Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,9,Mod(8,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.8");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.f (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(32.9976674150\) |
Analytic rank: | \(0\) |
Dimension: | \(138\) |
Relative dimension: | \(23\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −28.3033 | − | 4.99063i | 0 | 535.607 | + | 194.945i | −187.097 | − | 222.974i | 0 | 1603.17 | − | 583.507i | −7814.83 | − | 4511.89i | 0 | 4182.68 | + | 7244.61i | ||||||
8.2 | −26.8116 | − | 4.72761i | 0 | 455.951 | + | 165.953i | −232.968 | − | 277.641i | 0 | 45.0827 | − | 16.4088i | −5404.32 | − | 3120.19i | 0 | 4933.68 | + | 8545.38i | ||||||
8.3 | −26.8100 | − | 4.72733i | 0 | 455.867 | + | 165.922i | 418.443 | + | 498.682i | 0 | 2557.31 | − | 930.784i | −5401.88 | − | 3118.78i | 0 | −8861.04 | − | 15347.8i | ||||||
8.4 | −25.1387 | − | 4.43262i | 0 | 371.742 | + | 135.303i | 546.503 | + | 651.297i | 0 | −3663.86 | + | 1333.53i | −3086.08 | − | 1781.75i | 0 | −10851.4 | − | 18795.2i | ||||||
8.5 | −21.0020 | − | 3.70323i | 0 | 186.811 | + | 67.9935i | −674.968 | − | 804.395i | 0 | −2905.52 | + | 1057.52i | 1056.43 | + | 609.927i | 0 | 11196.8 | + | 19393.5i | ||||||
8.6 | −14.5831 | − | 2.57139i | 0 | −34.5070 | − | 12.5595i | 51.5257 | + | 61.4059i | 0 | 3577.75 | − | 1302.19i | 3753.91 | + | 2167.32i | 0 | −593.505 | − | 1027.98i | ||||||
8.7 | −14.2805 | − | 2.51803i | 0 | −42.9702 | − | 15.6399i | −501.169 | − | 597.270i | 0 | −473.173 | + | 172.221i | 3789.11 | + | 2187.64i | 0 | 5652.98 | + | 9791.25i | ||||||
8.8 | −14.0349 | − | 2.47473i | 0 | −49.7072 | − | 18.0920i | 245.194 | + | 292.211i | 0 | −336.792 | + | 122.582i | 3812.44 | + | 2201.11i | 0 | −2718.13 | − | 4707.95i | ||||||
8.9 | −13.3375 | − | 2.35175i | 0 | −68.2042 | − | 24.8243i | 636.805 | + | 758.914i | 0 | −2502.00 | + | 910.653i | 3853.85 | + | 2225.02i | 0 | −6708.58 | − | 11619.6i | ||||||
8.10 | −7.08460 | − | 1.24921i | 0 | −191.930 | − | 69.8569i | −349.559 | − | 416.588i | 0 | 22.4234 | − | 8.16143i | 2867.39 | + | 1655.49i | 0 | 1956.08 | + | 3388.03i | ||||||
8.11 | −1.99728 | − | 0.352174i | 0 | −236.696 | − | 86.1504i | −67.5893 | − | 80.5497i | 0 | 3385.55 | − | 1232.24i | 892.041 | + | 515.020i | 0 | 106.627 | + | 184.683i | ||||||
8.12 | 2.46646 | + | 0.434904i | 0 | −234.667 | − | 85.4118i | 411.949 | + | 490.942i | 0 | 243.334 | − | 88.5664i | −1096.91 | − | 633.301i | 0 | 802.546 | + | 1390.05i | ||||||
8.13 | 3.24198 | + | 0.571649i | 0 | −230.378 | − | 83.8506i | −387.667 | − | 462.003i | 0 | −3862.15 | + | 1405.71i | −1428.79 | − | 824.913i | 0 | −992.706 | − | 1719.42i | ||||||
8.14 | 7.66670 | + | 1.35185i | 0 | −183.611 | − | 66.8288i | 24.0534 | + | 28.6657i | 0 | −2598.90 | + | 945.921i | −3043.29 | − | 1757.05i | 0 | 145.659 | + | 252.288i | ||||||
8.15 | 7.92414 | + | 1.39724i | 0 | −179.722 | − | 65.4133i | 625.377 | + | 745.295i | 0 | 845.976 | − | 307.910i | −3116.64 | − | 1799.40i | 0 | 3914.22 | + | 6779.62i | ||||||
8.16 | 8.24786 | + | 1.45432i | 0 | −174.649 | − | 63.5671i | −723.153 | − | 861.820i | 0 | 2191.55 | − | 797.660i | −3204.82 | − | 1850.30i | 0 | −4711.10 | − | 8159.87i | ||||||
8.17 | 18.1654 | + | 3.20306i | 0 | 79.1620 | + | 28.8126i | −462.775 | − | 551.514i | 0 | 1642.82 | − | 597.939i | −2743.73 | − | 1584.09i | 0 | −6639.98 | − | 11500.8i | ||||||
8.18 | 18.2801 | + | 3.22328i | 0 | 83.2125 | + | 30.2869i | 223.403 | + | 266.242i | 0 | −1438.86 | + | 523.701i | −2691.76 | − | 1554.09i | 0 | 3225.67 | + | 5587.03i | ||||||
8.19 | 21.5826 | + | 3.80559i | 0 | 210.764 | + | 76.7119i | −129.757 | − | 154.639i | 0 | 1479.28 | − | 538.412i | −601.827 | − | 347.465i | 0 | −2212.01 | − | 3831.31i | ||||||
8.20 | 23.0508 | + | 4.06447i | 0 | 274.257 | + | 99.8213i | 685.642 | + | 817.116i | 0 | 4384.71 | − | 1595.90i | 726.861 | + | 419.653i | 0 | 12483.4 | + | 21621.9i | ||||||
See next 80 embeddings (of 138 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 81.9.f.a | 138 | |
3.b | odd | 2 | 1 | 27.9.f.a | ✓ | 138 | |
27.e | even | 9 | 1 | 27.9.f.a | ✓ | 138 | |
27.f | odd | 18 | 1 | inner | 81.9.f.a | 138 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.9.f.a | ✓ | 138 | 3.b | odd | 2 | 1 | |
27.9.f.a | ✓ | 138 | 27.e | even | 9 | 1 | |
81.9.f.a | 138 | 1.a | even | 1 | 1 | trivial | |
81.9.f.a | 138 | 27.f | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{9}^{\mathrm{new}}(81, [\chi])\).