Properties

Label 81.9.b.b.80.2
Level $81$
Weight $9$
Character 81.80
Analytic conductor $32.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1024 x^{14} + 419701 x^{12} + 88203292 x^{10} + 10121979748 x^{8} + 629108384896 x^{6} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{84} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.2
Root \(14.8268i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.9.b.b.80.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.6809i q^{2} -403.506 q^{4} -204.369i q^{5} -3702.42 q^{7} +3788.08i q^{8} -5248.38 q^{10} -16110.0i q^{11} -36927.6 q^{13} +95081.3i q^{14} -6016.39 q^{16} +47526.9i q^{17} +213962. q^{19} +82464.3i q^{20} -413718. q^{22} -166164. i q^{23} +348858. q^{25} +948331. i q^{26} +1.49395e6 q^{28} +1.36079e6i q^{29} -218596. q^{31} +1.12426e6i q^{32} +1.22053e6 q^{34} +756662. i q^{35} +1.15091e6 q^{37} -5.49473e6i q^{38} +774168. q^{40} +743082. i q^{41} -2.93033e6 q^{43} +6.50048e6i q^{44} -4.26723e6 q^{46} -7.29432e6i q^{47} +7.94312e6 q^{49} -8.95897e6i q^{50} +1.49005e7 q^{52} -2.55324e6i q^{53} -3.29239e6 q^{55} -1.40251e7i q^{56} +3.49462e7 q^{58} -5.13009e6i q^{59} -2.69536e6 q^{61} +5.61372e6i q^{62} +2.73316e7 q^{64} +7.54686e6i q^{65} +638615. q^{67} -1.91774e7i q^{68} +1.94317e7 q^{70} +3.72932e7i q^{71} -2.13898e7 q^{73} -2.95563e7i q^{74} -8.63350e7 q^{76} +5.96459e7i q^{77} -5.00618e7 q^{79} +1.22957e6i q^{80} +1.90830e7 q^{82} +3.27763e7i q^{83} +9.71304e6 q^{85} +7.52535e7i q^{86} +6.10259e7 q^{88} +6.85873e6i q^{89} +1.36721e8 q^{91} +6.70482e7i q^{92} -1.87324e8 q^{94} -4.37273e7i q^{95} -8.28116e7 q^{97} -2.03986e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2048 q^{4} + 3692 q^{7} + 10752 q^{10} + 63860 q^{13} + 95116 q^{16} + 185108 q^{19} - 691980 q^{22} - 541712 q^{25} - 997132 q^{28} + 571136 q^{31} + 1027656 q^{34} + 4354268 q^{37} - 2973768 q^{40}+ \cdots - 133878688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 25.6809i − 1.60505i −0.596616 0.802527i \(-0.703489\pi\)
0.596616 0.802527i \(-0.296511\pi\)
\(3\) 0 0
\(4\) −403.506 −1.57620
\(5\) − 204.369i − 0.326991i −0.986544 0.163496i \(-0.947723\pi\)
0.986544 0.163496i \(-0.0522769\pi\)
\(6\) 0 0
\(7\) −3702.42 −1.54203 −0.771017 0.636815i \(-0.780251\pi\)
−0.771017 + 0.636815i \(0.780251\pi\)
\(8\) 3788.08i 0.924825i
\(9\) 0 0
\(10\) −5248.38 −0.524838
\(11\) − 16110.0i − 1.10033i −0.835055 0.550167i \(-0.814564\pi\)
0.835055 0.550167i \(-0.185436\pi\)
\(12\) 0 0
\(13\) −36927.6 −1.29294 −0.646468 0.762941i \(-0.723755\pi\)
−0.646468 + 0.762941i \(0.723755\pi\)
\(14\) 95081.3i 2.47505i
\(15\) 0 0
\(16\) −6016.39 −0.0918028
\(17\) 47526.9i 0.569041i 0.958670 + 0.284520i \(0.0918344\pi\)
−0.958670 + 0.284520i \(0.908166\pi\)
\(18\) 0 0
\(19\) 213962. 1.64181 0.820904 0.571066i \(-0.193470\pi\)
0.820904 + 0.571066i \(0.193470\pi\)
\(20\) 82464.3i 0.515402i
\(21\) 0 0
\(22\) −413718. −1.76609
\(23\) − 166164.i − 0.593780i −0.954912 0.296890i \(-0.904051\pi\)
0.954912 0.296890i \(-0.0959495\pi\)
\(24\) 0 0
\(25\) 348858. 0.893077
\(26\) 948331.i 2.07523i
\(27\) 0 0
\(28\) 1.49395e6 2.43055
\(29\) 1.36079e6i 1.92397i 0.273105 + 0.961984i \(0.411949\pi\)
−0.273105 + 0.961984i \(0.588051\pi\)
\(30\) 0 0
\(31\) −218596. −0.236698 −0.118349 0.992972i \(-0.537760\pi\)
−0.118349 + 0.992972i \(0.537760\pi\)
\(32\) 1.12426e6i 1.07217i
\(33\) 0 0
\(34\) 1.22053e6 0.913341
\(35\) 756662.i 0.504231i
\(36\) 0 0
\(37\) 1.15091e6 0.614093 0.307046 0.951695i \(-0.400659\pi\)
0.307046 + 0.951695i \(0.400659\pi\)
\(38\) − 5.49473e6i − 2.63519i
\(39\) 0 0
\(40\) 774168. 0.302409
\(41\) 743082.i 0.262967i 0.991318 + 0.131484i \(0.0419740\pi\)
−0.991318 + 0.131484i \(0.958026\pi\)
\(42\) 0 0
\(43\) −2.93033e6 −0.857123 −0.428562 0.903513i \(-0.640980\pi\)
−0.428562 + 0.903513i \(0.640980\pi\)
\(44\) 6.50048e6i 1.73434i
\(45\) 0 0
\(46\) −4.26723e6 −0.953048
\(47\) − 7.29432e6i − 1.49483i −0.664355 0.747417i \(-0.731294\pi\)
0.664355 0.747417i \(-0.268706\pi\)
\(48\) 0 0
\(49\) 7.94312e6 1.37787
\(50\) − 8.95897e6i − 1.43344i
\(51\) 0 0
\(52\) 1.49005e7 2.03792
\(53\) − 2.55324e6i − 0.323585i −0.986825 0.161792i \(-0.948273\pi\)
0.986825 0.161792i \(-0.0517275\pi\)
\(54\) 0 0
\(55\) −3.29239e6 −0.359799
\(56\) − 1.40251e7i − 1.42611i
\(57\) 0 0
\(58\) 3.49462e7 3.08807
\(59\) − 5.13009e6i − 0.423367i −0.977338 0.211684i \(-0.932105\pi\)
0.977338 0.211684i \(-0.0678946\pi\)
\(60\) 0 0
\(61\) −2.69536e6 −0.194669 −0.0973346 0.995252i \(-0.531032\pi\)
−0.0973346 + 0.995252i \(0.531032\pi\)
\(62\) 5.61372e6i 0.379913i
\(63\) 0 0
\(64\) 2.73316e7 1.62909
\(65\) 7.54686e6i 0.422779i
\(66\) 0 0
\(67\) 638615. 0.0316913 0.0158456 0.999874i \(-0.494956\pi\)
0.0158456 + 0.999874i \(0.494956\pi\)
\(68\) − 1.91774e7i − 0.896920i
\(69\) 0 0
\(70\) 1.94317e7 0.809318
\(71\) 3.72932e7i 1.46756i 0.679387 + 0.733780i \(0.262246\pi\)
