Properties

Label 81.9.b.b.80.8
Level $81$
Weight $9$
Character 81.80
Analytic conductor $32.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1024 x^{14} + 419701 x^{12} + 88203292 x^{10} + 10121979748 x^{8} + 629108384896 x^{6} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{84} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.8
Root \(3.33872i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.9.b.b.80.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.78284i q^{2} +222.559 q^{4} +626.068i q^{5} -2231.44 q^{7} -2767.43i q^{8} +3620.45 q^{10} -18072.2i q^{11} +37655.6 q^{13} +12904.0i q^{14} +40971.5 q^{16} +31224.6i q^{17} +2335.59 q^{19} +139337. i q^{20} -104509. q^{22} +163911. i q^{23} -1336.18 q^{25} -217756. i q^{26} -496626. q^{28} +937335. i q^{29} +1.25199e6 q^{31} -945393. i q^{32} +180567. q^{34} -1.39703e6i q^{35} +2.83025e6 q^{37} -13506.3i q^{38} +1.73260e6 q^{40} +3.60966e6i q^{41} +3.71621e6 q^{43} -4.02214e6i q^{44} +947871. q^{46} +7.41731e6i q^{47} -785489. q^{49} +7726.90i q^{50} +8.38059e6 q^{52} -1.27382e7i q^{53} +1.13145e7 q^{55} +6.17534e6i q^{56} +5.42046e6 q^{58} -1.41849e7i q^{59} -4.92805e6 q^{61} -7.24006e6i q^{62} +5.02164e6 q^{64} +2.35750e7i q^{65} +1.41779e7 q^{67} +6.94930e6i q^{68} -8.07881e6 q^{70} -2.58699e7i q^{71} -1.02185e7 q^{73} -1.63669e7i q^{74} +519806. q^{76} +4.03271e7i q^{77} +6.41821e7 q^{79} +2.56509e7i q^{80} +2.08741e7 q^{82} -2.35963e7i q^{83} -1.95487e7 q^{85} -2.14902e7i q^{86} -5.00136e7 q^{88} +1.04381e8i q^{89} -8.40262e7 q^{91} +3.64798e7i q^{92} +4.28931e7 q^{94} +1.46224e6i q^{95} -1.00259e8 q^{97} +4.54236e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2048 q^{4} + 3692 q^{7} + 10752 q^{10} + 63860 q^{13} + 95116 q^{16} + 185108 q^{19} - 691980 q^{22} - 541712 q^{25} - 997132 q^{28} + 571136 q^{31} + 1027656 q^{34} + 4354268 q^{37} - 2973768 q^{40}+ \cdots - 133878688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.78284i − 0.361427i −0.983536 0.180714i \(-0.942159\pi\)
0.983536 0.180714i \(-0.0578407\pi\)
\(3\) 0 0
\(4\) 222.559 0.869370
\(5\) 626.068i 1.00171i 0.865532 + 0.500854i \(0.166981\pi\)
−0.865532 + 0.500854i \(0.833019\pi\)
\(6\) 0 0
\(7\) −2231.44 −0.929378 −0.464689 0.885474i \(-0.653834\pi\)
−0.464689 + 0.885474i \(0.653834\pi\)
\(8\) − 2767.43i − 0.675642i
\(9\) 0 0
\(10\) 3620.45 0.362045
\(11\) − 18072.2i − 1.23436i −0.786823 0.617179i \(-0.788275\pi\)
0.786823 0.617179i \(-0.211725\pi\)
\(12\) 0 0
\(13\) 37655.6 1.31843 0.659214 0.751955i \(-0.270889\pi\)
0.659214 + 0.751955i \(0.270889\pi\)
\(14\) 12904.0i 0.335903i
\(15\) 0 0
\(16\) 40971.5 0.625175
\(17\) 31224.6i 0.373853i 0.982374 + 0.186926i \(0.0598526\pi\)
−0.982374 + 0.186926i \(0.940147\pi\)
\(18\) 0 0
\(19\) 2335.59 0.0179218 0.00896091 0.999960i \(-0.497148\pi\)
0.00896091 + 0.999960i \(0.497148\pi\)
\(20\) 139337.i 0.870856i
\(21\) 0 0
\(22\) −104509. −0.446131
\(23\) 163911.i 0.585729i 0.956154 + 0.292865i \(0.0946085\pi\)
−0.956154 + 0.292865i \(0.905391\pi\)
\(24\) 0 0
\(25\) −1336.18 −0.00342062
\(26\) − 217756.i − 0.476516i
\(27\) 0 0
\(28\) −496626. −0.807974
\(29\) 937335.i 1.32527i 0.748944 + 0.662633i \(0.230561\pi\)
−0.748944 + 0.662633i \(0.769439\pi\)
\(30\) 0 0
\(31\) 1.25199e6 1.35567 0.677836 0.735213i \(-0.262918\pi\)
0.677836 + 0.735213i \(0.262918\pi\)
\(32\) − 945393.i − 0.901597i
\(33\) 0 0
\(34\) 180567. 0.135121
\(35\) − 1.39703e6i − 0.930966i
\(36\) 0 0
\(37\) 2.83025e6 1.51014 0.755070 0.655644i \(-0.227603\pi\)
0.755070 + 0.655644i \(0.227603\pi\)
\(38\) − 13506.3i − 0.00647743i
\(39\) 0 0
\(40\) 1.73260e6 0.676796
\(41\) 3.60966e6i 1.27741i 0.769451 + 0.638706i \(0.220530\pi\)
−0.769451 + 0.638706i \(0.779470\pi\)
\(42\) 0 0
\(43\) 3.71621e6 1.08699 0.543496 0.839412i \(-0.317100\pi\)
0.543496 + 0.839412i \(0.317100\pi\)
\(44\) − 4.02214e6i − 1.07311i
\(45\) 0 0
\(46\) 947871. 0.211699
\(47\) 7.41731e6i 1.52004i 0.649899 + 0.760020i \(0.274811\pi\)
−0.649899 + 0.760020i \(0.725189\pi\)
\(48\) 0 0
\(49\) −785489. −0.136256
\(50\) 7726.90i 0.00123630i
\(51\) 0 0
\(52\) 8.38059e6 1.14620
\(53\) − 1.27382e7i − 1.61438i −0.590291 0.807190i \(-0.700987\pi\)
0.590291 0.807190i \(-0.299013\pi\)
\(54\) 0 0
\(55\) 1.13145e7 1.23647
\(56\) 6.17534e6i 0.627927i
\(57\) 0 0
\(58\) 5.42046e6 0.478987
\(59\) − 1.41849e7i − 1.17062i −0.810808 0.585312i \(-0.800972\pi\)
0.810808 0.585312i \(-0.199028\pi\)
\(60\) 0 0
\(61\) −4.92805e6 −0.355923 −0.177961 0.984037i \(-0.556950\pi\)
−0.177961 + 0.984037i \(0.556950\pi\)
\(62\) − 7.24006e6i − 0.489977i
\(63\) 0 0
\(64\) 5.02164e6 0.299313
\(65\) 2.35750e7i 1.32068i
\(66\) 0 0
\(67\) 1.41779e7 0.703580 0.351790 0.936079i \(-0.385573\pi\)
0.351790 + 0.936079i \(0.385573\pi\)
\(68\) 6.94930e6i 0.325017i
\(69\) 0 0
\(70\) −8.07881e6 −0.336477
\(71\) − 2.58699e7i − 1.01803i −0.860757 0.509017i \(-0.830009\pi\)
