + 0.157808i
\(983\) 2.30885e11 + 2.75158e11i 0.247276 + 0.294692i 0.875378 0.483439i \(-0.160613\pi\)
−0.628102 + 0.778131i \(0.716168\pi\)
\(984\) 0 0
\(985\) −6.36726e9 + 3.61105e10i −0.00676407 + 0.0383609i
\(986\) −2.11545e10 3.73011e9i −0.0223818 0.00394652i
\(987\) 0 0
\(988\) 1.77327e11 1.48795e11i 0.186101 0.156157i
\(989\) −3.49730e11 2.01917e11i −0.365551 0.211051i
\(990\) 0 0
\(991\) 1.75783e11 + 3.04465e11i 0.182256 + 0.315677i 0.942648 0.333787i \(-0.108327\pi\)
−0.760392 + 0.649464i \(0.774993\pi\)
\(992\) −1.37566e11 + 3.77959e11i −0.142058 + 0.390300i
\(993\) 0 0
\(994\) 3.67894e11 + 3.08700e11i 0.376858 + 0.316221i
\(995\) −1.30604e11 3.58831e11i −0.133249 0.366098i
\(996\) 0 0
\(997\) 2.09430e11 + 1.18774e12i 0.211962 + 1.20210i 0.886101 + 0.463492i \(0.153404\pi\)
−0.674139 + 0.738604i \(0.735485\pi\)
\(998\) 9.91425e10i 0.0999397i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.f.a.71.13 138
3.2 odd 2 27.9.f.a.14.11 yes 138
27.2 odd 18 inner 81.9.f.a.8.13 138
27.25 even 9 27.9.f.a.2.11 138
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.f.a.2.11 138 27.25 even 9
27.9.f.a.14.11 yes 138 3.2 odd 2
81.9.f.a.8.13 138 27.2 odd 18 inner
81.9.f.a.71.13 138 1.1 even 1 trivial