−0.679387 + 0.733780i \(0.737754\pi\)
\(72\) 0 0
\(73\) −2.13898e7 −0.753209 −0.376604 0.926374i \(-0.622908\pi\)
−0.376604 + 0.926374i \(0.622908\pi\)
\(74\) − 2.95563e7i − 0.985652i
\(75\) 0 0
\(76\) −8.63350e7 −2.58781
\(77\) 5.96459e7i 1.69675i
\(78\) 0 0
\(79\) −5.00618e7 −1.28528 −0.642641 0.766167i \(-0.722161\pi\)
−0.642641 + 0.766167i \(0.722161\pi\)
\(80\) 1.22957e6i 0.0300187i
\(81\) 0 0
\(82\) 1.90830e7 0.422076
\(83\) 3.27763e7i 0.690634i 0.938486 + 0.345317i \(0.112229\pi\)
−0.938486 + 0.345317i \(0.887771\pi\)
\(84\) 0 0
\(85\) 9.71304e6 0.186071
\(86\) 7.52535e7i 1.37573i
\(87\) 0 0
\(88\) 6.10259e7 1.01762
\(89\) 6.85873e6i 0.109316i 0.998505 + 0.0546580i \(0.0174069\pi\)
−0.998505 + 0.0546580i \(0.982593\pi\)
\(90\) 0 0
\(91\) 1.36721e8 1.99375
\(92\) 6.70482e7i 0.935913i
\(93\) 0 0
\(94\) −1.87324e8 −2.39929
\(95\) − 4.37273e7i − 0.536856i
\(96\) 0 0
\(97\) −8.28116e7 −0.935415 −0.467708 0.883883i \(-0.654920\pi\)
−0.467708 + 0.883883i \(0.654920\pi\)
\(98\) − 2.03986e8i − 2.21155i
\(99\) 0 0
\(100\) −1.40766e8 −1.40766
\(101\) 1.98231e8i 1.90496i 0.304601 + 0.952480i \(0.401477\pi\)
−0.304601 + 0.952480i \(0.598523\pi\)
\(102\) 0 0
\(103\) 2.11965e8 1.88328 0.941641 0.336617i \(-0.109283\pi\)
0.941641 + 0.336617i \(0.109283\pi\)
\(104\) − 1.39885e8i − 1.19574i
\(105\) 0 0
\(106\) −6.55693e7 −0.519370
\(107\) 1.63763e8i 1.24934i 0.780887 + 0.624672i \(0.214767\pi\)
−0.780887 + 0.624672i \(0.785233\pi\)
\(108\) 0 0
\(109\) −2.21458e8 −1.56887 −0.784434 0.620213i \(-0.787046\pi\)
−0.784434 + 0.620213i \(0.787046\pi\)
\(110\) 8.45513e7i 0.577497i
\(111\) 0 0
\(112\) 2.22752e7 0.141563
\(113\) − 7.09376e7i − 0.435074i −0.976052 0.217537i \(-0.930198\pi\)
0.976052 0.217537i \(-0.0698022\pi\)
\(114\) 0 0
\(115\) −3.39588e7 −0.194161
\(116\) − 5.49086e8i − 3.03255i
\(117\) 0 0
\(118\) −1.31745e8 −0.679527
\(119\) − 1.75964e8i − 0.877480i
\(120\) 0 0
\(121\) −4.51727e7 −0.210734
\(122\) 6.92191e7i 0.312454i
\(123\) 0 0
\(124\) 8.82047e7 0.373082
\(125\) − 1.51128e8i − 0.619019i
\(126\) 0 0
\(127\) −2.24298e8 −0.862205 −0.431102 0.902303i \(-0.641875\pi\)
−0.431102 + 0.902303i \(0.641875\pi\)
\(128\) − 4.14090e8i − 1.54261i
\(129\) 0 0
\(130\) 1.93810e8 0.678582
\(131\) 3.54929e8i 1.20519i 0.798046 + 0.602596i \(0.205867\pi\)
−0.798046 + 0.602596i \(0.794133\pi\)
\(132\) 0 0
\(133\) −7.92178e8 −2.53172
\(134\) − 1.64002e7i − 0.0508662i
\(135\) 0 0
\(136\) −1.80036e8 −0.526263
\(137\) 7.45724e7i 0.211688i 0.994383 + 0.105844i \(0.0337544\pi\)
−0.994383 + 0.105844i \(0.966246\pi\)
\(138\) 0 0
\(139\) 8.33165e6 0.0223189 0.0111594 0.999938i \(-0.496448\pi\)
0.0111594 + 0.999938i \(0.496448\pi\)
\(140\) − 3.05318e8i − 0.794767i
\(141\) 0 0
\(142\) 9.57720e8 2.35551
\(143\) 5.94902e8i 1.42266i
\(144\) 0 0
\(145\) 2.78103e8 0.629121
\(146\) 5.49308e8i 1.20894i
\(147\) 0 0
\(148\) −4.64399e8 −0.967931
\(149\) − 6.82669e8i − 1.38505i −0.721395 0.692524i \(-0.756499\pi\)
0.721395 0.692524i \(-0.243501\pi\)
\(150\) 0 0
\(151\) 1.21678e8 0.234048 0.117024 0.993129i \(-0.462665\pi\)
0.117024 + 0.993129i \(0.462665\pi\)
\(152\) 8.10506e8i 1.51838i
\(153\) 0 0
\(154\) 1.53176e9 2.72338
\(155\) 4.46743e7i 0.0773981i
\(156\) 0 0
\(157\) −7.46851e7 −0.122924 −0.0614618 0.998109i \(-0.519576\pi\)
−0.0614618 + 0.998109i \(0.519576\pi\)
\(158\) 1.28563e9i 2.06295i
\(159\) 0 0
\(160\) 2.29763e8 0.350591
\(161\) 6.15209e8i 0.915628i
\(162\) 0 0
\(163\) 5.65546e8 0.801157 0.400578 0.916262i \(-0.368809\pi\)
0.400578 + 0.916262i \(0.368809\pi\)
\(164\) − 2.99838e8i − 0.414487i
\(165\) 0 0
\(166\) 8.41724e8 1.10850
\(167\) − 2.52056e8i − 0.324064i −0.986786 0.162032i \(-0.948195\pi\)
0.986786 0.162032i \(-0.0518048\pi\)
\(168\) 0 0
\(169\) 5.47914e8 0.671684
\(170\) − 2.49439e8i − 0.298654i
\(171\) 0 0
\(172\) 1.18241e9 1.35099
\(173\) 2.80329e8i 0.312956i 0.987681 + 0.156478i \(0.0500140\pi\)
−0.987681 + 0.156478i \(0.949986\pi\)
\(174\) 0 0
\(175\) −1.29162e9 −1.37715
\(176\) 9.69239e7i 0.101014i
\(177\) 0 0
\(178\) 1.76138e8 0.175458
\(179\) 4.01384e8i 0.390974i 0.980706 + 0.195487i \(0.0626287\pi\)
−0.980706 + 0.195487i \(0.937371\pi\)
\(180\) 0 0
\(181\) −1.39158e9 −1.29657 −0.648284 0.761399i \(-0.724513\pi\)
−0.648284 + 0.761399i \(0.724513\pi\)
\(182\) − 3.51112e9i − 3.20008i
\(183\) 0 0
\(184\) 6.29443e8 0.549142
\(185\) − 2.35211e8i − 0.200803i
\(186\) 0 0
\(187\) 7.65657e8 0.626135
\(188\) 2.94330e9i 2.35615i
\(189\) 0 0
\(190\) −1.12295e9 −0.861683
\(191\) 1.70072e8i 0.127791i 0.997957 + 0.0638953i \(0.0203524\pi\)
−0.997957 + 0.0638953i \(0.979648\pi\)
\(192\) 0 0
\(193\) −5.81891e8 −0.419384 −0.209692 0.977767i \(-0.567246\pi\)
−0.209692 + 0.977767i \(0.567246\pi\)
\(194\) 2.12667e9i 1.50139i
\(195\) 0 0
\(196\) −3.20510e9 −2.17179
\(197\) − 1.19043e9i − 0.790385i −0.918598 0.395193i \(-0.870678\pi\)