0.860757 0.509017i \(-0.169991\pi\)
\(72\) 0 0
\(73\) −1.02185e7 −0.359827 −0.179914 0.983682i \(-0.557582\pi\)
−0.179914 + 0.983682i \(0.557582\pi\)
\(74\) − 1.63669e7i − 0.545806i
\(75\) 0 0
\(76\) 519806. 0.0155807
\(77\) 4.03271e7i 1.14719i
\(78\) 0 0
\(79\) 6.41821e7 1.64780 0.823901 0.566733i \(-0.191793\pi\)
0.823901 + 0.566733i \(0.191793\pi\)
\(80\) 2.56509e7i 0.626243i
\(81\) 0 0
\(82\) 2.08741e7 0.461692
\(83\) − 2.35963e7i − 0.497200i −0.968606 0.248600i \(-0.920030\pi\)
0.968606 0.248600i \(-0.0799704\pi\)
\(84\) 0 0
\(85\) −1.95487e7 −0.374492
\(86\) − 2.14902e7i − 0.392868i
\(87\) 0 0
\(88\) −5.00136e7 −0.833984
\(89\) 1.04381e8i 1.66364i 0.555045 + 0.831820i \(0.312701\pi\)
−0.555045 + 0.831820i \(0.687299\pi\)
\(90\) 0 0
\(91\) −8.40262e7 −1.22532
\(92\) 3.64798e7i 0.509216i
\(93\) 0 0
\(94\) 4.28931e7 0.549384
\(95\) 1.46224e6i 0.0179524i
\(96\) 0 0
\(97\) −1.00259e8 −1.13249 −0.566247 0.824236i \(-0.691605\pi\)
−0.566247 + 0.824236i \(0.691605\pi\)
\(98\) 4.54236e6i 0.0492467i
\(99\) 0 0
\(100\) −297378. −0.00297378
\(101\) − 1.69407e8i − 1.62796i −0.580890 0.813982i \(-0.697295\pi\)
0.580890 0.813982i \(-0.302705\pi\)
\(102\) 0 0
\(103\) −1.44761e8 −1.28618 −0.643091 0.765790i \(-0.722348\pi\)
−0.643091 + 0.765790i \(0.722348\pi\)
\(104\) − 1.04209e8i − 0.890785i
\(105\) 0 0
\(106\) −7.36632e7 −0.583481
\(107\) 4.13111e6i 0.0315161i 0.999876 + 0.0157580i \(0.00501615\pi\)
−0.999876 + 0.0157580i \(0.994984\pi\)
\(108\) 0 0
\(109\) −1.19559e8 −0.846987 −0.423493 0.905899i \(-0.639196\pi\)
−0.423493 + 0.905899i \(0.639196\pi\)
\(110\) − 6.54296e7i − 0.446893i
\(111\) 0 0
\(112\) −9.14252e7 −0.581024
\(113\) 5.39019e6i 0.0330590i 0.999863 + 0.0165295i \(0.00526175\pi\)
−0.999863 + 0.0165295i \(0.994738\pi\)
\(114\) 0 0
\(115\) −1.02619e8 −0.586730
\(116\) 2.08612e8i 1.15215i
\(117\) 0 0
\(118\) −8.20288e7 −0.423096
\(119\) − 6.96757e7i − 0.347451i
\(120\) 0 0
\(121\) −1.12247e8 −0.523641
\(122\) 2.84981e7i 0.128640i
\(123\) 0 0
\(124\) 2.78642e8 1.17858
\(125\) 2.43721e8i 0.998282i
\(126\) 0 0
\(127\) 3.33087e8 1.28039 0.640195 0.768212i \(-0.278853\pi\)
0.640195 + 0.768212i \(0.278853\pi\)
\(128\) − 2.71060e8i − 1.00978i
\(129\) 0 0
\(130\) 1.36330e8 0.477330
\(131\) 2.49017e8i 0.845558i 0.906233 + 0.422779i \(0.138945\pi\)
−0.906233 + 0.422779i \(0.861055\pi\)
\(132\) 0 0
\(133\) −5.21172e6 −0.0166561
\(134\) − 8.19886e7i − 0.254293i
\(135\) 0 0
\(136\) 8.64118e7 0.252591
\(137\) 1.95512e8i 0.554997i 0.960726 + 0.277498i \(0.0895053\pi\)
−0.960726 + 0.277498i \(0.910495\pi\)
\(138\) 0 0
\(139\) −2.90213e8 −0.777424 −0.388712 0.921359i \(-0.627080\pi\)
−0.388712 + 0.921359i \(0.627080\pi\)
\(140\) − 3.10922e8i − 0.809355i
\(141\) 0 0
\(142\) −1.49602e8 −0.367945
\(143\) − 6.80522e8i − 1.62741i
\(144\) 0 0
\(145\) −5.86836e8 −1.32753
\(146\) 5.90917e7i 0.130051i
\(147\) 0 0
\(148\) 6.29896e8 1.31287
\(149\) 1.37888e8i 0.279757i 0.990169 + 0.139879i \(0.0446713\pi\)
−0.990169 + 0.139879i \(0.955329\pi\)
\(150\) 0 0
\(151\) −3.15659e8 −0.607169 −0.303585 0.952804i \(-0.598184\pi\)
−0.303585 + 0.952804i \(0.598184\pi\)
\(152\) − 6.46357e6i − 0.0121087i
\(153\) 0 0
\(154\) 2.33205e8 0.414624
\(155\) 7.83832e8i 1.35799i
\(156\) 0 0
\(157\) 5.46029e8 0.898704 0.449352 0.893355i \(-0.351655\pi\)
0.449352 + 0.893355i \(0.351655\pi\)
\(158\) − 3.71154e8i − 0.595561i
\(159\) 0 0
\(160\) 5.91880e8 0.903138
\(161\) − 3.65757e8i − 0.544364i
\(162\) 0 0
\(163\) 4.38696e8 0.621460 0.310730 0.950498i \(-0.399427\pi\)
0.310730 + 0.950498i \(0.399427\pi\)
\(164\) 8.03362e8i 1.11054i
\(165\) 0 0
\(166\) −1.36453e8 −0.179702
\(167\) 6.86222e8i 0.882264i 0.897442 + 0.441132i \(0.145423\pi\)
−0.897442 + 0.441132i \(0.854577\pi\)
\(168\) 0 0
\(169\) 6.02215e8 0.738253
\(170\) 1.13047e8i 0.135352i
\(171\) 0 0
\(172\) 8.27074e8 0.944998
\(173\) 4.57941e8i 0.511240i 0.966777 + 0.255620i \(0.0822796\pi\)
−0.966777 + 0.255620i \(0.917720\pi\)
\(174\) 0 0
\(175\) 2.98160e6 0.00317905
\(176\) − 7.40446e8i − 0.771690i
\(177\) 0 0
\(178\) 6.03616e8 0.601285
\(179\) − 1.82904e9i − 1.78161i −0.454390 0.890803i \(-0.650143\pi\)
0.454390 0.890803i \(-0.349857\pi\)
\(180\) 0 0
\(181\) −4.41011e8 −0.410899 −0.205450 0.978668i \(-0.565866\pi\)
−0.205450 + 0.978668i \(0.565866\pi\)
\(182\) 4.85910e8i 0.442864i
\(183\) 0 0
\(184\) 4.53612e8 0.395743
\(185\) 1.77193e9i 1.51272i
\(186\) 0 0
\(187\) 5.64298e8 0.461469
\(188\) 1.65079e9i 1.32148i
\(189\) 0 0
\(190\) 8.45588e6 0.00648850
\(191\) − 1.61804e9i − 1.21578i −0.794022 0.607889i \(-0.792016\pi\)
0.794022 0.607889i \(-0.207984\pi\)
\(192\) 0 0
\(193\) 1.13241e9 0.816158 0.408079 0.912947i \(-0.366199\pi\)
0.408079 + 0.912947i \(0.366199\pi\)
\(194\) 5.79781e8i 0.409314i
\(195\) 0 0
\(196\) −1.74817e8 −0.118457
\(197\) − 2.90283e9i − 1.92733i −0.267113 0.963665i \(-0.586070\pi\)
