Properties

Label 81.9.b.b.80.11
Level $81$
Weight $9$
Character 81.80
Analytic conductor $32.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1024 x^{14} + 419701 x^{12} + 88203292 x^{10} + 10121979748 x^{8} + 629108384896 x^{6} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{84} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.11
Root \(-5.78233i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.9.b.b.80.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.0153i q^{2} +155.694 q^{4} -594.387i q^{5} +4409.51 q^{7} +4123.23i q^{8} +5952.96 q^{10} -3479.38i q^{11} -18263.0 q^{13} +44162.5i q^{14} -1437.76 q^{16} -86637.8i q^{17} +76109.5 q^{19} -92542.4i q^{20} +34847.0 q^{22} -524101. i q^{23} +37329.5 q^{25} -182909. i q^{26} +686534. q^{28} +775418. i q^{29} -925425. q^{31} +1.04115e6i q^{32} +867703. q^{34} -2.62095e6i q^{35} +237767. q^{37} +762259. i q^{38} +2.45080e6 q^{40} -515887. i q^{41} +3.95836e6 q^{43} -541718. i q^{44} +5.24903e6 q^{46} +5.32614e6i q^{47} +1.36790e7 q^{49} +373866. i q^{50} -2.84343e6 q^{52} -1.30260e7i q^{53} -2.06810e6 q^{55} +1.81814e7i q^{56} -7.76604e6 q^{58} +1.25431e7i q^{59} +1.18844e7 q^{61} -9.26840e6i q^{62} -1.07955e7 q^{64} +1.08553e7i q^{65} +1.35316e7 q^{67} -1.34890e7i q^{68} +2.62496e7 q^{70} +133345. i q^{71} +5.24749e7 q^{73} +2.38130e6i q^{74} +1.18498e7 q^{76} -1.53424e7i q^{77} -4.78499e7 q^{79} +854585. i q^{80} +5.16676e6 q^{82} -5.85268e7i q^{83} -5.14963e7 q^{85} +3.96441e7i q^{86} +1.43463e7 q^{88} -4.62606e7i q^{89} -8.05307e7 q^{91} -8.15994e7i q^{92} -5.33428e7 q^{94} -4.52385e7i q^{95} -8.82391e7 q^{97} +1.36999e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2048 q^{4} + 3692 q^{7} + 10752 q^{10} + 63860 q^{13} + 95116 q^{16} + 185108 q^{19} - 691980 q^{22} - 541712 q^{25} - 997132 q^{28} + 571136 q^{31} + 1027656 q^{34} + 4354268 q^{37} - 2973768 q^{40}+ \cdots - 133878688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.0153i 0.625956i 0.949760 + 0.312978i \(0.101327\pi\)
−0.949760 + 0.312978i \(0.898673\pi\)
\(3\) 0 0
\(4\) 155.694 0.608179
\(5\) − 594.387i − 0.951019i −0.879711 0.475509i \(-0.842264\pi\)
0.879711 0.475509i \(-0.157736\pi\)
\(6\) 0 0
\(7\) 4409.51 1.83653 0.918265 0.395965i \(-0.129590\pi\)
0.918265 + 0.395965i \(0.129590\pi\)
\(8\) 4123.23i 1.00665i
\(9\) 0 0
\(10\) 5952.96 0.595296
\(11\) − 3479.38i − 0.237646i −0.992915 0.118823i \(-0.962088\pi\)
0.992915 0.118823i \(-0.0379121\pi\)
\(12\) 0 0
\(13\) −18263.0 −0.639437 −0.319718 0.947513i \(-0.603588\pi\)
−0.319718 + 0.947513i \(0.603588\pi\)
\(14\) 44162.5i 1.14959i
\(15\) 0 0
\(16\) −1437.76 −0.0219385
\(17\) − 86637.8i − 1.03732i −0.854981 0.518659i \(-0.826432\pi\)
0.854981 0.518659i \(-0.173568\pi\)
\(18\) 0 0
\(19\) 76109.5 0.584016 0.292008 0.956416i \(-0.405677\pi\)
0.292008 + 0.956416i \(0.405677\pi\)
\(20\) − 92542.4i − 0.578390i
\(21\) 0 0
\(22\) 34847.0 0.148756
\(23\) − 524101.i − 1.87285i −0.350863 0.936427i \(-0.614112\pi\)
0.350863 0.936427i \(-0.385888\pi\)
\(24\) 0 0
\(25\) 37329.5 0.0955636
\(26\) − 182909.i − 0.400259i
\(27\) 0 0
\(28\) 686534. 1.11694
\(29\) 775418.i 1.09634i 0.836368 + 0.548168i \(0.184675\pi\)
−0.836368 + 0.548168i \(0.815325\pi\)
\(30\) 0 0
\(31\) −925425. −1.00206 −0.501031 0.865430i \(-0.667046\pi\)
−0.501031 + 0.865430i \(0.667046\pi\)
\(32\) 1.04115e6i 0.992917i
\(33\) 0 0
\(34\) 867703. 0.649315
\(35\) − 2.62095e6i − 1.74658i
\(36\) 0 0
\(37\) 237767. 0.126866 0.0634329 0.997986i \(-0.479795\pi\)
0.0634329 + 0.997986i \(0.479795\pi\)
\(38\) 762259.i 0.365568i