0.918598 0.395193i \(-0.129322\pi\)
\(198\) 0 0
\(199\) −1.88525e9 −1.20214 −0.601071 0.799196i \(-0.705259\pi\)
−0.601071 + 0.799196i \(0.705259\pi\)
\(200\) 1.32150e9i 0.825940i
\(201\) 0 0
\(202\) 5.09074e9 3.05756
\(203\) − 5.03820e9i − 2.96682i
\(204\) 0 0
\(205\) 1.51863e8 0.0859879
\(206\) − 5.44345e9i − 3.02277i
\(207\) 0 0
\(208\) 2.22171e8 0.118695
\(209\) − 3.44692e9i − 1.80654i
\(210\) 0 0
\(211\) −3.97153e8 −0.200368 −0.100184 0.994969i \(-0.531943\pi\)
−0.100184 + 0.994969i \(0.531943\pi\)
\(212\) 1.03025e9i 0.510033i
\(213\) 0 0
\(214\) 4.20558e9 2.00526
\(215\) 5.98871e8i 0.280272i
\(216\) 0 0
\(217\) 8.09333e8 0.364996
\(218\) 5.68724e9i 2.51812i
\(219\) 0 0
\(220\) 1.32850e9 0.567114
\(221\) − 1.75505e9i − 0.735734i
\(222\) 0 0
\(223\) −1.86106e9 −0.752559 −0.376279 0.926506i \(-0.622797\pi\)
−0.376279 + 0.926506i \(0.622797\pi\)
\(224\) − 4.16247e9i − 1.65333i
\(225\) 0 0
\(226\) −1.82174e9 −0.698316
\(227\) 2.18925e9i 0.824504i 0.911070 + 0.412252i \(0.135258\pi\)
−0.911070 + 0.412252i \(0.864742\pi\)
\(228\) 0 0
\(229\) −2.15049e9 −0.781981 −0.390990 0.920395i \(-0.627867\pi\)
−0.390990 + 0.920395i \(0.627867\pi\)
\(230\) 8.72092e8i 0.311638i
\(231\) 0 0
\(232\) −5.15477e9 −1.77933
\(233\) 3.41313e9i 1.15805i 0.815308 + 0.579027i \(0.196567\pi\)
−0.815308 + 0.579027i \(0.803433\pi\)
\(234\) 0 0
\(235\) −1.49074e9 −0.488798
\(236\) 2.07002e9i 0.667310i
\(237\) 0 0
\(238\) −4.51892e9 −1.40840
\(239\) 3.28566e9i 1.00700i 0.863994 + 0.503502i \(0.167955\pi\)
−0.863994 + 0.503502i \(0.832045\pi\)
\(240\) 0 0
\(241\) 4.03482e9 1.19607 0.598035 0.801470i \(-0.295949\pi\)
0.598035 + 0.801470i \(0.295949\pi\)
\(242\) 1.16007e9i 0.338239i
\(243\) 0 0
\(244\) 1.08759e9 0.306837
\(245\) − 1.62333e9i − 0.450550i
\(246\) 0 0
\(247\) −7.90109e9 −2.12275
\(248\) − 8.28058e8i − 0.218904i
\(249\) 0 0
\(250\) −3.88109e9 −0.993559
\(251\) − 4.69477e9i − 1.18282i −0.806371 0.591411i \(-0.798571\pi\)
0.806371 0.591411i \(-0.201429\pi\)
\(252\) 0 0
\(253\) −2.67690e9 −0.653356
\(254\) 5.76016e9i 1.38388i
\(255\) 0 0
\(256\) −3.63729e9 −0.846873
\(257\) 1.27509e8i 0.0292287i 0.999893 + 0.0146143i \(0.00465206\pi\)
−0.999893 + 0.0146143i \(0.995348\pi\)
\(258\) 0 0
\(259\) −4.26115e9 −0.946952
\(260\) − 3.04521e9i − 0.666382i
\(261\) 0 0
\(262\) 9.11488e9 1.93440
\(263\) − 2.32140e9i − 0.485206i −0.970126 0.242603i \(-0.921999\pi\)
0.970126 0.242603i \(-0.0780013\pi\)
\(264\) 0 0
\(265\) −5.21804e8 −0.105809
\(266\) 2.03438e10i 4.06355i
\(267\) 0 0
\(268\) −2.57685e8 −0.0499517
\(269\) 7.86019e9i 1.50115i 0.660785 + 0.750575i \(0.270223\pi\)
−0.660785 + 0.750575i \(0.729777\pi\)
\(270\) 0 0
\(271\) 2.14381e9 0.397474 0.198737 0.980053i \(-0.436316\pi\)
0.198737 + 0.980053i \(0.436316\pi\)
\(272\) − 2.85940e8i − 0.0522396i
\(273\) 0 0
\(274\) 1.91508e9 0.339770
\(275\) − 5.62010e9i − 0.982682i
\(276\) 0 0
\(277\) 7.75038e8 0.131645 0.0658224 0.997831i \(-0.479033\pi\)
0.0658224 + 0.997831i \(0.479033\pi\)
\(278\) − 2.13964e8i − 0.0358229i
\(279\) 0 0
\(280\) −2.86630e9 −0.466325
\(281\) 7.95756e9i 1.27631i 0.769910 + 0.638153i \(0.220301\pi\)
−0.769910 + 0.638153i \(0.779699\pi\)
\(282\) 0 0
\(283\) 1.95801e9 0.305259 0.152630 0.988283i \(-0.451226\pi\)
0.152630 + 0.988283i \(0.451226\pi\)
\(284\) − 1.50480e10i − 2.31316i
\(285\) 0 0
\(286\) 1.52776e10 2.28345
\(287\) − 2.75120e9i − 0.405504i
\(288\) 0 0
\(289\) 4.71695e9 0.676192
\(290\) − 7.14193e9i − 1.00977i
\(291\) 0 0
\(292\) 8.63091e9 1.18720
\(293\) − 1.23905e10i − 1.68119i −0.541665 0.840595i \(-0.682206\pi\)
0.541665 0.840595i \(-0.317794\pi\)
\(294\) 0 0
\(295\) −1.04843e9 −0.138437
\(296\) 4.35974e9i 0.567928i
\(297\) 0 0
\(298\) −1.75315e10 −2.22308
\(299\) 6.13603e9i 0.767720i
\(300\) 0 0
\(301\) 1.08493e10 1.32171
\(302\) − 3.12479e9i − 0.375659i
\(303\) 0 0
\(304\) −1.28728e9 −0.150723
\(305\) 5.50849e8i 0.0636551i
\(306\) 0 0
\(307\) −3.61263e8 −0.0406696 −0.0203348 0.999793i \(-0.506473\pi\)
−0.0203348 + 0.999793i \(0.506473\pi\)
\(308\) − 2.40675e10i − 2.67441i
\(309\) 0 0
\(310\) 1.14727e9 0.124228
\(311\) 5.21355e9i 0.557304i 0.960392 + 0.278652i \(0.0898876\pi\)
−0.960392 + 0.278652i \(0.910112\pi\)
\(312\) 0 0
\(313\) −1.45147e10 −1.51227 −0.756136 0.654415i \(-0.772915\pi\)
−0.756136 + 0.654415i \(0.772915\pi\)
\(314\) 1.91798e9i 0.197299i
\(315\) 0 0
\(316\) 2.02003e10 2.02586
\(317\) − 1.14468e10i − 1.13356i −0.823868 0.566781i \(-0.808189\pi\)
0.823868 0.566781i \(-0.191811\pi\)
\(318\) 0 0
\(319\) 2.19222e10 2.11701
\(320\) − 5.58575e9i − 0.532699i
\(321\) 0 0
\(322\) 1.57991e10 1.46963
\(323\) 1.01689e10i 0.934256i
\(324\) 0 0
\(325\) −1.28825e10 −1.15469
\(326\) − 1.45237e10i − 1.28590i
\(327\) 0 0
\(328\) −2.81486e9 −0.243198
\(329\) 2.70066e10i 2.30508i
\(330\) 0 0
\(331\) 1.32060e10 1.10017 0.550083 0.835110i \(-0.314596\pi\)