0.267113 0.963665i \(-0.413930\pi\)
\(198\) 0 0
\(199\) 7.60460e8 0.484914 0.242457 0.970162i \(-0.422047\pi\)
0.242457 + 0.970162i \(0.422047\pi\)
\(200\) 3.69778e6i 0.00231111i
\(201\) 0 0
\(202\) −9.79651e8 −0.588391
\(203\) − 2.09160e9i − 1.23167i
\(204\) 0 0
\(205\) −2.25989e9 −1.27959
\(206\) 8.37129e8i 0.464861i
\(207\) 0 0
\(208\) 1.54281e9 0.824248
\(209\) − 4.22093e7i − 0.0221219i
\(210\) 0 0
\(211\) −2.41950e9 −1.22066 −0.610332 0.792146i \(-0.708964\pi\)
−0.610332 + 0.792146i \(0.708964\pi\)
\(212\) − 2.83501e9i − 1.40349i
\(213\) 0 0
\(214\) 2.38896e7 0.0113908
\(215\) 2.32660e9i 1.08885i
\(216\) 0 0
\(217\) −2.79374e9 −1.25993
\(218\) 6.91391e8i 0.306124i
\(219\) 0 0
\(220\) 2.51813e9 1.07495
\(221\) 1.17578e9i 0.492898i
\(222\) 0 0
\(223\) −1.22791e9 −0.496533 −0.248266 0.968692i \(-0.579861\pi\)
−0.248266 + 0.968692i \(0.579861\pi\)
\(224\) 2.10958e9i 0.837925i
\(225\) 0 0
\(226\) 3.11706e7 0.0119484
\(227\) − 1.92651e9i − 0.725552i −0.931876 0.362776i \(-0.881829\pi\)
0.931876 0.362776i \(-0.118171\pi\)
\(228\) 0 0
\(229\) −5.33004e9 −1.93816 −0.969078 0.246754i \(-0.920636\pi\)
−0.969078 + 0.246754i \(0.920636\pi\)
\(230\) 5.93432e8i 0.212060i
\(231\) 0 0
\(232\) 2.59401e9 0.895405
\(233\) 2.11463e9i 0.717481i 0.933437 + 0.358741i \(0.116794\pi\)
−0.933437 + 0.358741i \(0.883206\pi\)
\(234\) 0 0
\(235\) −4.64374e9 −1.52264
\(236\) − 3.15697e9i − 1.01771i
\(237\) 0 0
\(238\) −4.02923e8 −0.125578
\(239\) 3.99616e9i 1.22476i 0.790563 + 0.612380i \(0.209788\pi\)
−0.790563 + 0.612380i \(0.790212\pi\)
\(240\) 0 0
\(241\) −3.53535e9 −1.04801 −0.524003 0.851716i \(-0.675562\pi\)
−0.524003 + 0.851716i \(0.675562\pi\)
\(242\) 6.49107e8i 0.189258i
\(243\) 0 0
\(244\) −1.09678e9 −0.309429
\(245\) − 4.91770e8i − 0.136489i
\(246\) 0 0
\(247\) 8.79480e7 0.0236286
\(248\) − 3.46479e9i − 0.915948i
\(249\) 0 0
\(250\) 1.40940e9 0.360807
\(251\) 1.12042e9i 0.282285i 0.989989 + 0.141142i \(0.0450775\pi\)
−0.989989 + 0.141142i \(0.954922\pi\)
\(252\) 0 0
\(253\) 2.96224e9 0.723000
\(254\) − 1.92619e9i − 0.462768i
\(255\) 0 0
\(256\) −2.81955e8 −0.0656478
\(257\) 2.16052e9i 0.495251i 0.968856 + 0.247625i \(0.0796503\pi\)
−0.968856 + 0.247625i \(0.920350\pi\)
\(258\) 0 0
\(259\) −6.31552e9 −1.40349
\(260\) 5.24682e9i 1.14816i
\(261\) 0 0
\(262\) 1.44002e9 0.305608
\(263\) − 5.23202e9i − 1.09357i −0.837274 0.546784i \(-0.815852\pi\)
0.837274 0.546784i \(-0.184148\pi\)
\(264\) 0 0
\(265\) 7.97500e9 1.61714
\(266\) 3.01385e7i 0.00601999i
\(267\) 0 0
\(268\) 3.15542e9 0.611672
\(269\) − 1.12846e9i − 0.215514i −0.994177 0.107757i \(-0.965633\pi\)
0.994177 0.107757i \(-0.0343669\pi\)
\(270\) 0 0
\(271\) −4.03545e9 −0.748194 −0.374097 0.927390i \(-0.622047\pi\)
−0.374097 + 0.927390i \(0.622047\pi\)
\(272\) 1.27932e9i 0.233724i
\(273\) 0 0
\(274\) 1.13061e9 0.200591
\(275\) 2.41477e7i 0.00422227i
\(276\) 0 0
\(277\) 8.22794e8 0.139756 0.0698782 0.997556i \(-0.477739\pi\)
0.0698782 + 0.997556i \(0.477739\pi\)
\(278\) 1.67826e9i 0.280982i
\(279\) 0 0
\(280\) −3.86618e9 −0.629000
\(281\) 6.04095e9i 0.968902i 0.874818 + 0.484451i \(0.160981\pi\)
−0.874818 + 0.484451i \(0.839019\pi\)
\(282\) 0 0
\(283\) −6.08283e9 −0.948330 −0.474165 0.880436i \(-0.657250\pi\)
−0.474165 + 0.880436i \(0.657250\pi\)
\(284\) − 5.75758e9i − 0.885048i
\(285\) 0 0
\(286\) −3.93535e9 −0.588192
\(287\) − 8.05473e9i − 1.18720i
\(288\) 0 0
\(289\) 6.00078e9 0.860234
\(290\) 3.39358e9i 0.479806i
\(291\) 0 0
\(292\) −2.27421e9 −0.312823
\(293\) − 7.51565e8i − 0.101976i −0.998699 0.0509878i \(-0.983763\pi\)
0.998699 0.0509878i \(-0.0162370\pi\)
\(294\) 0 0
\(295\) 8.88070e9 1.17262
\(296\) − 7.83250e9i − 1.02031i
\(297\) 0 0
\(298\) 7.97385e8 0.101112
\(299\) 6.17217e9i 0.772242i
\(300\) 0 0
\(301\) −8.29248e9 −1.01023
\(302\) 1.82540e9i 0.219448i
\(303\) 0 0
\(304\) 9.56925e7 0.0112043
\(305\) − 3.08529e9i − 0.356531i
\(306\) 0 0
\(307\) 2.09132e9 0.235432 0.117716 0.993047i \(-0.462443\pi\)
0.117716 + 0.993047i \(0.462443\pi\)
\(308\) 8.97514e9i 0.997329i
\(309\) 0 0
\(310\) 4.53277e9 0.490814
\(311\) 9.71696e9i 1.03870i 0.854562 + 0.519349i \(0.173825\pi\)
−0.854562 + 0.519349i \(0.826175\pi\)
\(312\) 0 0
\(313\) 9.61959e9 1.00226 0.501129 0.865373i \(-0.332918\pi\)
0.501129 + 0.865373i \(0.332918\pi\)
\(314\) − 3.15760e9i − 0.324816i
\(315\) 0 0
\(316\) 1.42843e10 1.43255
\(317\) − 3.06390e9i − 0.303415i −0.988425 0.151707i \(-0.951523\pi\)
0.988425 0.151707i \(-0.0484772\pi\)
\(318\) 0 0
\(319\) 1.69398e10 1.63585
\(320\) 3.14389e9i 0.299825i
\(321\) 0 0
\(322\) −2.11511e9 −0.196748
\(323\) 7.29278e7i 0.00670012i
\(324\) 0 0
\(325\) −5.03146e7 −0.00450984
\(326\) − 2.53691e9i − 0.224613i
\(327\) 0 0
\(328\) 9.98947e9 0.863072
\(329\) − 1.65513e10i − 1.41269i
\(330\) 0 0
\(331\) 3.64592e9 0.303735 0.151867 0.988401i \(-0.451471\pi\)
0.151867 + 0.988401i \(0.451471\pi\)
