Properties

Label 81.9.f
Level $81$
Weight $9$
Character orbit 81.f
Rep. character $\chi_{81}(8,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $138$
Newform subspaces $1$
Sturm bound $81$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(81\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(81, [\chi])\).

Total New Old
Modular forms 450 150 300
Cusp forms 414 138 276
Eisenstein series 36 12 24

Trace form

\( 138 q + 6 q^{2} - 6 q^{4} + 447 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} - 28668 q^{11} - 6 q^{13} + 120975 q^{14} - 774 q^{16} + 9 q^{17} - 3 q^{19} - 137913 q^{20} - 185478 q^{22} - 68376 q^{23} + 507585 q^{25}+ \cdots - 1293135102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.9.f.a 81.f 27.f $138$ $32.998$ None 27.9.f.a \(6\) \(0\) \(447\) \(-6\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{9}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)