0.550083 + 0.835110i \(0.314596\pi\)
\(332\) − 1.32254e10i − 1.08857i
\(333\) 0 0
\(334\) −6.47301e9 −0.520140
\(335\) − 1.30513e8i − 0.0103628i
\(336\) 0 0
\(337\) −1.19351e10 −0.925348 −0.462674 0.886529i \(-0.653110\pi\)
−0.462674 + 0.886529i \(0.653110\pi\)
\(338\) − 1.40709e10i − 1.07809i
\(339\) 0 0
\(340\) −3.91927e9 −0.293285
\(341\) 3.52157e9i 0.260447i
\(342\) 0 0
\(343\) −8.06507e9 −0.582682
\(344\) − 1.11003e10i − 0.792689i
\(345\) 0 0
\(346\) 7.19908e9 0.502311
\(347\) 9.18444e9i 0.633483i 0.948512 + 0.316741i \(0.102589\pi\)
−0.948512 + 0.316741i \(0.897411\pi\)
\(348\) 0 0
\(349\) −2.08869e10 −1.40790 −0.703950 0.710249i \(-0.748582\pi\)
−0.703950 + 0.710249i \(0.748582\pi\)
\(350\) 3.31699e10i 2.21041i
\(351\) 0 0
\(352\) 1.81117e10 1.17975
\(353\) 1.09743e10i 0.706770i 0.935478 + 0.353385i \(0.114970\pi\)
−0.935478 + 0.353385i \(0.885030\pi\)
\(354\) 0 0
\(355\) 7.62158e9 0.479879
\(356\) − 2.76754e9i − 0.172303i
\(357\) 0 0
\(358\) 1.03079e10 0.627533
\(359\) 1.19761e10i 0.721001i 0.932759 + 0.360501i \(0.117394\pi\)
−0.932759 + 0.360501i \(0.882606\pi\)
\(360\) 0 0
\(361\) 2.87962e10 1.69553
\(362\) 3.57371e10i 2.08106i
\(363\) 0 0
\(364\) −5.51679e10 −3.14254
\(365\) 4.37142e9i 0.246292i
\(366\) 0 0
\(367\) −6.22148e9 −0.342949 −0.171474 0.985189i \(-0.554853\pi\)
−0.171474 + 0.985189i \(0.554853\pi\)
\(368\) 9.99707e8i 0.0545107i
\(369\) 0 0
\(370\) −6.04041e9 −0.322299
\(371\) 9.45316e9i 0.498978i
\(372\) 0 0
\(373\) −1.23028e10 −0.635578 −0.317789 0.948161i \(-0.602940\pi\)
−0.317789 + 0.948161i \(0.602940\pi\)
\(374\) − 1.96627e10i − 1.00498i
\(375\) 0 0
\(376\) 2.76315e10 1.38246
\(377\) − 5.02505e10i − 2.48757i
\(378\) 0 0
\(379\) 2.26268e10 1.09665 0.548324 0.836266i \(-0.315266\pi\)
0.548324 + 0.836266i \(0.315266\pi\)
\(380\) 1.76442e10i 0.846191i
\(381\) 0 0
\(382\) 4.36759e9 0.205111
\(383\) − 1.14841e10i − 0.533707i −0.963737 0.266854i \(-0.914016\pi\)
0.963737 0.266854i \(-0.0859840\pi\)
\(384\) 0 0
\(385\) 1.21898e10 0.554822
\(386\) 1.49435e10i 0.673134i
\(387\) 0 0
\(388\) 3.34150e10 1.47440
\(389\) 7.52786e8i 0.0328755i 0.999865 + 0.0164378i \(0.00523254\pi\)
−0.999865 + 0.0164378i \(0.994767\pi\)
\(390\) 0 0
\(391\) 7.89725e9 0.337885
\(392\) 3.00892e10i 1.27428i
\(393\) 0 0
\(394\) −3.05712e10 −1.26861
\(395\) 1.02311e10i 0.420276i
\(396\) 0 0
\(397\) −5.67666e9 −0.228524 −0.114262 0.993451i \(-0.536450\pi\)
−0.114262 + 0.993451i \(0.536450\pi\)
\(398\) 4.84147e10i 1.92950i
\(399\) 0 0
\(400\) −2.09887e9 −0.0819870
\(401\) 4.19263e10i 1.62147i 0.585413 + 0.810735i \(0.300932\pi\)
−0.585413 + 0.810735i \(0.699068\pi\)
\(402\) 0 0
\(403\) 8.07220e9 0.306035
\(404\) − 7.99874e10i − 3.00259i
\(405\) 0 0
\(406\) −1.29385e11 −4.76191
\(407\) − 1.85411e10i − 0.675707i
\(408\) 0 0
\(409\) 2.50137e10 0.893891 0.446946 0.894561i \(-0.352512\pi\)
0.446946 + 0.894561i \(0.352512\pi\)
\(410\) − 3.89998e9i − 0.138015i
\(411\) 0 0
\(412\) −8.55292e10 −2.96842
\(413\) 1.89938e10i 0.652846i
\(414\) 0 0
\(415\) 6.69848e9 0.225831
\(416\) − 4.15160e10i − 1.38625i
\(417\) 0 0
\(418\) −8.85200e10 −2.89959
\(419\) 5.05040e9i 0.163859i 0.996638 + 0.0819294i \(0.0261082\pi\)
−0.996638 + 0.0819294i \(0.973892\pi\)
\(420\) 0 0
\(421\) 1.42319e10 0.453037 0.226519 0.974007i \(-0.427266\pi\)
0.226519 + 0.974007i \(0.427266\pi\)
\(422\) 1.01992e10i 0.321601i
\(423\) 0 0
\(424\) 9.67187e9 0.299259
\(425\) 1.65801e10i 0.508197i
\(426\) 0 0
\(427\) 9.97935e9 0.300186
\(428\) − 6.60796e10i − 1.96921i
\(429\) 0 0
\(430\) 1.53795e10 0.449851
\(431\) − 3.72124e10i − 1.07840i −0.842179 0.539199i \(-0.818727\pi\)
0.842179 0.539199i \(-0.181273\pi\)
\(432\) 0 0
\(433\) −3.76284e10 −1.07044 −0.535222 0.844711i \(-0.679772\pi\)
−0.535222 + 0.844711i \(0.679772\pi\)
\(434\) − 2.07844e10i − 0.585838i
\(435\) 0 0
\(436\) 8.93598e10 2.47284
\(437\) − 3.55528e10i − 0.974873i
\(438\) 0 0
\(439\) 5.36553e9 0.144462 0.0722312 0.997388i \(-0.476988\pi\)
0.0722312 + 0.997388i \(0.476988\pi\)
\(440\) − 1.24718e10i − 0.332751i
\(441\) 0 0
\(442\) −4.50712e10 −1.18089
\(443\) − 2.40303e10i − 0.623942i −0.950092 0.311971i \(-0.899011\pi\)
0.950092 0.311971i \(-0.100989\pi\)
\(444\) 0 0
\(445\) 1.40171e9 0.0357454
\(446\) 4.77936e10i 1.20790i
\(447\) 0 0
\(448\) −1.01193e11 −2.51211
\(449\) − 7.28050e10i − 1.79133i −0.444729 0.895665i \(-0.646700\pi\)
0.444729 0.895665i \(-0.353300\pi\)
\(450\) 0 0
\(451\) 1.19710e10 0.289351
\(452\) 2.86238e10i 0.685761i
\(453\) 0 0
\(454\) 5.62219e10 1.32337
\(455\) − 2.79417e10i − 0.651939i
\(456\) 0 0
\(457\) 6.19755e10 1.42087 0.710436 0.703762i \(-0.248498\pi\)
0.710436 + 0.703762i \(0.248498\pi\)
\(458\) 5.52265e10i 1.25512i
\(459\) 0 0
\(460\) 1.37026e10 0.306035
\(461\) − 1.20417e10i − 0.266615i −0.991075 0.133308i \(-0.957440\pi\)
0.991075 0.133308i \(-0.0425598\pi\)
\(462\) 0 0