\(332\) − 5.25156e9i − 0.432251i
\(333\) 0 0
\(334\) 3.96831e9 0.318875
\(335\) 8.87635e9i 0.704782i
\(336\) 0 0
\(337\) −7.40093e9 −0.573808 −0.286904 0.957959i \(-0.592626\pi\)
−0.286904 + 0.957959i \(0.592626\pi\)
\(338\) − 3.48251e9i − 0.266825i
\(339\) 0 0
\(340\) −4.35074e9 −0.325572
\(341\) − 2.26263e10i − 1.67338i
\(342\) 0 0
\(343\) 1.46166e10 1.05601
\(344\) − 1.02843e10i − 0.734416i
\(345\) 0 0
\(346\) 2.64820e9 0.184776
\(347\) 6.99169e9i 0.482241i 0.970495 + 0.241120i \(0.0775149\pi\)
−0.970495 + 0.241120i \(0.922485\pi\)
\(348\) 0 0
\(349\) 1.60970e10 1.08503 0.542516 0.840045i \(-0.317472\pi\)
0.542516 + 0.840045i \(0.317472\pi\)
\(350\) − 1.72421e7i − 0.00114899i
\(351\) 0 0
\(352\) −1.70854e10 −1.11289
\(353\) 2.96109e9i 0.190701i 0.995444 + 0.0953504i \(0.0303972\pi\)
−0.995444 + 0.0953504i \(0.969603\pi\)
\(354\) 0 0
\(355\) 1.61963e10 1.01977
\(356\) 2.32308e10i 1.44632i
\(357\) 0 0
\(358\) −1.05771e10 −0.643921
\(359\) 9.16347e9i 0.551674i 0.961204 + 0.275837i \(0.0889549\pi\)
−0.961204 + 0.275837i \(0.911045\pi\)
\(360\) 0 0
\(361\) −1.69781e10 −0.999679
\(362\) 2.55030e9i 0.148510i
\(363\) 0 0
\(364\) −1.87008e10 −1.06526
\(365\) − 6.39746e9i − 0.360442i
\(366\) 0 0
\(367\) −1.62858e10 −0.897727 −0.448864 0.893600i \(-0.648171\pi\)
−0.448864 + 0.893600i \(0.648171\pi\)
\(368\) 6.71568e9i 0.366183i
\(369\) 0 0
\(370\) 1.02468e10 0.546739
\(371\) 2.84246e10i 1.50037i
\(372\) 0 0
\(373\) −9.04189e9 −0.467115 −0.233558 0.972343i \(-0.575037\pi\)
−0.233558 + 0.972343i \(0.575037\pi\)
\(374\) − 3.26324e9i − 0.166787i
\(375\) 0 0
\(376\) 2.05269e10 1.02700
\(377\) 3.52959e10i 1.74727i
\(378\) 0 0
\(379\) −1.57162e10 −0.761712 −0.380856 0.924634i \(-0.624371\pi\)
−0.380856 + 0.924634i \(0.624371\pi\)
\(380\) 3.25434e8i 0.0156073i
\(381\) 0 0
\(382\) −9.35683e9 −0.439416
\(383\) − 1.98122e10i − 0.920743i −0.887726 0.460371i \(-0.847716\pi\)
0.887726 0.460371i \(-0.152284\pi\)
\(384\) 0 0
\(385\) −2.52475e10 −1.14915
\(386\) − 6.54854e9i − 0.294982i
\(387\) 0 0
\(388\) −2.23135e10 −0.984557
\(389\) − 3.05719e10i − 1.33513i −0.744550 0.667566i \(-0.767336\pi\)
0.744550 0.667566i \(-0.232664\pi\)
\(390\) 0 0
\(391\) −5.11805e9 −0.218977
\(392\) 2.17378e9i 0.0920603i
\(393\) 0 0
\(394\) −1.67866e10 −0.696590
\(395\) 4.01823e10i 1.65062i
\(396\) 0 0
\(397\) 2.04581e10 0.823576 0.411788 0.911280i \(-0.364904\pi\)
0.411788 + 0.911280i \(0.364904\pi\)
\(398\) − 4.39762e9i − 0.175261i
\(399\) 0 0
\(400\) −5.47452e7 −0.00213848
\(401\) − 1.12170e10i − 0.433810i −0.976193 0.216905i \(-0.930404\pi\)
0.976193 0.216905i \(-0.0695962\pi\)
\(402\) 0 0
\(403\) 4.71445e10 1.78736
\(404\) − 3.77029e10i − 1.41530i
\(405\) 0 0
\(406\) −1.20954e10 −0.445160
\(407\) − 5.11489e10i − 1.86406i
\(408\) 0 0
\(409\) 5.07523e9 0.181369 0.0906844 0.995880i \(-0.471095\pi\)
0.0906844 + 0.995880i \(0.471095\pi\)
\(410\) 1.30686e10i 0.462480i
\(411\) 0 0
\(412\) −3.22178e10 −1.11817
\(413\) 3.16527e10i 1.08795i
\(414\) 0 0
\(415\) 1.47729e10 0.498049
\(416\) − 3.55994e10i − 1.18869i
\(417\) 0 0
\(418\) −2.44090e8 −0.00799548
\(419\) 1.32217e10i 0.428974i 0.976727 + 0.214487i \(0.0688080\pi\)
−0.976727 + 0.214487i \(0.931192\pi\)
\(420\) 0 0
\(421\) −5.70068e10 −1.81467 −0.907337 0.420404i \(-0.861888\pi\)
−0.907337 + 0.420404i \(0.861888\pi\)
\(422\) 1.39916e10i 0.441181i
\(423\) 0 0
\(424\) −3.52522e10 −1.09074
\(425\) − 4.17216e7i − 0.00127881i
\(426\) 0 0
\(427\) 1.09966e10 0.330787
\(428\) 9.19416e8i 0.0273991i
\(429\) 0 0
\(430\) 1.34543e10 0.393540
\(431\) 1.25350e10i 0.363258i 0.983367 + 0.181629i \(0.0581370\pi\)
−0.983367 + 0.181629i \(0.941863\pi\)
\(432\) 0 0
\(433\) −4.07711e9 −0.115985 −0.0579924 0.998317i \(-0.518470\pi\)
−0.0579924 + 0.998317i \(0.518470\pi\)
\(434\) 1.61557e10i 0.455374i
\(435\) 0 0
\(436\) −2.66089e10 −0.736345
\(437\) 3.82829e8i 0.0104973i
\(438\) 0 0
\(439\) 2.42860e9 0.0653881 0.0326940 0.999465i \(-0.489591\pi\)
0.0326940 + 0.999465i \(0.489591\pi\)
\(440\) − 3.13119e10i − 0.835409i
\(441\) 0 0
\(442\) 6.79935e9 0.178147
\(443\) − 3.25859e10i − 0.846088i −0.906109 0.423044i \(-0.860962\pi\)
0.906109 0.423044i \(-0.139038\pi\)
\(444\) 0 0
\(445\) −6.53493e10 −1.66648
\(446\) 7.10082e9i 0.179461i
\(447\) 0 0
\(448\) −1.12055e10 −0.278175
\(449\) 2.69566e10i 0.663255i 0.943410 + 0.331627i \(0.107598\pi\)
−0.943410 + 0.331627i \(0.892402\pi\)
\(450\) 0 0
\(451\) 6.52347e10 1.57678
\(452\) 1.19963e9i 0.0287406i
\(453\) 0 0
\(454\) −1.11407e10 −0.262234
\(455\) − 5.26061e10i − 1.22741i
\(456\) 0 0
\(457\) 6.93862e10 1.59077 0.795387 0.606102i \(-0.207268\pi\)
0.795387 + 0.606102i \(0.207268\pi\)
\(458\) 3.08228e10i 0.700503i
\(459\) 0 0
\(460\) −2.28389e10 −0.510086
\(461\) 5.77668e10i 1.27901i 0.768787 + 0.639505i \(0.220861\pi\)
−0.768787 + 0.639505i \(0.779139\pi\)
\(462\) 0 0
\(463\) 5.29309e10 1.15182 0.575911 0.817512i \(-0.304648\pi\)