\(39\) 0 0
\(40\) 2.45080e6 0.957342
\(41\) − 515887.i − 0.182566i −0.995825 0.0912829i \(-0.970903\pi\)
0.995825 0.0912829i \(-0.0290968\pi\)
\(42\) 0 0
\(43\) 3.95836e6 1.15782 0.578910 0.815392i \(-0.303478\pi\)
0.578910 + 0.815392i \(0.303478\pi\)
\(44\) − 541718.i − 0.144532i
\(45\) 0 0
\(46\) 5.24903e6 1.17232
\(47\) 5.32614e6i 1.09149i 0.837950 + 0.545746i \(0.183754\pi\)
−0.837950 + 0.545746i \(0.816246\pi\)
\(48\) 0 0
\(49\) 1.36790e7 2.37285
\(50\) 373866.i 0.0598186i
\(51\) 0 0
\(52\) −2.84343e6 −0.388892
\(53\) − 1.30260e7i − 1.65085i −0.564514 0.825424i \(-0.690936\pi\)
0.564514 0.825424i \(-0.309064\pi\)
\(54\) 0 0
\(55\) −2.06810e6 −0.226006
\(56\) 1.81814e7i 1.84874i
\(57\) 0 0
\(58\) −7.76604e6 −0.686258
\(59\) 1.25431e7i 1.03513i 0.855644 + 0.517566i \(0.173162\pi\)
−0.855644 + 0.517566i \(0.826838\pi\)
\(60\) 0 0
\(61\) 1.18844e7 0.858335 0.429167 0.903225i \(-0.358807\pi\)
0.429167 + 0.903225i \(0.358807\pi\)
\(62\) − 9.26840e6i − 0.627246i
\(63\) 0 0
\(64\) −1.07955e7 −0.643460
\(65\) 1.08553e7i 0.608116i
\(66\) 0 0
\(67\) 1.35316e7 0.671504 0.335752 0.941950i \(-0.391010\pi\)
0.335752 + 0.941950i \(0.391010\pi\)
\(68\) − 1.34890e7i − 0.630875i
\(69\) 0 0
\(70\) 2.62496e7 1.09328
\(71\) 133345.i 0.00524738i 0.999997 + 0.00262369i \(0.000835147\pi\)
−0.999997 + 0.00262369i \(0.999165\pi\)
\(72\) 0 0
\(73\) 5.24749e7 1.84782 0.923910 0.382609i \(-0.124974\pi\)
0.923910 + 0.382609i \(0.124974\pi\)
\(74\) 2.38130e6i 0.0794123i
\(75\) 0 0
\(76\) 1.18498e7 0.355186
\(77\) − 1.53424e7i − 0.436445i
\(78\) 0 0
\(79\) −4.78499e7 −1.22849 −0.614246 0.789115i \(-0.710540\pi\)
−0.614246 + 0.789115i \(0.710540\pi\)
\(80\) 854585.i 0.0208639i
\(81\) 0 0
\(82\) 5.16676e6 0.114278
\(83\) − 5.85268e7i − 1.23322i −0.787267 0.616612i \(-0.788505\pi\)
0.787267 0.616612i \(-0.211495\pi\)
\(84\) 0 0
\(85\) −5.14963e7 −0.986508
\(86\) 3.96441e7i 0.724744i
\(87\) 0 0
\(88\) 1.43463e7 0.239226
\(89\) − 4.62606e7i − 0.737312i −0.929566 0.368656i \(-0.879818\pi\)
0.929566 0.368656i \(-0.120182\pi\)
\(90\) 0 0
\(91\) −8.05307e7 −1.17435
\(92\) − 8.15994e7i − 1.13903i
\(93\) 0 0
\(94\) −5.33428e7 −0.683226
\(95\) − 4.52385e7i − 0.555410i
\(96\) 0 0
\(97\) −8.82391e7 −0.996722 −0.498361 0.866969i \(-0.666065\pi\)
−0.498361 + 0.866969i \(0.666065\pi\)
\(98\) 1.36999e8i 1.48530i
\(99\) 0 0
\(100\) 5.81198e6 0.0581198
\(101\) 5.74015e7i 0.551617i 0.961213 + 0.275809i \(0.0889456\pi\)
−0.961213 + 0.275809i \(0.911054\pi\)
\(102\) 0 0
\(103\) −7.89124e7 −0.701126 −0.350563 0.936539i \(-0.614010\pi\)
−0.350563 + 0.936539i \(0.614010\pi\)
\(104\) − 7.53024e7i − 0.643688i
\(105\) 0 0
\(106\) 1.30459e8 1.03336
\(107\) 2.50821e8i 1.91350i 0.290907 + 0.956751i \(0.406043\pi\)
−0.290907 + 0.956751i \(0.593957\pi\)
\(108\) 0 0
\(109\) −7.76440e7 −0.550050 −0.275025 0.961437i \(-0.588686\pi\)
−0.275025 + 0.961437i \(0.588686\pi\)
\(110\) − 2.07126e7i − 0.141470i
\(111\) 0 0
\(112\) −6.33981e6 −0.0402907
\(113\) 6.15863e7i 0.377720i 0.982004 + 0.188860i \(0.0604793\pi\)
−0.982004 + 0.188860i \(0.939521\pi\)
\(114\) 0 0
\(115\) −3.11519e8 −1.78112
\(116\) 1.20728e8i 0.666769i
\(117\) 0 0
\(118\) −1.25622e8 −0.647946
\(119\) − 3.82030e8i − 1.90507i
\(120\) 0 0
\(121\) 2.02253e8 0.943524
\(122\) 1.19025e8i 0.537280i
\(123\) 0 0
\(124\) −1.44083e8 −0.609433
\(125\) − 2.54370e8i − 1.04190i
\(126\) 0 0
\(127\) −3.58325e8 −1.37741 −0.688703 0.725044i \(-0.741819\pi\)
−0.688703 + 0.725044i \(0.741819\pi\)
\(128\) 1.58414e8i 0.590139i
\(129\) 0 0
\(130\) −1.08719e8 −0.380654