\(463\) −5.92621e9 −0.128959 −0.0644797 0.997919i \(-0.520539\pi\)
−0.0644797 + 0.997919i \(0.520539\pi\)
\(464\) − 8.18702e9i − 0.176626i
\(465\) 0 0
\(466\) 8.76520e10 1.85874
\(467\) − 5.80782e10i − 1.22109i −0.791983 0.610543i \(-0.790951\pi\)
0.791983 0.610543i \(-0.209049\pi\)
\(468\) 0 0
\(469\) −2.36442e9 −0.0488690
\(470\) 3.82833e10i 0.784546i
\(471\) 0 0
\(472\) 1.94332e10 0.391541
\(473\) 4.72076e10i 0.943121i
\(474\) 0 0
\(475\) 7.46424e10 1.46626
\(476\) 7.10027e10i 1.38308i
\(477\) 0 0
\(478\) 8.43786e10 1.61629
\(479\) 4.61362e10i 0.876394i 0.898879 + 0.438197i \(0.144383\pi\)
−0.898879 + 0.438197i \(0.855617\pi\)
\(480\) 0 0
\(481\) −4.25003e10 −0.793983
\(482\) − 1.03618e11i − 1.91975i
\(483\) 0 0
\(484\) 1.82274e10 0.332158
\(485\) 1.69242e10i 0.305872i
\(486\) 0 0
\(487\) 8.55813e10 1.52147 0.760735 0.649063i \(-0.224839\pi\)
0.760735 + 0.649063i \(0.224839\pi\)
\(488\) − 1.02102e10i − 0.180035i
\(489\) 0 0
\(490\) −4.16885e10 −0.723157
\(491\) 2.98026e10i 0.512776i 0.966574 + 0.256388i \(0.0825325\pi\)
−0.966574 + 0.256388i \(0.917467\pi\)
\(492\) 0 0
\(493\) −6.46739e10 −1.09482
\(494\) 2.02907e11i 3.40713i
\(495\) 0 0
\(496\) 1.31516e9 0.0217295
\(497\) − 1.38075e11i − 2.26303i
\(498\) 0 0
\(499\) −5.14533e10 −0.829871 −0.414936 0.909851i \(-0.636196\pi\)
−0.414936 + 0.909851i \(0.636196\pi\)
\(500\) 6.09810e10i 0.975695i
\(501\) 0 0
\(502\) −1.20566e11 −1.89849
\(503\) 1.97425e10i 0.308412i 0.988039 + 0.154206i \(0.0492819\pi\)
−0.988039 + 0.154206i \(0.950718\pi\)
\(504\) 0 0
\(505\) 4.05123e10 0.622905
\(506\) 6.87450e10i 1.04867i
\(507\) 0 0
\(508\) 9.05056e10 1.35900
\(509\) 2.84904e10i 0.424451i 0.977221 + 0.212226i \(0.0680712\pi\)
−0.977221 + 0.212226i \(0.931929\pi\)
\(510\) 0 0
\(511\) 7.91941e10 1.16147
\(512\) − 1.25983e10i − 0.183330i
\(513\) 0 0
\(514\) 3.27455e9 0.0469136
\(515\) − 4.33192e10i − 0.615817i
\(516\) 0 0
\(517\) −1.17511e11 −1.64482
\(518\) 1.09430e11i 1.51991i
\(519\) 0 0
\(520\) −2.85881e10 −0.390996
\(521\) 1.19310e11i 1.61929i 0.586919 + 0.809646i \(0.300341\pi\)
−0.586919 + 0.809646i \(0.699659\pi\)
\(522\) 0 0
\(523\) −8.33461e10 −1.11398 −0.556992 0.830518i \(-0.688044\pi\)
−0.556992 + 0.830518i \(0.688044\pi\)
\(524\) − 1.43216e11i − 1.89962i
\(525\) 0 0
\(526\) −5.96155e10 −0.778782
\(527\) − 1.03892e10i − 0.134691i
\(528\) 0 0
\(529\) 5.07005e10 0.647425
\(530\) 1.34004e10i 0.169829i
\(531\) 0 0
\(532\) 3.19648e11 3.99049
\(533\) − 2.74402e10i − 0.340000i
\(534\) 0 0
\(535\) 3.34682e10 0.408524
\(536\) 2.41913e9i 0.0293089i
\(537\) 0 0
\(538\) 2.01856e11 2.40943
\(539\) − 1.27964e11i − 1.51611i
\(540\) 0 0
\(541\) −1.38210e11 −1.61343 −0.806717 0.590937i \(-0.798758\pi\)
−0.806717 + 0.590937i \(0.798758\pi\)
\(542\) − 5.50548e10i − 0.637967i
\(543\) 0 0
\(544\) −5.34323e10 −0.610110
\(545\) 4.52593e10i 0.513006i
\(546\) 0 0
\(547\) −7.91364e10 −0.883949 −0.441974 0.897028i \(-0.645722\pi\)
−0.441974 + 0.897028i \(0.645722\pi\)
\(548\) − 3.00904e10i − 0.333661i
\(549\) 0 0
\(550\) −1.44329e11 −1.57726
\(551\) 2.91157e11i 3.15879i
\(552\) 0 0
\(553\) 1.85350e11 1.98195
\(554\) − 1.99036e10i − 0.211297i
\(555\) 0 0
\(556\) −3.36187e9 −0.0351789
\(557\) 1.12395e11i 1.16769i 0.811865 + 0.583846i \(0.198453\pi\)
−0.811865 + 0.583846i \(0.801547\pi\)
\(558\) 0 0
\(559\) 1.08210e11 1.10821
\(560\) − 4.55237e9i − 0.0462898i
\(561\) 0 0
\(562\) 2.04357e11 2.04854
\(563\) − 1.20023e11i − 1.19462i −0.802010 0.597310i \(-0.796236\pi\)
0.802010 0.597310i \(-0.203764\pi\)
\(564\) 0 0
\(565\) −1.44975e10 −0.142265
\(566\) − 5.02833e10i − 0.489957i
\(567\) 0 0
\(568\) −1.41270e11 −1.35724
\(569\) − 1.53448e11i − 1.46390i −0.681357 0.731951i \(-0.738610\pi\)
0.681357 0.731951i \(-0.261390\pi\)
\(570\) 0 0
\(571\) 4.66781e10 0.439106 0.219553 0.975601i \(-0.429540\pi\)
0.219553 + 0.975601i \(0.429540\pi\)
\(572\) − 2.40047e11i − 2.24239i
\(573\) 0 0
\(574\) −7.06532e10 −0.650855
\(575\) − 5.79677e10i − 0.530291i
\(576\) 0 0
\(577\) 9.25710e10 0.835164 0.417582 0.908639i \(-0.362878\pi\)
0.417582 + 0.908639i \(0.362878\pi\)
\(578\) − 1.21135e11i − 1.08532i
\(579\) 0 0
\(580\) −1.12216e11 −0.991617
\(581\) − 1.21352e11i − 1.06498i
\(582\) 0 0
\(583\) −4.11326e10 −0.356051
\(584\) − 8.10263e10i − 0.696586i
\(585\) 0 0
\(586\) −3.18197e11 −2.69840
\(587\) 7.76202e10i 0.653766i 0.945065 + 0.326883i \(0.105998\pi\)
−0.945065 + 0.326883i \(0.894002\pi\)
\(588\) 0 0
\(589\) −4.67712e10 −0.388613
\(590\) 2.69247e10i 0.222199i
\(591\) 0 0
\(592\) −6.92432e9 −0.0563754
\(593\) − 2.09190e11i − 1.69169i −0.533427 0.845846i \(-0.679096\pi\)
0.533427 0.845846i \(-0.320904\pi\)
\(594\) 0 0
\(595\) −3.59618e10 −0.286928
\(596\) 2.75461e11i 2.18311i
\(597\) 0 0
\(598\) 1.57578e11 1.23223
\(599\) − 9.32838e10i − 0.724601i −0.932061 0.362300i \(-0.881991\pi\)
0.932061 0.362300i \(-0.118009\pi\)
\(600\) 0 0