0.575911 + 0.817512i \(0.304648\pi\)
\(464\) 3.84040e10i 0.828523i
\(465\) 0 0
\(466\) 1.22286e10 0.259317
\(467\) − 3.42083e10i − 0.719224i −0.933102 0.359612i \(-0.882909\pi\)
0.933102 0.359612i \(-0.117091\pi\)
\(468\) 0 0
\(469\) −3.16371e10 −0.653892
\(470\) 2.68540e10i 0.550323i
\(471\) 0 0
\(472\) −3.92556e10 −0.790922
\(473\) − 6.71602e10i − 1.34174i
\(474\) 0 0
\(475\) −3.12076e6 −6.13037e−5 0
\(476\) − 1.55069e10i − 0.302063i
\(477\) 0 0
\(478\) 2.31091e10 0.442662
\(479\) 3.35282e10i 0.636896i 0.947940 + 0.318448i \(0.103162\pi\)
−0.947940 + 0.318448i \(0.896838\pi\)
\(480\) 0 0
\(481\) 1.06575e11 1.99101
\(482\) 2.04444e10i 0.378778i
\(483\) 0 0
\(484\) −2.49816e10 −0.455238
\(485\) − 6.27689e10i − 1.13443i
\(486\) 0 0
\(487\) −8.39697e10 −1.49282 −0.746409 0.665488i \(-0.768224\pi\)
−0.746409 + 0.665488i \(0.768224\pi\)
\(488\) 1.36380e10i 0.240476i
\(489\) 0 0
\(490\) −2.84382e9 −0.0493308
\(491\) 1.98925e10i 0.342266i 0.985248 + 0.171133i \(0.0547427\pi\)
−0.985248 + 0.171133i \(0.945257\pi\)
\(492\) 0 0
\(493\) −2.92679e10 −0.495455
\(494\) − 5.08589e8i − 0.00854003i
\(495\) 0 0
\(496\) 5.12959e10 0.847532
\(497\) 5.77272e10i 0.946138i
\(498\) 0 0
\(499\) −3.78469e10 −0.610419 −0.305209 0.952285i \(-0.598726\pi\)
−0.305209 + 0.952285i \(0.598726\pi\)
\(500\) 5.42423e10i 0.867877i
\(501\) 0 0
\(502\) 6.47923e9 0.102025
\(503\) − 6.98859e10i − 1.09174i −0.837871 0.545868i \(-0.816200\pi\)
0.837871 0.545868i \(-0.183800\pi\)
\(504\) 0 0
\(505\) 1.06060e11 1.63075
\(506\) − 1.71302e10i − 0.261312i
\(507\) 0 0
\(508\) 7.41314e10 1.11313
\(509\) − 2.96345e9i − 0.0441496i −0.999756 0.0220748i \(-0.992973\pi\)
0.999756 0.0220748i \(-0.00702720\pi\)
\(510\) 0 0
\(511\) 2.28019e10 0.334416
\(512\) − 6.77608e10i − 0.986050i
\(513\) 0 0
\(514\) 1.24939e10 0.178997
\(515\) − 9.06302e10i − 1.28838i
\(516\) 0 0
\(517\) 1.34047e11 1.87628
\(518\) 3.65216e10i 0.507260i
\(519\) 0 0
\(520\) 6.52421e10 0.892307
\(521\) 4.90458e10i 0.665657i 0.942987 + 0.332829i \(0.108003\pi\)
−0.942987 + 0.332829i \(0.891997\pi\)
\(522\) 0 0
\(523\) 5.03289e10 0.672683 0.336342 0.941740i \(-0.390810\pi\)
0.336342 + 0.941740i \(0.390810\pi\)
\(524\) 5.54209e10i 0.735103i
\(525\) 0 0
\(526\) −3.02559e10 −0.395246
\(527\) 3.90929e10i 0.506822i
\(528\) 0 0
\(529\) 5.14441e10 0.656921
\(530\) − 4.61182e10i − 0.584478i
\(531\) 0 0
\(532\) −1.15991e9 −0.0144804
\(533\) 1.35924e11i 1.68418i
\(534\) 0 0
\(535\) −2.58636e9 −0.0315699
\(536\) − 3.92364e10i − 0.475368i
\(537\) 0 0
\(538\) −6.52569e9 −0.0778928
\(539\) 1.41955e10i 0.168189i
\(540\) 0 0
\(541\) −1.30236e11 −1.52034 −0.760170 0.649724i \(-0.774885\pi\)
−0.760170 + 0.649724i \(0.774885\pi\)
\(542\) 2.33363e10i 0.270418i
\(543\) 0 0
\(544\) 2.95195e10 0.337065
\(545\) − 7.48521e10i − 0.848434i
\(546\) 0 0
\(547\) 1.13948e11 1.27279 0.636396 0.771362i \(-0.280424\pi\)
0.636396 + 0.771362i \(0.280424\pi\)
\(548\) 4.35128e10i 0.482498i
\(549\) 0 0
\(550\) 1.39642e8 0.00152604
\(551\) 2.18923e9i 0.0237512i
\(552\) 0 0
\(553\) −1.43218e11 −1.53143
\(554\) − 4.75808e9i − 0.0505118i
\(555\) 0 0
\(556\) −6.45895e10 −0.675870
\(557\) − 4.23916e10i − 0.440411i −0.975453 0.220206i \(-0.929327\pi\)
0.975453 0.220206i \(-0.0706729\pi\)
\(558\) 0 0
\(559\) 1.39936e11 1.43312
\(560\) − 5.72384e10i − 0.582017i
\(561\) 0 0
\(562\) 3.49338e10 0.350188
\(563\) 1.20039e11i 1.19478i 0.801949 + 0.597392i \(0.203796\pi\)
−0.801949 + 0.597392i \(0.796204\pi\)
\(564\) 0 0
\(565\) −3.37463e9 −0.0331155
\(566\) 3.51760e10i 0.342753i
\(567\) 0 0
\(568\) −7.15932e10 −0.687826
\(569\) 4.59201e10i 0.438080i 0.975716 + 0.219040i \(0.0702926\pi\)
−0.975716 + 0.219040i \(0.929707\pi\)
\(570\) 0 0
\(571\) −6.54486e10 −0.615681 −0.307840 0.951438i \(-0.599606\pi\)
−0.307840 + 0.951438i \(0.599606\pi\)
\(572\) − 1.51456e11i − 1.41482i
\(573\) 0 0
\(574\) −4.65792e10 −0.429086
\(575\) − 2.19014e8i − 0.00200356i
\(576\) 0 0
\(577\) −1.82107e10 −0.164295 −0.0821474 0.996620i \(-0.526178\pi\)
−0.0821474 + 0.996620i \(0.526178\pi\)
\(578\) − 3.47016e10i − 0.310912i
\(579\) 0 0
\(580\) −1.30605e11 −1.15412
\(581\) 5.26536e10i 0.462087i
\(582\) 0 0
\(583\) −2.30209e11 −1.99272
\(584\) 2.82789e10i 0.243114i
\(585\) 0 0
\(586\) −4.34618e9 −0.0368567
\(587\) − 1.80419e11i − 1.51960i −0.650158 0.759799i \(-0.725297\pi\)
0.650158 0.759799i \(-0.274703\pi\)
\(588\) 0 0
\(589\) 2.92414e9 0.0242961
\(590\) − 5.13556e10i − 0.423819i
\(591\) 0 0
\(592\) 1.15959e11 0.944102
\(593\) − 1.26101e11i − 1.01977i −0.860244 0.509883i \(-0.829689\pi\)
0.860244 0.509883i \(-0.170311\pi\)
\(594\) 0 0
\(595\) 4.36217e10 0.348045
\(596\) 3.06882e10i 0.243213i
\(597\) 0 0
\(598\) 3.56927e10 0.279109
\(599\) − 5.56354e10i − 0.432159i −0.976376 0.216080i \(-0.930673\pi\)
0.976376 0.216080i \(-0.0693271\pi\)
\(600\) 0 0