\(131\) 1.87148e8i 0.635477i 0.948178 + 0.317738i \(0.102923\pi\)
−0.948178 + 0.317738i \(0.897077\pi\)
\(132\) 0 0
\(133\) 3.35606e8 1.07256
\(134\) 1.35523e8i 0.420332i
\(135\) 0 0
\(136\) 3.57228e8 1.04421
\(137\) − 1.50180e8i − 0.426314i −0.977018 0.213157i \(-0.931625\pi\)
0.977018 0.213157i \(-0.0683746\pi\)
\(138\) 0 0
\(139\) 1.29964e8 0.348148 0.174074 0.984733i \(-0.444307\pi\)
0.174074 + 0.984733i \(0.444307\pi\)
\(140\) − 4.08067e8i − 1.06223i
\(141\) 0 0
\(142\) −1.33549e6 −0.00328462
\(143\) 6.35437e7i 0.151960i
\(144\) 0 0
\(145\) 4.60898e8 1.04264
\(146\) 5.25551e8i 1.15665i
\(147\) 0 0
\(148\) 3.70189e7 0.0771571
\(149\) 1.50916e8i 0.306188i 0.988212 + 0.153094i \(0.0489238\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(150\) 0 0
\(151\) 1.71244e8 0.329388 0.164694 0.986345i \(-0.447336\pi\)
0.164694 + 0.986345i \(0.447336\pi\)
\(152\) 3.13817e8i 0.587899i
\(153\) 0 0
\(154\) 1.53658e8 0.273195
\(155\) 5.50060e8i 0.952979i
\(156\) 0 0
\(157\) −7.21868e8 −1.18812 −0.594059 0.804422i \(-0.702475\pi\)
−0.594059 + 0.804422i \(0.702475\pi\)
\(158\) − 4.79230e8i − 0.768982i
\(159\) 0 0
\(160\) 6.18845e8 0.944282
\(161\) − 2.31103e9i − 3.43955i
\(162\) 0 0
\(163\) −1.90963e8 −0.270520 −0.135260 0.990810i \(-0.543187\pi\)
−0.135260 + 0.990810i \(0.543187\pi\)
\(164\) − 8.03205e7i − 0.111033i
\(165\) 0 0
\(166\) 5.86163e8 0.771944
\(167\) 5.59370e8i 0.719173i 0.933112 + 0.359586i \(0.117082\pi\)
−0.933112 + 0.359586i \(0.882918\pi\)
\(168\) 0 0
\(169\) −4.82195e8 −0.591121
\(170\) − 5.15751e8i − 0.617510i
\(171\) 0 0
\(172\) 6.16292e8 0.704162
\(173\) 6.07138e8i 0.677802i 0.940822 + 0.338901i \(0.110055\pi\)
−0.940822 + 0.338901i \(0.889945\pi\)
\(174\) 0 0
\(175\) 1.64605e8 0.175505
\(176\) 5.00251e6i 0.00521359i
\(177\) 0 0
\(178\) 4.63314e8 0.461525
\(179\) − 4.18834e8i − 0.407971i −0.978974 0.203986i \(-0.934610\pi\)
0.978974 0.203986i \(-0.0653896\pi\)
\(180\) 0 0
\(181\) 1.10216e9 1.02690 0.513451 0.858119i \(-0.328367\pi\)
0.513451 + 0.858119i \(0.328367\pi\)
\(182\) − 8.06538e8i − 0.735088i
\(183\) 0 0
\(184\) 2.16099e9 1.88531
\(185\) − 1.41325e8i − 0.120652i
\(186\) 0 0
\(187\) −3.01446e8 −0.246515
\(188\) 8.29247e8i 0.663823i
\(189\) 0 0
\(190\) 4.53077e8 0.347662
\(191\) 1.78725e9i 1.34293i 0.741038 + 0.671463i \(0.234334\pi\)
−0.741038 + 0.671463i \(0.765666\pi\)
\(192\) 0 0
\(193\) −7.17286e8 −0.516968 −0.258484 0.966016i \(-0.583223\pi\)
−0.258484 + 0.966016i \(0.583223\pi\)
\(194\) − 8.83741e8i − 0.623904i
\(195\) 0 0
\(196\) 2.12973e9 1.44312
\(197\) 1.81939e9i 1.20798i 0.796992 + 0.603990i \(0.206423\pi\)
−0.796992 + 0.603990i \(0.793577\pi\)
\(198\) 0 0
\(199\) −1.90300e9 −1.21346 −0.606730 0.794908i \(-0.707519\pi\)
−0.606730 + 0.794908i \(0.707519\pi\)
\(200\) 1.53918e8i 0.0961990i
\(201\) 0 0
\(202\) −5.74893e8 −0.345288
\(203\) 3.41921e9i 2.01346i
\(204\) 0 0
\(205\) −3.06637e8 −0.173624
\(206\) − 7.90331e8i − 0.438874i
\(207\) 0 0
\(208\) 2.62577e7 0.0140283
\(209\) − 2.64814e8i − 0.138789i
\(210\) 0 0
\(211\) 1.59903e8 0.0806726 0.0403363 0.999186i \(-0.487157\pi\)
0.0403363 + 0.999186i \(0.487157\pi\)
\(212\) − 2.02807e9i − 1.00401i
\(213\) 0 0
\(214\) −2.51205e9 −1.19777
\(215\) − 2.35279e9i − 1.10111i
\(216\) 0 0
\(217\) −4.08067e9 −1.84032
\(218\) − 7.77628e8i − 0.344307i
\(219\) 0 0
\(220\) −3.21990e8 −0.137452
\(221\) 1.58226e9i 0.663299i
\(222\) 0 0
\(223\) −6.13186e8 −0.247955 −0.123977 0.992285i \(-0.539565\pi\)
−0.123977 + 0.992285i \(0.539565\pi\)
\(224\) 4.59096e9i 1.82352i
\(225\) 0 0
\(226\) −6.16805e8 −0.236436