\(601\) −8.12537e10 −0.622795 −0.311398 0.950280i \(-0.600797\pi\)
−0.311398 + 0.950280i \(0.600797\pi\)
\(602\) − 2.78620e11i − 2.12142i
\(603\) 0 0
\(604\) −4.90978e10 −0.368905
\(605\) 9.23191e9i 0.0689081i
\(606\) 0 0
\(607\) 4.12325e10 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(608\) 2.40548e11i 1.76030i
\(609\) 0 0
\(610\) 1.41463e10 0.102170
\(611\) 2.69361e11i 1.93273i
\(612\) 0 0
\(613\) 2.01264e10 0.142536 0.0712681 0.997457i \(-0.477295\pi\)
0.0712681 + 0.997457i \(0.477295\pi\)
\(614\) 9.27755e9i 0.0652769i
\(615\) 0 0
\(616\) −2.25944e11 −1.56920
\(617\) 1.37297e11i 0.947370i 0.880694 + 0.473685i \(0.157076\pi\)
−0.880694 + 0.473685i \(0.842924\pi\)
\(618\) 0 0
\(619\) −9.70400e10 −0.660980 −0.330490 0.943810i \(-0.607214\pi\)
−0.330490 + 0.943810i \(0.607214\pi\)
\(620\) − 1.80263e10i − 0.121995i
\(621\) 0 0
\(622\) 1.33888e11 0.894502
\(623\) − 2.53939e10i − 0.168569i
\(624\) 0 0
\(625\) 1.05387e11 0.690663
\(626\) 3.72749e11i 2.42728i
\(627\) 0 0
\(628\) 3.01359e10 0.193752
\(629\) 5.46991e10i 0.349444i
\(630\) 0 0
\(631\) −2.86142e11 −1.80495 −0.902473 0.430747i \(-0.858250\pi\)
−0.902473 + 0.430747i \(0.858250\pi\)
\(632\) − 1.89638e11i − 1.18866i
\(633\) 0 0
\(634\) −2.93962e11 −1.81943
\(635\) 4.58396e10i 0.281933i
\(636\) 0 0
\(637\) −2.93320e11 −1.78149
\(638\) − 5.62982e11i − 3.39791i
\(639\) 0 0
\(640\) −8.46274e10 −0.504418
\(641\) − 5.72835e10i − 0.339311i −0.985503 0.169655i \(-0.945735\pi\)
0.985503 0.169655i \(-0.0542654\pi\)
\(642\) 0 0
\(643\) −1.34466e11 −0.786624 −0.393312 0.919405i \(-0.628671\pi\)
−0.393312 + 0.919405i \(0.628671\pi\)
\(644\) − 2.48241e11i − 1.44321i
\(645\) 0 0
\(646\) 2.61147e11 1.49953
\(647\) 2.98401e11i 1.70288i 0.524454 + 0.851439i \(0.324269\pi\)
−0.524454 + 0.851439i \(0.675731\pi\)
\(648\) 0 0
\(649\) −8.26457e10 −0.465845
\(650\) 3.30833e11i 1.85334i
\(651\) 0 0
\(652\) −2.28201e11 −1.26278
\(653\) 1.01831e11i 0.560049i 0.959993 + 0.280025i \(0.0903427\pi\)
−0.959993 + 0.280025i \(0.909657\pi\)
\(654\) 0 0
\(655\) 7.25367e10 0.394087
\(656\) − 4.47067e9i − 0.0241411i
\(657\) 0 0
\(658\) 6.93553e11 3.69978
\(659\) 2.42067e11i 1.28349i 0.766917 + 0.641746i \(0.221790\pi\)
−0.766917 + 0.641746i \(0.778210\pi\)
\(660\) 0 0
\(661\) −3.06803e11 −1.60714 −0.803570 0.595210i \(-0.797069\pi\)
−0.803570 + 0.595210i \(0.797069\pi\)
\(662\) − 3.39140e11i − 1.76582i
\(663\) 0 0
\(664\) −1.24159e11 −0.638715
\(665\) 1.61897e11i 0.827850i
\(666\) 0 0
\(667\) 2.26114e11 1.14241
\(668\) 1.01706e11i 0.510788i
\(669\) 0 0
\(670\) −3.35170e9 −0.0166328
\(671\) 4.34222e10i 0.214201i
\(672\) 0 0
\(673\) −1.79425e11 −0.874627 −0.437314 0.899309i \(-0.644070\pi\)
−0.437314 + 0.899309i \(0.644070\pi\)
\(674\) 3.06502e11i 1.48523i
\(675\) 0 0
\(676\) −2.21086e11 −1.05871
\(677\) 1.46877e11i 0.699195i 0.936900 + 0.349597i \(0.113682\pi\)
−0.936900 + 0.349597i \(0.886318\pi\)
\(678\) 0 0
\(679\) 3.06604e11 1.44244
\(680\) 3.67938e10i 0.172083i
\(681\) 0 0
\(682\) 9.04369e10 0.418031
\(683\) 5.39354e10i 0.247851i 0.992291 + 0.123926i \(0.0395485\pi\)
−0.992291 + 0.123926i \(0.960452\pi\)
\(684\) 0 0
\(685\) 1.52403e10 0.0692200
\(686\) 2.07118e11i 0.935236i
\(687\) 0 0
\(688\) 1.76300e10 0.0786863
\(689\) 9.42848e10i 0.418374i
\(690\) 0 0
\(691\) 1.03857e11 0.455539 0.227769 0.973715i \(-0.426857\pi\)
0.227769 + 0.973715i \(0.426857\pi\)
\(692\) − 1.13114e11i − 0.493279i
\(693\) 0 0
\(694\) 2.35864e11 1.01677
\(695\) − 1.70273e9i − 0.00729807i
\(696\) 0 0
\(697\) −3.53164e10 −0.149639
\(698\) 5.36393e11i 2.25975i
\(699\) 0 0
\(700\) 5.21177e11 2.17066
\(701\) 1.65918e11i 0.687103i 0.939134 + 0.343552i \(0.111630\pi\)
−0.939134 + 0.343552i \(0.888370\pi\)
\(702\) 0 0
\(703\) 2.46251e11 1.00822
\(704\) − 4.40312e11i − 1.79254i
\(705\) 0 0
\(706\) 2.81830e11 1.13440
\(707\) − 7.33934e11i − 2.93751i
\(708\) 0 0
\(709\) −1.52689e11 −0.604258 −0.302129 0.953267i \(-0.597697\pi\)
−0.302129 + 0.953267i \(0.597697\pi\)
\(710\) − 1.95729e11i − 0.770232i
\(711\) 0 0
\(712\) −2.59814e10 −0.101098
\(713\) 3.63227e10i 0.140547i
\(714\) 0 0
\(715\) 1.21580e11 0.465198
\(716\) − 1.61961e11i − 0.616251i
\(717\) 0 0
\(718\) 3.07555e11 1.15725
\(719\) − 2.64075e11i − 0.988125i −0.869427 0.494062i \(-0.835511\pi\)
0.869427 0.494062i \(-0.164489\pi\)
\(720\) 0 0
\(721\) −7.84784e11 −2.90408
\(722\) − 7.39511e11i − 2.72142i
\(723\) 0 0
\(724\) 5.61513e11 2.04364
\(725\) 4.74721e11i 1.71825i
\(726\) 0 0
\(727\) −2.56660e11 −0.918799 −0.459399 0.888230i \(-0.651935\pi\)
−0.459399 + 0.888230i \(0.651935\pi\)
\(728\) 5.17912e11i 1.84387i
\(729\) 0 0
\(730\) 1.12262e11 0.395313
\(731\) − 1.39270e11i − 0.487738i
\(732\) 0 0
\(733\) −2.76412e11 −0.957504 −0.478752 0.877950i \(-0.658911\pi\)
−0.478752 + 0.877950i \(0.658911\pi\)
\(734\) 1.59773e11i 0.550451i
\(735\) 0 0
\(736\) 1.86811e11 0.636635