\(601\) −2.14824e11 −1.64658 −0.823292 0.567618i \(-0.807865\pi\)
−0.823292 + 0.567618i \(0.807865\pi\)
\(602\) 4.79541e10i 0.365123i
\(603\) 0 0
\(604\) −7.02526e10 −0.527855
\(605\) − 7.02743e10i − 0.524536i
\(606\) 0 0
\(607\) 4.35584e10 0.320861 0.160430 0.987047i \(-0.448712\pi\)
0.160430 + 0.987047i \(0.448712\pi\)
\(608\) − 2.20805e9i − 0.0161583i
\(609\) 0 0
\(610\) −1.78418e10 −0.128860
\(611\) 2.79304e11i 2.00406i
\(612\) 0 0
\(613\) −2.07092e11 −1.46663 −0.733316 0.679888i \(-0.762028\pi\)
−0.733316 + 0.679888i \(0.762028\pi\)
\(614\) − 1.20937e10i − 0.0850917i
\(615\) 0 0
\(616\) 1.11602e11 0.775087
\(617\) 2.39440e10i 0.165218i 0.996582 + 0.0826089i \(0.0263252\pi\)
−0.996582 + 0.0826089i \(0.973675\pi\)
\(618\) 0 0
\(619\) 1.50995e11 1.02849 0.514244 0.857644i \(-0.328073\pi\)
0.514244 + 0.857644i \(0.328073\pi\)
\(620\) 1.74449e11i 1.18059i
\(621\) 0 0
\(622\) 5.61916e10 0.375414
\(623\) − 2.32919e11i − 1.54615i
\(624\) 0 0
\(625\) −1.53108e11 −1.00341
\(626\) − 5.56285e10i − 0.362243i
\(627\) 0 0
\(628\) 1.21523e11 0.781307
\(629\) 8.83733e10i 0.564571i
\(630\) 0 0
\(631\) 6.53454e10 0.412190 0.206095 0.978532i \(-0.433924\pi\)
0.206095 + 0.978532i \(0.433924\pi\)
\(632\) − 1.77619e11i − 1.11332i
\(633\) 0 0
\(634\) −1.77180e10 −0.109662
\(635\) 2.08535e11i 1.28258i
\(636\) 0 0
\(637\) −2.95781e10 −0.179644
\(638\) − 9.79598e10i − 0.591242i
\(639\) 0 0
\(640\) 1.69702e11 1.01150
\(641\) − 3.63671e10i − 0.215415i −0.994183 0.107708i \(-0.965649\pi\)
0.994183 0.107708i \(-0.0343510\pi\)
\(642\) 0 0
\(643\) −1.92078e11 −1.12366 −0.561828 0.827254i \(-0.689902\pi\)
−0.561828 + 0.827254i \(0.689902\pi\)
\(644\) − 8.14025e10i − 0.473254i
\(645\) 0 0
\(646\) 4.21729e8 0.00242161
\(647\) 4.70466e10i 0.268479i 0.990949 + 0.134240i \(0.0428592\pi\)
−0.990949 + 0.134240i \(0.957141\pi\)
\(648\) 0 0
\(649\) −2.56353e11 −1.44497
\(650\) 2.90961e8i 0.00162998i
\(651\) 0 0
\(652\) 9.76356e10 0.540279
\(653\) 1.41222e11i 0.776692i 0.921514 + 0.388346i \(0.126953\pi\)
−0.921514 + 0.388346i \(0.873047\pi\)
\(654\) 0 0
\(655\) −1.55902e11 −0.847003
\(656\) 1.47893e11i 0.798606i
\(657\) 0 0
\(658\) −9.57133e10 −0.510586
\(659\) 2.07124e11i 1.09822i 0.835750 + 0.549109i \(0.185033\pi\)
−0.835750 + 0.549109i \(0.814967\pi\)
\(660\) 0 0
\(661\) −1.87243e11 −0.980841 −0.490421 0.871486i \(-0.663157\pi\)
−0.490421 + 0.871486i \(0.663157\pi\)
\(662\) − 2.10837e10i − 0.109778i
\(663\) 0 0
\(664\) −6.53010e10 −0.335929
\(665\) − 3.26289e9i − 0.0166846i
\(666\) 0 0
\(667\) −1.53640e11 −0.776247
\(668\) 1.52725e11i 0.767014i
\(669\) 0 0
\(670\) 5.13305e10 0.254728
\(671\) 8.90609e10i 0.439336i
\(672\) 0 0
\(673\) −4.53506e10 −0.221066 −0.110533 0.993872i \(-0.535256\pi\)
−0.110533 + 0.993872i \(0.535256\pi\)
\(674\) 4.27984e10i 0.207390i
\(675\) 0 0
\(676\) 1.34028e11 0.641815
\(677\) 2.60088e11i 1.23813i 0.785340 + 0.619064i \(0.212488\pi\)
−0.785340 + 0.619064i \(0.787512\pi\)
\(678\) 0 0
\(679\) 2.23721e11 1.05252
\(680\) 5.40996e10i 0.253022i
\(681\) 0 0
\(682\) −1.30844e11 −0.604807
\(683\) − 3.08050e11i − 1.41559i −0.706417 0.707796i \(-0.749690\pi\)
0.706417 0.707796i \(-0.250310\pi\)
\(684\) 0 0
\(685\) −1.22404e11 −0.555945
\(686\) − 8.45252e10i − 0.381672i
\(687\) 0 0
\(688\) 1.52258e11 0.679560
\(689\) − 4.79666e11i − 2.12844i
\(690\) 0 0
\(691\) 2.67485e11 1.17324 0.586620 0.809862i \(-0.300458\pi\)
0.586620 + 0.809862i \(0.300458\pi\)
\(692\) 1.01919e11i 0.444457i
\(693\) 0 0
\(694\) 4.04318e10 0.174295
\(695\) − 1.81693e11i − 0.778753i
\(696\) 0 0
\(697\) −1.12710e11 −0.477564
\(698\) − 9.30862e10i − 0.392160i
\(699\) 0 0
\(700\) 6.63581e8 0.00276377
\(701\) − 1.32742e11i − 0.549713i −0.961485 0.274857i \(-0.911370\pi\)
0.961485 0.274857i \(-0.0886304\pi\)
\(702\) 0 0
\(703\) 6.61029e9 0.0270645
\(704\) − 9.07523e10i − 0.369460i
\(705\) 0 0
\(706\) 1.71235e10 0.0689245
\(707\) 3.78020e11i 1.51299i
\(708\) 0 0
\(709\) −1.35390e11 −0.535800 −0.267900 0.963447i \(-0.586330\pi\)
−0.267900 + 0.963447i \(0.586330\pi\)
\(710\) − 9.36608e10i − 0.368574i
\(711\) 0 0
\(712\) 2.88866e11 1.12402
\(713\) 2.05215e11i 0.794056i
\(714\) 0 0
\(715\) 4.26053e11 1.63019
\(716\) − 4.07069e11i − 1.54887i
\(717\) 0 0
\(718\) 5.29909e10 0.199390
\(719\) − 4.62350e11i − 1.73004i −0.501739 0.865019i \(-0.667306\pi\)
0.501739 0.865019i \(-0.332694\pi\)
\(720\) 0 0
\(721\) 3.23025e11 1.19535
\(722\) 9.81816e10i 0.361311i
\(723\) 0 0
\(724\) −9.81509e10 −0.357224
\(725\) − 1.25245e9i − 0.00453323i
\(726\) 0 0
\(727\) 3.60324e11 1.28990 0.644950 0.764225i \(-0.276878\pi\)
0.644950 + 0.764225i \(0.276878\pi\)
\(728\) 2.32536e11i 0.827876i
\(729\) 0 0
\(730\) −3.69954e10 −0.130274
\(731\) 1.16037e11i 0.406375i
\(732\) 0 0
\(733\) −3.39027e11 −1.17441 −0.587204 0.809439i \(-0.699771\pi\)
−0.587204 + 0.809439i \(0.699771\pi\)
\(734\) 9.41780e10i 0.324463i
\(735\) 0 0
\(736\) 1.54960e11 0.528092