\(227\) − 2.96458e9i − 1.11650i −0.829672 0.558251i \(-0.811473\pi\)
0.829672 0.558251i \(-0.188527\pi\)
\(228\) 0 0
\(229\) −3.78965e9 −1.37803 −0.689013 0.724749i \(-0.741956\pi\)
−0.689013 + 0.724749i \(0.741956\pi\)
\(230\) − 3.11995e9i − 1.11490i
\(231\) 0 0
\(232\) −3.19723e9 −1.10363
\(233\) 3.76374e9i 1.27701i 0.769616 + 0.638507i \(0.220448\pi\)
−0.769616 + 0.638507i \(0.779552\pi\)
\(234\) 0 0
\(235\) 3.16578e9 1.03803
\(236\) 1.95288e9i 0.629545i
\(237\) 0 0
\(238\) 3.82614e9 1.19249
\(239\) − 5.29760e8i − 0.162363i −0.996699 0.0811816i \(-0.974131\pi\)
0.996699 0.0811816i \(-0.0258694\pi\)
\(240\) 0 0
\(241\) −8.38906e8 −0.248682 −0.124341 0.992240i \(-0.539682\pi\)
−0.124341 + 0.992240i \(0.539682\pi\)
\(242\) 2.02562e9i 0.590604i
\(243\) 0 0
\(244\) 1.85032e9 0.522021
\(245\) − 8.13060e9i − 2.25662i
\(246\) 0 0
\(247\) −1.38998e9 −0.373441
\(248\) − 3.81574e9i − 1.00872i
\(249\) 0 0
\(250\) 2.54759e9 0.652184
\(251\) − 2.40283e9i − 0.605380i −0.953089 0.302690i \(-0.902115\pi\)
0.953089 0.302690i \(-0.0978847\pi\)
\(252\) 0 0
\(253\) −1.82355e9 −0.445076
\(254\) − 3.58873e9i − 0.862195i
\(255\) 0 0
\(256\) −4.35021e9 −1.01286
\(257\) 4.79378e9i 1.09887i 0.835537 + 0.549434i \(0.185157\pi\)
−0.835537 + 0.549434i \(0.814843\pi\)
\(258\) 0 0
\(259\) 1.04844e9 0.232993
\(260\) 1.69010e9i 0.369844i
\(261\) 0 0
\(262\) −1.87434e9 −0.397780
\(263\) 2.24924e9i 0.470124i 0.971980 + 0.235062i \(0.0755292\pi\)
−0.971980 + 0.235062i \(0.924471\pi\)
\(264\) 0 0
\(265\) −7.74247e9 −1.56999
\(266\) 3.36119e9i 0.671377i
\(267\) 0 0
\(268\) 2.10678e9 0.408395
\(269\) − 2.01512e9i − 0.384851i −0.981312 0.192425i \(-0.938365\pi\)
0.981312 0.192425i \(-0.0616353\pi\)
\(270\) 0 0
\(271\) −5.85840e9 −1.08618 −0.543090 0.839675i \(-0.682746\pi\)
−0.543090 + 0.839675i \(0.682746\pi\)
\(272\) 1.24564e8i 0.0227571i
\(273\) 0 0
\(274\) 1.50410e9 0.266854
\(275\) − 1.29883e8i − 0.0227103i
\(276\) 0 0
\(277\) −6.81588e9 −1.15772 −0.578859 0.815427i \(-0.696502\pi\)
−0.578859 + 0.815427i \(0.696502\pi\)
\(278\) 1.30163e9i 0.217925i
\(279\) 0 0
\(280\) 1.08068e10 1.75819
\(281\) 2.07175e9i 0.332286i 0.986102 + 0.166143i \(0.0531314\pi\)
−0.986102 + 0.166143i \(0.946869\pi\)
\(282\) 0 0
\(283\) 9.61757e8 0.149941 0.0749704 0.997186i \(-0.476114\pi\)
0.0749704 + 0.997186i \(0.476114\pi\)
\(284\) 2.07609e7i 0.00319135i
\(285\) 0 0
\(286\) −6.36409e8 −0.0951200
\(287\) − 2.27481e9i − 0.335288i
\(288\) 0 0
\(289\) −5.30347e8 −0.0760272
\(290\) 4.61603e9i 0.652644i
\(291\) 0 0
\(292\) 8.17002e9 1.12381
\(293\) − 1.21580e10i − 1.64965i −0.565391 0.824823i \(-0.691275\pi\)
0.565391 0.824823i \(-0.308725\pi\)
\(294\) 0 0
\(295\) 7.45543e9 0.984429
\(296\) 9.80369e8i 0.127709i
\(297\) 0 0
\(298\) −1.51146e9 −0.191660
\(299\) 9.57163e9i 1.19757i
\(300\) 0 0
\(301\) 1.74544e10 2.12637
\(302\) 1.71506e9i 0.206182i
\(303\) 0 0
\(304\) −1.09427e8 −0.0128124
\(305\) − 7.06391e9i − 0.816292i
\(306\) 0 0
\(307\) 4.91035e9 0.552788 0.276394 0.961044i \(-0.410860\pi\)
0.276394 + 0.961044i \(0.410860\pi\)
\(308\) − 2.38871e9i − 0.265437i
\(309\) 0 0
\(310\) −5.50901e9 −0.596523
\(311\) 2.68957e9i 0.287502i 0.989614 + 0.143751i \(0.0459165\pi\)
−0.989614 + 0.143751i \(0.954083\pi\)
\(312\) 0 0
\(313\) −5.13306e9 −0.534809 −0.267405 0.963584i \(-0.586166\pi\)
−0.267405 + 0.963584i \(0.586166\pi\)
\(314\) − 7.22972e9i − 0.743709i
\(315\) 0 0
\(316\) −7.44993e9 −0.747144
\(317\) 1.53801e10i 1.52308i 0.648117 + 0.761540i \(0.275557\pi\)
−0.648117 + 0.761540i \(0.724443\pi\)
\(318\) 0 0
\(319\) 2.69797e9 0.260540