\(737\) − 1.02881e10i − 0.0348710i
\(738\) 0 0
\(739\) 3.69193e11 1.23787 0.618935 0.785442i \(-0.287564\pi\)
0.618935 + 0.785442i \(0.287564\pi\)
\(740\) 9.49089e10i 0.316505i
\(741\) 0 0
\(742\) 2.42765e11 0.800886
\(743\) − 5.22453e11i − 1.71432i −0.515051 0.857160i \(-0.672227\pi\)
0.515051 0.857160i \(-0.327773\pi\)
\(744\) 0 0
\(745\) −1.39517e11 −0.452899
\(746\) 3.15947e11i 1.02014i
\(747\) 0 0
\(748\) −3.08947e11 −0.986911
\(749\) − 6.06321e11i − 1.92653i
\(750\) 0 0
\(751\) 2.23495e11 0.702599 0.351300 0.936263i \(-0.385740\pi\)
0.351300 + 0.936263i \(0.385740\pi\)
\(752\) 4.38854e10i 0.137230i
\(753\) 0 0
\(754\) −1.29048e12 −3.99268
\(755\) − 2.48673e10i − 0.0765315i
\(756\) 0 0
\(757\) −2.44183e11 −0.743588 −0.371794 0.928315i \(-0.621257\pi\)
−0.371794 + 0.928315i \(0.621257\pi\)
\(758\) − 5.81077e11i − 1.76018i
\(759\) 0 0
\(760\) 1.65643e11 0.496498
\(761\) − 2.25029e11i − 0.670965i −0.942046 0.335483i \(-0.891101\pi\)
0.942046 0.335483i \(-0.108899\pi\)
\(762\) 0 0
\(763\) 8.19933e11 2.41925
\(764\) − 6.86251e10i − 0.201423i
\(765\) 0 0
\(766\) −2.94922e11 −0.856628
\(767\) 1.89442e11i 0.547387i
\(768\) 0 0
\(769\) −4.83053e11 −1.38130 −0.690652 0.723188i \(-0.742676\pi\)
−0.690652 + 0.723188i \(0.742676\pi\)
\(770\) − 3.13045e11i − 0.890519i
\(771\) 0 0
\(772\) 2.34797e11 0.661032
\(773\) 1.32482e10i 0.0371056i 0.999828 + 0.0185528i \(0.00590588\pi\)
−0.999828 + 0.0185528i \(0.994094\pi\)
\(774\) 0 0
\(775\) −7.62588e10 −0.211390
\(776\) − 3.13697e11i − 0.865095i
\(777\) 0 0
\(778\) 1.93322e10 0.0527670
\(779\) 1.58991e11i 0.431741i
\(780\) 0 0
\(781\) 6.00792e11 1.61481
\(782\) − 2.02808e11i − 0.542324i
\(783\) 0 0
\(784\) −4.77889e10 −0.126492
\(785\) 1.52633e10i 0.0401949i
\(786\) 0 0
\(787\) 4.74600e11 1.23717 0.618584 0.785719i \(-0.287707\pi\)
0.618584 + 0.785719i \(0.287707\pi\)
\(788\) 4.80346e11i 1.24580i
\(789\) 0 0
\(790\) 2.62744e11 0.674565
\(791\) 2.62641e11i 0.670898i
\(792\) 0 0
\(793\) 9.95330e10 0.251695
\(794\) 1.45781e11i 0.366792i
\(795\) 0 0
\(796\) 7.60708e11 1.89481
\(797\) − 2.98199e11i − 0.739049i −0.929221 0.369524i \(-0.879521\pi\)
0.929221 0.369524i \(-0.120479\pi\)
\(798\) 0 0
\(799\) 3.46676e11 0.850622
\(800\) 3.92206e11i 0.957533i
\(801\) 0 0
\(802\) 1.07670e12 2.60255
\(803\) 3.44589e11i 0.828781i
\(804\) 0 0
\(805\) 1.25730e11 0.299402
\(806\) − 2.07301e11i − 0.491203i
\(807\) 0 0
\(808\) −7.50915e11 −1.76175
\(809\) − 3.19136e11i − 0.745044i −0.928023 0.372522i \(-0.878493\pi\)
0.928023 0.372522i \(-0.121507\pi\)
\(810\) 0 0
\(811\) 2.94415e11 0.680575 0.340288 0.940321i \(-0.389476\pi\)
0.340288 + 0.940321i \(0.389476\pi\)
\(812\) 2.03295e12i 4.67629i
\(813\) 0 0
\(814\) −4.76152e11 −1.08455
\(815\) − 1.15580e11i − 0.261971i
\(816\) 0 0
\(817\) −6.26980e11 −1.40723
\(818\) − 6.42373e11i − 1.43474i
\(819\) 0 0
\(820\) −6.12777e10 −0.135534
\(821\) − 6.16033e10i − 0.135591i −0.997699 0.0677956i \(-0.978403\pi\)
0.997699 0.0677956i \(-0.0215966\pi\)
\(822\) 0 0
\(823\) −4.71053e11 −1.02676 −0.513381 0.858160i \(-0.671607\pi\)
−0.513381 + 0.858160i \(0.671607\pi\)
\(824\) 8.02941e11i 1.74171i
\(825\) 0 0
\(826\) 4.87776e11 1.04785
\(827\) − 4.35038e11i − 0.930048i −0.885298 0.465024i \(-0.846046\pi\)
0.885298 0.465024i \(-0.153954\pi\)
\(828\) 0 0
\(829\) 2.07438e11 0.439208 0.219604 0.975589i \(-0.429524\pi\)
0.219604 + 0.975589i \(0.429524\pi\)
\(830\) − 1.72023e11i − 0.362471i
\(831\) 0 0
\(832\) −1.00929e12 −2.10631
\(833\) 3.77512e11i 0.784062i
\(834\) 0 0
\(835\) −5.15125e10 −0.105966
\(836\) 1.39086e12i 2.84745i
\(837\) 0 0
\(838\) 1.29699e11 0.263002
\(839\) − 2.38837e11i − 0.482008i −0.970524 0.241004i \(-0.922523\pi\)
0.970524 0.241004i \(-0.0774767\pi\)
\(840\) 0 0
\(841\) −1.35149e12 −2.70166
\(842\) − 3.65487e11i − 0.727149i
\(843\) 0 0
\(844\) 1.60254e11 0.315819
\(845\) − 1.11977e11i − 0.219635i
\(846\) 0 0
\(847\) 1.67248e11 0.324959
\(848\) 1.53613e10i 0.0297060i
\(849\) 0 0
\(850\) 4.25792e11 0.815684
\(851\) − 1.91240e11i − 0.364636i
\(852\) 0 0
\(853\) −3.15684e11 −0.596289 −0.298144 0.954521i \(-0.596368\pi\)
−0.298144 + 0.954521i \(0.596368\pi\)
\(854\) − 2.56278e11i − 0.481815i
\(855\) 0 0
\(856\) −6.20349e11 −1.15542
\(857\) − 4.83714e11i − 0.896737i −0.893849 0.448369i \(-0.852005\pi\)
0.893849 0.448369i \(-0.147995\pi\)
\(858\) 0 0
\(859\) −5.69187e11 −1.04540 −0.522700 0.852517i \(-0.675075\pi\)
−0.522700 + 0.852517i \(0.675075\pi\)
\(860\) − 2.41648e11i − 0.441763i
\(861\) 0 0
\(862\) −9.55647e11 −1.73089
\(863\) − 1.70442e11i − 0.307279i −0.988127 0.153639i \(-0.950901\pi\)
0.988127 0.153639i \(-0.0490994\pi\)
\(864\) 0 0
\(865\) 5.72906e10 0.102334
\(866\) 9.66329e11i 1.71812i
\(867\) 0 0
\(868\) −3.26571e11 −0.575305
\(869\) 8.06495e11i 1.41424i
\(870\) 0 0
\(871\) −2.35825e10 −0.0409748
\(872\) − 8.38903e11i − 1.45093i
\(873\) 0 0