\(737\) − 2.56227e11i − 0.868470i
\(738\) 0 0
\(739\) −5.40896e10 −0.181358 −0.0906788 0.995880i \(-0.528904\pi\)
−0.0906788 + 0.995880i \(0.528904\pi\)
\(740\) 3.94358e11i 1.31511i
\(741\) 0 0
\(742\) 1.64375e11 0.542275
\(743\) 4.20299e11i 1.37912i 0.724226 + 0.689562i \(0.242197\pi\)
−0.724226 + 0.689562i \(0.757803\pi\)
\(744\) 0 0
\(745\) −8.63273e10 −0.280236
\(746\) 5.22878e10i 0.168828i
\(747\) 0 0
\(748\) 1.25590e11 0.401187
\(749\) − 9.21832e9i − 0.0292904i
\(750\) 0 0
\(751\) 2.60430e11 0.818712 0.409356 0.912375i \(-0.365753\pi\)
0.409356 + 0.912375i \(0.365753\pi\)
\(752\) 3.03898e11i 0.950291i
\(753\) 0 0
\(754\) 2.04111e11 0.631510
\(755\) − 1.97624e11i − 0.608207i
\(756\) 0 0
\(757\) 4.52924e11 1.37925 0.689623 0.724168i \(-0.257776\pi\)
0.689623 + 0.724168i \(0.257776\pi\)
\(758\) 9.08842e10i 0.275303i
\(759\) 0 0
\(760\) 4.04664e9 0.0121294
\(761\) 5.51539e10i 0.164452i 0.996614 + 0.0822258i \(0.0262029\pi\)
−0.996614 + 0.0822258i \(0.973797\pi\)
\(762\) 0 0
\(763\) 2.66789e11 0.787171
\(764\) − 3.60108e11i − 1.05696i
\(765\) 0 0
\(766\) −1.14571e11 −0.332782
\(767\) − 5.34140e11i − 1.54338i
\(768\) 0 0
\(769\) −1.66570e11 −0.476313 −0.238156 0.971227i \(-0.576543\pi\)
−0.238156 + 0.971227i \(0.576543\pi\)
\(770\) 1.46002e11i 0.415333i
\(771\) 0 0
\(772\) 2.52028e11 0.709543
\(773\) − 7.29931e9i − 0.0204439i −0.999948 0.0102219i \(-0.996746\pi\)
0.999948 0.0102219i \(-0.00325380\pi\)
\(774\) 0 0
\(775\) −1.67288e9 −0.00463723
\(776\) 2.77459e11i 0.765160i
\(777\) 0 0
\(778\) −1.76792e11 −0.482553
\(779\) 8.43068e9i 0.0228935i
\(780\) 0 0
\(781\) −4.67528e11 −1.25662
\(782\) 2.95969e10i 0.0791441i
\(783\) 0 0
\(784\) −3.21826e10 −0.0851839
\(785\) 3.41851e11i 0.900240i
\(786\) 0 0
\(787\) 1.51500e10 0.0394923 0.0197461 0.999805i \(-0.493714\pi\)
0.0197461 + 0.999805i \(0.493714\pi\)
\(788\) − 6.46050e11i − 1.67556i
\(789\) 0 0
\(790\) 2.32368e11 0.596579
\(791\) − 1.20279e10i − 0.0307244i
\(792\) 0 0
\(793\) −1.85569e11 −0.469259
\(794\) − 1.18306e11i − 0.297663i
\(795\) 0 0
\(796\) 1.69247e11 0.421569
\(797\) − 6.63280e11i − 1.64386i −0.569592 0.821928i \(-0.692899\pi\)
0.569592 0.821928i \(-0.307101\pi\)
\(798\) 0 0
\(799\) −2.31602e11 −0.568272
\(800\) 1.26321e9i 0.00308402i
\(801\) 0 0
\(802\) −6.48662e10 −0.156791
\(803\) 1.84671e11i 0.444156i
\(804\) 0 0
\(805\) 2.28989e11 0.545294
\(806\) − 2.72629e11i − 0.645999i
\(807\) 0 0
\(808\) −4.68820e11 −1.09992
\(809\) 1.85171e11i 0.432293i 0.976361 + 0.216146i \(0.0693488\pi\)
−0.976361 + 0.216146i \(0.930651\pi\)
\(810\) 0 0
\(811\) 4.16615e11 0.963057 0.481528 0.876430i \(-0.340082\pi\)
0.481528 + 0.876430i \(0.340082\pi\)
\(812\) − 4.65505e11i − 1.07078i
\(813\) 0 0
\(814\) −2.95786e11 −0.673721
\(815\) 2.74653e11i 0.622522i
\(816\) 0 0
\(817\) 8.67953e9 0.0194809
\(818\) − 2.93492e10i − 0.0655517i
\(819\) 0 0
\(820\) −5.02959e11 −1.11244
\(821\) 5.47092e11i 1.20417i 0.798432 + 0.602085i \(0.205663\pi\)
−0.798432 + 0.602085i \(0.794337\pi\)
\(822\) 0 0
\(823\) 4.57975e11 0.998258 0.499129 0.866528i \(-0.333653\pi\)
0.499129 + 0.866528i \(0.333653\pi\)
\(824\) 4.00615e11i 0.868998i
\(825\) 0 0
\(826\) 1.83042e11 0.393216
\(827\) 5.62301e11i 1.20212i 0.799205 + 0.601058i \(0.205254\pi\)
−0.799205 + 0.601058i \(0.794746\pi\)
\(828\) 0 0
\(829\) −7.49184e11 −1.58625 −0.793123 0.609062i \(-0.791546\pi\)
−0.793123 + 0.609062i \(0.791546\pi\)
\(830\) − 8.54291e10i − 0.180009i
\(831\) 0 0
\(832\) 1.89093e11 0.394623
\(833\) − 2.45266e10i − 0.0509397i
\(834\) 0 0
\(835\) −4.29622e11 −0.883772
\(836\) − 9.39406e9i − 0.0192322i
\(837\) 0 0
\(838\) 7.64590e10 0.155043
\(839\) − 1.99264e11i − 0.402143i −0.979577 0.201072i \(-0.935558\pi\)
0.979577 0.201072i \(-0.0644424\pi\)
\(840\) 0 0
\(841\) −3.78351e11 −0.756329
\(842\) 3.29661e11i 0.655873i
\(843\) 0 0
\(844\) −5.38481e11 −1.06121
\(845\) 3.77028e11i 0.739514i
\(846\) 0 0
\(847\) 2.50472e11 0.486660
\(848\) − 5.21904e11i − 1.00927i
\(849\) 0 0
\(850\) −2.41269e8 −0.000462196 0
\(851\) 4.63909e11i 0.884534i
\(852\) 0 0
\(853\) 1.58598e11 0.299572 0.149786 0.988718i \(-0.452141\pi\)
0.149786 + 0.988718i \(0.452141\pi\)
\(854\) − 6.35918e10i − 0.119555i
\(855\) 0 0
\(856\) 1.14326e10 0.0212936
\(857\) − 6.91737e11i − 1.28238i −0.767381 0.641191i \(-0.778441\pi\)
0.767381 0.641191i \(-0.221559\pi\)
\(858\) 0 0
\(859\) −6.97094e11 −1.28032 −0.640160 0.768241i \(-0.721132\pi\)
−0.640160 + 0.768241i \(0.721132\pi\)
\(860\) 5.17805e11i 0.946613i
\(861\) 0 0
\(862\) 7.24879e10 0.131291
\(863\) 5.88063e11i 1.06018i 0.847940 + 0.530092i \(0.177842\pi\)
−0.847940 + 0.530092i \(0.822158\pi\)
\(864\) 0 0
\(865\) −2.86702e11 −0.512113
\(866\) 2.35773e10i 0.0419201i
\(867\) 0 0
\(868\) −6.21771e11 −1.09535
\(869\) − 1.15991e12i − 2.03398i
\(870\) 0 0
\(871\) 5.33879e11 0.927620
\(872\) 3.30871e11i 0.572259i
\(873\) 0 0