\(320\) 6.41669e9i 0.611943i
\(321\) 0 0
\(322\) 2.31456e10 2.15301
\(323\) − 6.59396e9i − 0.605810i
\(324\) 0 0
\(325\) −6.81747e8 −0.0611068
\(326\) − 1.91256e9i − 0.169334i
\(327\) 0 0
\(328\) 2.12713e9 0.183780
\(329\) 2.34857e10i 2.00456i
\(330\) 0 0
\(331\) −7.40976e9 −0.617294 −0.308647 0.951177i \(-0.599876\pi\)
−0.308647 + 0.951177i \(0.599876\pi\)
\(332\) − 9.11226e9i − 0.750022i
\(333\) 0 0
\(334\) −5.60225e9 −0.450170
\(335\) − 8.04298e9i − 0.638613i
\(336\) 0 0
\(337\) 4.70501e9 0.364788 0.182394 0.983226i \(-0.441615\pi\)
0.182394 + 0.983226i \(0.441615\pi\)
\(338\) − 4.82933e9i − 0.370015i
\(339\) 0 0
\(340\) −8.01767e9 −0.599974
\(341\) 3.21990e9i 0.238136i
\(342\) 0 0
\(343\) 3.48977e10 2.52127
\(344\) 1.63212e10i 1.16552i
\(345\) 0 0
\(346\) −6.08066e9 −0.424274
\(347\) − 4.87208e9i − 0.336044i −0.985783 0.168022i \(-0.946262\pi\)
0.985783 0.168022i \(-0.0537380\pi\)
\(348\) 0 0
\(349\) 2.37996e10 1.60423 0.802117 0.597168i \(-0.203707\pi\)
0.802117 + 0.597168i \(0.203707\pi\)
\(350\) 1.64857e9i 0.109859i
\(351\) 0 0
\(352\) 3.62255e9 0.235963
\(353\) 7.90818e9i 0.509305i 0.967033 + 0.254652i \(0.0819611\pi\)
−0.967033 + 0.254652i \(0.918039\pi\)
\(354\) 0 0
\(355\) 7.92583e7 0.00499035
\(356\) − 7.20250e9i − 0.448418i
\(357\) 0 0
\(358\) 4.19474e9 0.255372
\(359\) 7.90247e9i 0.475757i 0.971295 + 0.237879i \(0.0764520\pi\)
−0.971295 + 0.237879i \(0.923548\pi\)
\(360\) 0 0
\(361\) −1.11909e10 −0.658926
\(362\) 1.10384e10i 0.642795i
\(363\) 0 0
\(364\) −1.25381e10 −0.714213
\(365\) − 3.11904e10i − 1.75731i
\(366\) 0 0
\(367\) −1.38911e10 −0.765725 −0.382863 0.923805i \(-0.625062\pi\)
−0.382863 + 0.923805i \(0.625062\pi\)
\(368\) 7.53531e8i 0.0410875i
\(369\) 0 0
\(370\) 1.41542e9 0.0755226
\(371\) − 5.74382e10i − 3.03183i
\(372\) 0 0
\(373\) 2.17709e10 1.12471 0.562356 0.826895i \(-0.309895\pi\)
0.562356 + 0.826895i \(0.309895\pi\)
\(374\) − 3.01907e9i − 0.154307i
\(375\) 0 0
\(376\) −2.19609e10 −1.09875
\(377\) − 1.41614e10i − 0.701038i
\(378\) 0 0
\(379\) −1.86928e10 −0.905975 −0.452988 0.891517i \(-0.649642\pi\)
−0.452988 + 0.891517i \(0.649642\pi\)
\(380\) − 7.04336e9i − 0.337789i
\(381\) 0 0
\(382\) −1.78998e10 −0.840612
\(383\) − 1.48977e10i − 0.692347i −0.938170 0.346174i \(-0.887481\pi\)
0.938170 0.346174i \(-0.112519\pi\)
\(384\) 0 0
\(385\) −9.11929e9 −0.415067
\(386\) − 7.18383e9i − 0.323599i
\(387\) 0 0
\(388\) −1.37383e10 −0.606186
\(389\) 1.67875e10i 0.733140i 0.930390 + 0.366570i \(0.119468\pi\)
−0.930390 + 0.366570i \(0.880532\pi\)
\(390\) 0 0
\(391\) −4.54070e10 −1.94274
\(392\) 5.64017e10i 2.38862i
\(393\) 0 0
\(394\) −1.82217e10 −0.756142
\(395\) 2.84413e10i 1.16832i
\(396\) 0 0
\(397\) 3.63950e10 1.46514 0.732570 0.680692i \(-0.238321\pi\)
0.732570 + 0.680692i \(0.238321\pi\)
\(398\) − 1.90591e10i − 0.759573i
\(399\) 0 0
\(400\) −5.36709e7 −0.00209652
\(401\) − 3.09381e9i − 0.119651i −0.998209 0.0598255i \(-0.980946\pi\)
0.998209 0.0598255i \(-0.0190544\pi\)
\(402\) 0 0
\(403\) 1.69010e10 0.640755
\(404\) 8.93706e9i 0.335482i
\(405\) 0 0
\(406\) −3.42444e10 −1.26033
\(407\) − 8.27281e8i − 0.0301492i
\(408\) 0 0
\(409\) −5.78841e9 −0.206855 −0.103427 0.994637i \(-0.532981\pi\)
−0.103427 + 0.994637i \(0.532981\pi\)
\(410\) − 3.07106e9i − 0.108681i
\(411\) 0 0
\(412\) −1.22862e10 −0.426411
\(413\) 5.53087e10i 1.90105i
\(414\) 0 0
\(415\) −3.47875e10 −1.17282
\(416\) − 1.90144e10i − 0.634907i
\(417\) 0 0
\(418\) 2.65219e9 0.0868759
\(419\) − 2.41615e10i − 0.783914i −0.919984 0.391957i \(-0.871798\pi\)