\(874\) −9.13026e11 −1.56472
\(875\) 5.59539e11i 0.954548i
\(876\) 0 0
\(877\) 6.98793e11 1.18127 0.590636 0.806938i \(-0.298877\pi\)
0.590636 + 0.806938i \(0.298877\pi\)
\(878\) − 1.37791e11i − 0.231870i
\(879\) 0 0
\(880\) 1.98083e10 0.0330306
\(881\) 2.05065e11i 0.340399i 0.985410 + 0.170199i \(0.0544412\pi\)
−0.985410 + 0.170199i \(0.945559\pi\)
\(882\) 0 0
\(883\) −7.79882e11 −1.28288 −0.641440 0.767173i \(-0.721663\pi\)
−0.641440 + 0.767173i \(0.721663\pi\)
\(884\) 7.08174e11i 1.15966i
\(885\) 0 0
\(886\) −6.17119e11 −1.00146
\(887\) 4.85342e11i 0.784068i 0.919951 + 0.392034i \(0.128228\pi\)
−0.919951 + 0.392034i \(0.871772\pi\)
\(888\) 0 0
\(889\) 8.30445e11 1.32955
\(890\) − 3.59972e10i − 0.0573732i
\(891\) 0 0
\(892\) 7.50948e11 1.18618
\(893\) − 1.56071e12i − 2.45423i
\(894\) 0 0
\(895\) 8.20305e10 0.127845
\(896\) 1.53314e12i 2.37875i
\(897\) 0 0
\(898\) −1.86969e12 −2.87518
\(899\) − 2.97462e11i − 0.455400i
\(900\) 0 0
\(901\) 1.21347e11 0.184133
\(902\) − 3.07426e11i − 0.464424i
\(903\) 0 0
\(904\) 2.68717e11 0.402367
\(905\) 2.84397e11i 0.423966i
\(906\) 0 0
\(907\) 7.37444e11 1.08968 0.544841 0.838539i \(-0.316590\pi\)
0.544841 + 0.838539i \(0.316590\pi\)
\(908\) − 8.83377e11i − 1.29958i
\(909\) 0 0
\(910\) −7.17566e11 −1.04640
\(911\) 6.28854e11i 0.913012i 0.889720 + 0.456506i \(0.150899\pi\)
−0.889720 + 0.456506i \(0.849101\pi\)
\(912\) 0 0
\(913\) 5.28026e11 0.759927
\(914\) − 1.59158e12i − 2.28058i
\(915\) 0 0
\(916\) 8.67737e11 1.23255
\(917\) − 1.31410e12i − 1.85845i
\(918\) 0 0
\(919\) 3.48346e11 0.488370 0.244185 0.969729i \(-0.421480\pi\)
0.244185 + 0.969729i \(0.421480\pi\)
\(920\) − 1.28639e11i − 0.179565i
\(921\) 0 0
\(922\) −3.09242e11 −0.427932
\(923\) − 1.37715e12i − 1.89746i
\(924\) 0 0
\(925\) 4.01504e11 0.548432
\(926\) 1.52190e11i 0.206987i
\(927\) 0 0
\(928\) −1.52987e12 −2.06283
\(929\) 6.08637e8i 0 0.000817138i 1.00000 0.000408569i \(0.000130052\pi\)
−1.00000 0.000408569i \(0.999870\pi\)
\(930\) 0 0
\(931\) 1.69953e12 2.26219
\(932\) − 1.37722e12i − 1.82532i
\(933\) 0 0
\(934\) −1.49150e12 −1.95991
\(935\) − 1.56477e11i − 0.204740i
\(936\) 0 0
\(937\) 5.98470e10 0.0776398 0.0388199 0.999246i \(-0.487640\pi\)
0.0388199 + 0.999246i \(0.487640\pi\)
\(938\) 6.07204e10i 0.0784374i
\(939\) 0 0
\(940\) 6.01521e11 0.770441
\(941\) 1.29938e12i 1.65721i 0.559836 + 0.828603i \(0.310864\pi\)
−0.559836 + 0.828603i \(0.689136\pi\)
\(942\) 0 0
\(943\) 1.23473e11 0.156145
\(944\) 3.08646e10i 0.0388663i
\(945\) 0 0
\(946\) 1.21233e12 1.51376
\(947\) 1.31300e12i 1.63255i 0.577664 + 0.816275i \(0.303964\pi\)
−0.577664 + 0.816275i \(0.696036\pi\)
\(948\) 0 0
\(949\) 7.89873e11 0.973851
\(950\) − 1.91688e12i − 2.35343i
\(951\) 0 0
\(952\) 6.66568e11 0.811515
\(953\) 1.49915e12i 1.81750i 0.417341 + 0.908750i \(0.362962\pi\)
−0.417341 + 0.908750i \(0.637038\pi\)
\(954\) 0 0
\(955\) 3.47575e10 0.0417864
\(956\) − 1.32578e12i − 1.58724i
\(957\) 0 0
\(958\) 1.18482e12 1.40666
\(959\) − 2.76098e11i − 0.326429i
\(960\) 0 0
\(961\) −8.05107e11 −0.943974
\(962\) 1.09144e12i 1.27438i
\(963\) 0 0
\(964\) −1.62808e12 −1.88524
\(965\) 1.18921e11i 0.137135i
\(966\) 0 0
\(967\) −2.59401e11 −0.296665 −0.148332 0.988938i \(-0.547391\pi\)
−0.148332 + 0.988938i \(0.547391\pi\)
\(968\) − 1.71118e11i − 0.194892i
\(969\) 0 0
\(970\) 4.34627e11 0.490941
\(971\) − 1.15804e12i − 1.30271i −0.758772 0.651356i \(-0.774200\pi\)
0.758772 0.651356i \(-0.225800\pi\)
\(972\) 0 0
\(973\) −3.08473e10 −0.0344164
\(974\) − 2.19780e12i − 2.44204i
\(975\) 0 0
\(976\) 1.62163e10 0.0178712
\(977\) − 8.99908e10i − 0.0987688i −0.998780 0.0493844i \(-0.984274\pi\)
0.998780 0.0493844i \(-0.0157259\pi\)
\(978\) 0 0
\(979\) 1.10494e11 0.120284
\(980\) 6.55024e11i 0.710155i
\(981\) 0 0
\(982\) 7.65356e11 0.823033
\(983\) 1.64561e12i 1.76243i 0.472712 + 0.881217i \(0.343275\pi\)
−0.472712 + 0.881217i \(0.656725\pi\)
\(984\) 0 0
\(985\) −2.43287e11 −0.258449
\(986\) 1.66088e12i 1.75724i
\(987\) 0 0
\(988\) 3.18814e12 3.34587
\(989\) 4.86916e11i 0.508943i
\(990\) 0 0
\(991\) 6.39028e11 0.662560 0.331280 0.943533i \(-0.392520\pi\)
0.331280 + 0.943533i \(0.392520\pi\)
\(992\) − 2.45757e11i − 0.253781i
\(993\) 0 0
\(994\) −3.54588e12 −3.63228
\(995\) 3.85287e11i 0.393090i
\(996\) 0 0
\(997\) −8.92347e11 −0.903136 −0.451568 0.892237i \(-0.649135\pi\)
−0.451568 + 0.892237i \(0.649135\pi\)
\(998\) 1.32136e12i 1.33199i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.b.b.80.2 16
3.2 odd 2 inner 81.9.b.b.80.15 yes 16
9.2 odd 6 81.9.d.g.53.15 32
9.4 even 3 81.9.d.g.26.15 32
9.5 odd 6 81.9.d.g.26.2 32
9.7 even 3 81.9.d.g.53.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.9.b.b.80.2 16 1.1 even 1 trivial
81.9.b.b.80.15 yes 16 3.2 odd 2 inner
81.9.d.g.26.2 32 9.5 odd 6
81.9.d.g.26.15 32 9.4 even 3
81.9.d.g.53.2 32 9.7 even 3
81.9.d.g.53.15 32 9.2 odd 6