\(874\) 2.21384e9 0.00379402
\(875\) − 5.43849e11i − 0.927782i
\(876\) 0 0
\(877\) −1.40313e11 −0.237192 −0.118596 0.992943i \(-0.537839\pi\)
−0.118596 + 0.992943i \(0.537839\pi\)
\(878\) − 1.40442e10i − 0.0236330i
\(879\) 0 0
\(880\) 4.63570e11 0.773009
\(881\) − 7.87575e10i − 0.130734i −0.997861 0.0653670i \(-0.979178\pi\)
0.997861 0.0653670i \(-0.0208218\pi\)
\(882\) 0 0
\(883\) −6.05141e11 −0.995437 −0.497719 0.867339i \(-0.665829\pi\)
−0.497719 + 0.867339i \(0.665829\pi\)
\(884\) 2.61680e11i 0.428511i
\(885\) 0 0
\(886\) −1.88439e11 −0.305799
\(887\) 3.28250e11i 0.530286i 0.964209 + 0.265143i \(0.0854191\pi\)
−0.964209 + 0.265143i \(0.914581\pi\)
\(888\) 0 0
\(889\) −7.43262e11 −1.18997
\(890\) 3.77905e11i 0.602313i
\(891\) 0 0
\(892\) −2.73283e11 −0.431671
\(893\) 1.73238e10i 0.0272419i
\(894\) 0 0
\(895\) 1.14510e12 1.78465
\(896\) 6.04853e11i 0.938465i
\(897\) 0 0
\(898\) 1.55886e11 0.239718
\(899\) 1.17354e12i 1.79662i
\(900\) 0 0
\(901\) 3.97746e11 0.603541
\(902\) − 3.77241e11i − 0.569893i
\(903\) 0 0
\(904\) 1.49170e10 0.0223361
\(905\) − 2.76103e11i − 0.411601i
\(906\) 0 0
\(907\) 3.15443e11 0.466114 0.233057 0.972463i \(-0.425127\pi\)
0.233057 + 0.972463i \(0.425127\pi\)
\(908\) − 4.28763e11i − 0.630774i
\(909\) 0 0
\(910\) −3.04213e11 −0.443620
\(911\) − 1.27525e12i − 1.85149i −0.378149 0.925745i \(-0.623439\pi\)
0.378149 0.925745i \(-0.376561\pi\)
\(912\) 0 0
\(913\) −4.26437e11 −0.613723
\(914\) − 4.01249e11i − 0.574949i
\(915\) 0 0
\(916\) −1.18625e12 −1.68498
\(917\) − 5.55666e11i − 0.785844i
\(918\) 0 0
\(919\) 9.91643e11 1.39025 0.695126 0.718888i \(-0.255349\pi\)
0.695126 + 0.718888i \(0.255349\pi\)
\(920\) 2.83992e11i 0.396419i
\(921\) 0 0
\(922\) 3.34056e11 0.462270
\(923\) − 9.74149e11i − 1.34220i
\(924\) 0 0
\(925\) −3.78171e9 −0.00516561
\(926\) − 3.06091e11i − 0.416300i
\(927\) 0 0
\(928\) 8.86150e11 1.19486
\(929\) 1.41759e12i 1.90322i 0.307308 + 0.951610i \(0.400572\pi\)
−0.307308 + 0.951610i \(0.599428\pi\)
\(930\) 0 0
\(931\) −1.83458e9 −0.00244196
\(932\) 4.70629e11i 0.623757i
\(933\) 0 0
\(934\) −1.97821e11 −0.259947
\(935\) 3.53289e11i 0.462257i
\(936\) 0 0
\(937\) −1.38380e12 −1.79521 −0.897606 0.440800i \(-0.854695\pi\)
−0.897606 + 0.440800i \(0.854695\pi\)
\(938\) 1.82953e11i 0.236334i
\(939\) 0 0
\(940\) −1.03351e12 −1.32374
\(941\) − 6.38123e11i − 0.813853i −0.913461 0.406926i \(-0.866601\pi\)
0.913461 0.406926i \(-0.133399\pi\)
\(942\) 0 0
\(943\) −5.91663e11 −0.748217
\(944\) − 5.81175e11i − 0.731845i
\(945\) 0 0
\(946\) −3.88376e11 −0.484940
\(947\) − 1.28017e12i − 1.59173i −0.605476 0.795864i \(-0.707017\pi\)
0.605476 0.795864i \(-0.292983\pi\)
\(948\) 0 0
\(949\) −3.84783e11 −0.474407
\(950\) 1.80469e7i 0 2.21568e-5i
\(951\) 0 0
\(952\) −1.92822e11 −0.234752
\(953\) − 3.43083e11i − 0.415936i −0.978136 0.207968i \(-0.933315\pi\)
0.978136 0.207968i \(-0.0666851\pi\)
\(954\) 0 0
\(955\) 1.01300e12 1.21786
\(956\) 8.89381e11i 1.06477i
\(957\) 0 0
\(958\) 1.93888e11 0.230192
\(959\) − 4.36272e11i − 0.515802i
\(960\) 0 0
\(961\) 7.14591e11 0.837845
\(962\) − 6.16304e11i − 0.719606i
\(963\) 0 0
\(964\) −7.86823e11 −0.911106
\(965\) 7.08965e11i 0.817553i
\(966\) 0 0
\(967\) −2.04278e11 −0.233623 −0.116811 0.993154i \(-0.537267\pi\)
−0.116811 + 0.993154i \(0.537267\pi\)
\(968\) 3.10636e11i 0.353794i
\(969\) 0 0
\(970\) −3.62982e11 −0.410014
\(971\) − 9.01348e11i − 1.01395i −0.861962 0.506974i \(-0.830764\pi\)
0.861962 0.506974i \(-0.169236\pi\)
\(972\) 0 0
\(973\) 6.47593e11 0.722521
\(974\) 4.85583e11i 0.539545i
\(975\) 0 0
\(976\) −2.01909e11 −0.222514
\(977\) 1.22590e12i 1.34548i 0.739880 + 0.672739i \(0.234882\pi\)
−0.739880 + 0.672739i \(0.765118\pi\)
\(978\) 0 0
\(979\) 1.88639e12 2.05353
\(980\) − 1.09448e11i − 0.118659i
\(981\) 0 0
\(982\) 1.15035e11 0.123704
\(983\) 4.96952e11i 0.532231i 0.963941 + 0.266116i \(0.0857403\pi\)
−0.963941 + 0.266116i \(0.914260\pi\)
\(984\) 0 0
\(985\) 1.81737e12 1.93062
\(986\) 1.69252e11i 0.179071i
\(987\) 0 0
\(988\) 1.95736e10 0.0205420
\(989\) 6.09127e11i 0.636682i
\(990\) 0 0
\(991\) 6.31886e10 0.0655155 0.0327578 0.999463i \(-0.489571\pi\)
0.0327578 + 0.999463i \(0.489571\pi\)
\(992\) − 1.18362e12i − 1.22227i
\(993\) 0 0
\(994\) 3.33827e11 0.341960
\(995\) 4.76100e11i 0.485742i
\(996\) 0 0
\(997\) 1.78193e12 1.80347 0.901736 0.432287i \(-0.142293\pi\)
0.901736 + 0.432287i \(0.142293\pi\)
\(998\) 2.18862e11i 0.220622i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.b.b.80.8 16
3.2 odd 2 inner 81.9.b.b.80.9 yes 16
9.2 odd 6 81.9.d.g.53.9 32
9.4 even 3 81.9.d.g.26.9 32
9.5 odd 6 81.9.d.g.26.8 32
9.7 even 3 81.9.d.g.53.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.9.b.b.80.8 16 1.1 even 1 trivial
81.9.b.b.80.9 yes 16 3.2 odd 2 inner
81.9.d.g.26.8 32 9.5 odd 6
81.9.d.g.26.9 32 9.4 even 3
81.9.d.g.53.8 32 9.7 even 3
81.9.d.g.53.9 32 9.2 odd 6