0.919984 0.391957i \(-0.128202\pi\)
\(420\) 0 0
\(421\) 1.16694e10 0.371468 0.185734 0.982600i \(-0.440534\pi\)
0.185734 + 0.982600i \(0.440534\pi\)
\(422\) 1.60147e9i 0.0504975i
\(423\) 0 0
\(424\) 5.37092e10 1.66182
\(425\) − 3.23415e9i − 0.0991297i
\(426\) 0 0
\(427\) 5.24042e10 1.57636
\(428\) 3.90513e10i 1.16375i
\(429\) 0 0
\(430\) 2.35639e10 0.689245
\(431\) 6.44251e10i 1.86701i 0.358568 + 0.933504i \(0.383265\pi\)
−0.358568 + 0.933504i \(0.616735\pi\)
\(432\) 0 0
\(433\) −5.35776e10 −1.52416 −0.762082 0.647480i \(-0.775823\pi\)
−0.762082 + 0.647480i \(0.775823\pi\)
\(434\) − 4.08691e10i − 1.15196i
\(435\) 0 0
\(436\) −1.20887e10 −0.334529
\(437\) − 3.98891e10i − 1.09378i
\(438\) 0 0
\(439\) −4.27951e9 −0.115222 −0.0576111 0.998339i \(-0.518348\pi\)
−0.0576111 + 0.998339i \(0.518348\pi\)
\(440\) − 8.52725e9i − 0.227509i
\(441\) 0 0
\(442\) −1.58468e10 −0.415196
\(443\) 1.20749e10i 0.313522i 0.987637 + 0.156761i \(0.0501052\pi\)
−0.987637 + 0.156761i \(0.949895\pi\)
\(444\) 0 0
\(445\) −2.74967e10 −0.701198
\(446\) − 6.14124e9i − 0.155209i
\(447\) 0 0
\(448\) −4.76028e10 −1.18173
\(449\) − 3.17911e10i − 0.782205i −0.920347 0.391103i \(-0.872094\pi\)
0.920347 0.391103i \(-0.127906\pi\)
\(450\) 0 0
\(451\) −1.79497e9 −0.0433861
\(452\) 9.58861e9i 0.229722i
\(453\) 0 0
\(454\) 2.96911e10 0.698881
\(455\) 4.78664e10i 1.11682i
\(456\) 0 0
\(457\) −8.30400e9 −0.190381 −0.0951903 0.995459i \(-0.530346\pi\)
−0.0951903 + 0.995459i \(0.530346\pi\)
\(458\) − 3.79544e10i − 0.862583i
\(459\) 0 0
\(460\) −4.85016e10 −1.08324
\(461\) 3.19035e10i 0.706374i 0.935553 + 0.353187i \(0.114902\pi\)
−0.935553 + 0.353187i \(0.885098\pi\)
\(462\) 0 0
\(463\) 2.75541e10 0.599601 0.299800 0.954002i \(-0.403080\pi\)
0.299800 + 0.954002i \(0.403080\pi\)
\(464\) − 1.11486e9i − 0.0240519i
\(465\) 0 0
\(466\) −3.76949e10 −0.799354
\(467\) − 2.60699e10i − 0.548114i −0.961713 0.274057i \(-0.911634\pi\)
0.961713 0.274057i \(-0.0883658\pi\)
\(468\) 0 0
\(469\) 5.96675e10 1.23324
\(470\) 3.17063e10i 0.649761i
\(471\) 0 0
\(472\) −5.17180e10 −1.04201
\(473\) − 1.37726e10i − 0.275151i
\(474\) 0 0
\(475\) 2.84113e9 0.0558106
\(476\) − 5.94798e10i − 1.15862i
\(477\) 0 0
\(478\) 5.30570e9 0.101632
\(479\) − 2.22131e9i − 0.0421956i −0.999777 0.0210978i \(-0.993284\pi\)
0.999777 0.0210978i \(-0.00671614\pi\)
\(480\) 0 0
\(481\) −4.34232e9 −0.0811226
\(482\) − 8.40188e9i − 0.155664i
\(483\) 0 0
\(484\) 3.14895e10 0.573832
\(485\) 5.24482e10i 0.947902i
\(486\) 0 0
\(487\) 8.62519e10 1.53339 0.766696 0.642011i \(-0.221900\pi\)
0.766696 + 0.642011i \(0.221900\pi\)
\(488\) 4.90020e10i 0.864042i
\(489\) 0 0
\(490\) 8.14304e10 1.41254
\(491\) 4.40442e9i 0.0757814i 0.999282 + 0.0378907i \(0.0120639\pi\)
−0.999282 + 0.0378907i \(0.987936\pi\)
\(492\) 0 0
\(493\) 6.71805e10 1.13725
\(494\) − 1.39211e10i − 0.233758i
\(495\) 0 0
\(496\) 1.33054e9 0.0219837
\(497\) 5.87985e8i 0.00963697i
\(498\) 0 0
\(499\) −2.77040e10 −0.446829 −0.223414 0.974724i \(-0.571720\pi\)
−0.223414 + 0.974724i \(0.571720\pi\)
\(500\) − 3.96039e10i − 0.633663i
\(501\) 0 0
\(502\) 2.40650e10 0.378941
\(503\) − 2.37306e10i − 0.370712i −0.982671 0.185356i \(-0.940656\pi\)
0.982671 0.185356i \(-0.0593438\pi\)
\(504\) 0 0
\(505\) 3.41187e10 0.524598
\(506\) − 1.82633e10i − 0.278598i
\(507\) 0 0
\(508\) −5.57890e10 −0.837709
\(509\) − 3.83002e10i − 0.570597i −0.958439 0.285299i \(-0.907907\pi\)
0.958439 0.285299i \(-0.0920928\pi\)
\(510\) 0 0
\(511\) 2.31388e11 3.39358
\(512\) − 3.01455e9i − 0.0438674i
\(513\) 0 0
\(514\) −4.80111e10 −0.687843
\(515\) 4.69045e10i 0.666784i
\(516\) 0 0
\(517\) 1.85316e10 0.259389
\(518\) 1.05004e10i 0.145843i
\(519\) 0 0
\(520\) −4.47588e10 −0.612160
\(521\) − 1.29094e11i − 1.75208i −0.482238 0.876040i \(-0.660176\pi\)
0.482238 0.876040i \(-0.339824\pi\)
\(522\) 0 0
\(523\) 1.37220e11 1.83405 0.917024 0.398831i \(-0.130584\pi\)
0.917024 + 0.398831i \(0.130584\pi\)
\(524\) 2.91378e10i 0.386484i
\(525\) 0 0
\(526\) −2.25268e10 −0.294277
\(527\) 8.01767e10i 1.03946i
\(528\) 0 0
\(529\) −1.96371e11 −2.50758
\(530\) − 7.75431e10i − 0.982742i
\(531\) 0 0
\(532\) 5.22518e10 0.652311
\(533\) 9.42163e9i 0.116739i
\(534\) 0 0
\(535\) 1.49085e11 1.81978
\(536\) 5.57938e10i 0.675969i
\(537\) 0 0
\(538\) 2.01820e10 0.240900
\(539\) − 4.75944e10i − 0.563898i
\(540\) 0 0
\(541\) −7.71547e10 −0.900686 −0.450343 0.892856i \(-0.648698\pi\)
−0.450343 + 0.892856i \(0.648698\pi\)
\(542\) − 5.86735e10i − 0.679900i
\(543\) 0 0
\(544\) 9.02028e10 1.02997
\(545\) 4.61506e10i 0.523108i
\(546\) 0 0
\(547\) −5.33068e10 −0.595434 −0.297717 0.954654i \(-0.596225\pi\)
−0.297717 + 0.954654i \(0.596225\pi\)
\(548\) − 2.33821e10i − 0.259276i
\(549\) 0 0
\(550\) 1.30082e9 0.0142157
\(551\) 5.90167e10i 0.640278i
\(552\) 0 0
\(553\) −2.10995e11 −2.25616
\(554\) − 6.82631e10i − 0.724681i
\(555\) 0 0
\(556\) 2.02346e10 0.211736
\(557\) 1.56229e11i 1.62309i 0.584291 + 0.811544i \(0.301373\pi\)
−0.584291 + 0.811544i \(0.698627\pi\)
\(558\) 0 0
\(559\) −7.22912e10 −0.740352
\(560\) 3.76830e9i 0.0383172i
\(561\) 0 0
\(562\) −2.07492e10 −0.207996
\(563\) − 4.85065e10i − 0.482799i −0.970426 0.241399i \(-0.922394\pi\)
0.970426 0.241399i \(-0.0776064\pi\)
\(564\) 0 0
\(565\) 3.66061e10 0.359219
\(566\) 9.63228e9i 0.0938563i
\(567\) 0 0
\(568\) −5.49811e8 −0.00528227
\(569\) 4.85523e10i 0.463192i 0.972812 + 0.231596i \(0.0743947\pi\)
−0.972812 + 0.231596i \(0.925605\pi\)
\(570\) 0 0
\(571\) 1.65482e11 1.55670 0.778351 0.627830i \(-0.216057\pi\)
0.778351 + 0.627830i \(0.216057\pi\)
\(572\) 9.89337e9i 0.0924188i
\(573\) 0 0
\(574\) 2.27829e10 0.209875
\(575\) − 1.95644e10i − 0.178977i
\(576\) 0 0
\(577\) −1.25738e11 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(578\) − 5.31158e9i − 0.0475897i
\(579\) 0 0
\(580\) 7.17590e10 0.634110
\(581\) − 2.58074e11i − 2.26486i
\(582\) 0 0
\(583\) −4.53223e10 −0.392318
\(584\) 2.16366e11i 1.86011i
\(585\) 0 0
\(586\) 1.21766e11 1.03261
\(587\) − 6.82411e10i − 0.574769i −0.957815 0.287385i \(-0.907214\pi\)
0.957815 0.287385i \(-0.0927858\pi\)
\(588\) 0 0
\(589\) −7.04336e10 −0.585220
\(590\) 7.46683e10i 0.616209i
\(591\) 0 0
\(592\) −3.41851e8 −0.00278324
\(593\) 2.22279e10i 0.179755i 0.995953 + 0.0898774i \(0.0286475\pi\)
−0.995953 + 0.0898774i \(0.971352\pi\)
\(594\) 0 0
\(595\) −2.27074e11 −1.81175
\(596\) 2.34966e10i 0.186218i
\(597\) 0 0
\(598\) −9.58627e10 −0.749627
\(599\) 2.13320e11i 1.65701i 0.559984 + 0.828503i \(0.310807\pi\)
−0.559984 + 0.828503i \(0.689193\pi\)
\(600\) 0 0
\(601\) 3.49960e10 0.268238 0.134119 0.990965i \(-0.457180\pi\)
0.134119 + 0.990965i \(0.457180\pi\)
\(602\) 1.74811e11i 1.33101i
\(603\) 0 0
\(604\) 2.66617e10 0.200327
\(605\) − 1.20216e11i − 0.897309i
\(606\) 0 0
\(607\) −1.10769e11 −0.815951 −0.407975 0.912993i \(-0.633765\pi\)
−0.407975 + 0.912993i \(0.633765\pi\)
\(608\) 7.92413e10i 0.579879i
\(609\) 0 0
\(610\) 7.07471e10 0.510963
\(611\) − 9.72710e10i − 0.697940i
\(612\) 0 0
\(613\) −4.84434e10 −0.343078 −0.171539 0.985177i \(-0.554874\pi\)
−0.171539 + 0.985177i \(0.554874\pi\)
\(614\) 4.91786e10i 0.346021i
\(615\) 0 0
\(616\) 6.32601e10 0.439347
\(617\) 7.67452e10i 0.529554i 0.964310 + 0.264777i \(0.0852984\pi\)
−0.964310 + 0.264777i \(0.914702\pi\)
\(618\) 0 0
\(619\) −2.11915e11 −1.44344 −0.721721 0.692184i \(-0.756648\pi\)
−0.721721 + 0.692184i \(0.756648\pi\)
\(620\) 8.56410e10i 0.579582i
\(621\) 0 0
\(622\) −2.69368e10 −0.179964
\(623\) − 2.03987e11i − 1.35410i
\(624\) 0 0
\(625\) −1.36613e11 −0.895304
\(626\) − 5.14091e10i − 0.334767i
\(627\) 0 0
\(628\) −1.12391e11 −0.722589
\(629\) − 2.05996e10i − 0.131600i
\(630\) 0 0
\(631\) −1.44761e10 −0.0913130 −0.0456565 0.998957i \(-0.514538\pi\)
−0.0456565 + 0.998957i \(0.514538\pi\)
\(632\) − 1.97296e11i − 1.23666i
\(633\) 0 0
\(634\) −1.54036e11 −0.953381
\(635\) 2.12983e11i 1.30994i
\(636\) 0 0
\(637\) −2.49819e11 −1.51728
\(638\) 2.70210e10i 0.163087i
\(639\) 0 0
\(640\) 9.41593e10 0.561233
\(641\) − 2.38883e10i − 0.141499i −0.997494 0.0707494i \(-0.977461\pi\)
0.997494 0.0707494i \(-0.0225390\pi\)
\(642\) 0 0
\(643\) 1.51535e11 0.886480 0.443240 0.896403i \(-0.353829\pi\)
0.443240 + 0.896403i \(0.353829\pi\)
\(644\) − 3.59813e11i − 2.09187i
\(645\) 0 0
\(646\) 6.60404e10 0.379210
\(647\) 1.51614e11i 0.865208i 0.901584 + 0.432604i \(0.142405\pi\)
−0.901584 + 0.432604i \(0.857595\pi\)
\(648\) 0 0
\(649\) 4.36420e10 0.245995
\(650\) − 6.82790e9i − 0.0382502i
\(651\) 0 0
\(652\) −2.97319e10 −0.164525
\(653\) − 1.82933e11i − 1.00610i −0.864258 0.503048i \(-0.832212\pi\)
0.864258 0.503048i \(-0.167788\pi\)
\(654\) 0 0
\(655\) 1.11238e11 0.604350
\(656\) 7.41722e8i 0.00400521i
\(657\) 0 0
\(658\) −2.35216e11 −1.25477
\(659\) − 2.97761e11i − 1.57880i −0.613881 0.789398i \(-0.710393\pi\)
0.613881 0.789398i \(-0.289607\pi\)
\(660\) 0 0
\(661\) 1.11919e11 0.586270 0.293135 0.956071i \(-0.405301\pi\)
0.293135 + 0.956071i \(0.405301\pi\)
\(662\) − 7.42109e10i − 0.386399i
\(663\) 0 0
\(664\) 2.41320e11 1.24142
\(665\) − 1.99480e11i − 1.02003i
\(666\) 0 0
\(667\) 4.06397e11 2.05328
\(668\) 8.70905e10i 0.437386i
\(669\) 0 0
\(670\) 8.05528e10 0.399743
\(671\) − 4.13502e10i − 0.203980i
\(672\) 0 0
\(673\) −4.67096e10 −0.227691 −0.113845 0.993498i \(-0.536317\pi\)
−0.113845 + 0.993498i \(0.536317\pi\)
\(674\) 4.71220e10i 0.228341i
\(675\) 0 0
\(676\) −7.50749e10 −0.359507
\(677\) 1.71821e11i 0.817941i 0.912548 + 0.408970i \(0.134112\pi\)
−0.912548 + 0.408970i \(0.865888\pi\)
\(678\) 0 0
\(679\) −3.89091e11 −1.83051
\(680\) − 2.12332e11i − 0.993068i
\(681\) 0 0
\(682\) −3.22483e10 −0.149063
\(683\) 6.74141e10i 0.309790i 0.987931 + 0.154895i \(0.0495040\pi\)
−0.987931 + 0.154895i \(0.950496\pi\)
\(684\) 0 0
\(685\) −8.92650e10 −0.405433
\(686\) 3.49510e11i 1.57821i
\(687\) 0 0
\(688\) −5.69116e9 −0.0254008
\(689\) 2.37893e11i 1.05561i
\(690\) 0 0
\(691\) 6.86155e10 0.300961 0.150481 0.988613i \(-0.451918\pi\)
0.150481 + 0.988613i \(0.451918\pi\)
\(692\) 9.45277e10i 0.412225i
\(693\) 0 0
\(694\) 4.87953e10 0.210349
\(695\) − 7.72488e10i − 0.331095i
\(696\) 0 0
\(697\) −4.46953e10 −0.189379
\(698\) 2.38360e11i 1.00418i
\(699\) 0 0
\(700\) 2.56280e10 0.106739
\(701\) − 3.47803e11i − 1.44033i −0.693804 0.720164i \(-0.744066\pi\)
0.693804 0.720164i \(-0.255934\pi\)
\(702\) 0 0
\(703\) 1.80963e10 0.0740916
\(704\) 3.75615e10i 0.152916i
\(705\) 0 0
\(706\) −7.92027e10 −0.318802
\(707\) 2.53113e11i 1.01306i
\(708\) 0 0
\(709\) −2.64810e11 −1.04797 −0.523986 0.851727i \(-0.675555\pi\)
−0.523986 + 0.851727i \(0.675555\pi\)
\(710\) 7.93795e8i 0.00312374i
\(711\) 0 0
\(712\) 1.90743e11 0.742215
\(713\) 4.85016e11i 1.87671i
\(714\) 0 0
\(715\) 3.77695e10 0.144517
\(716\) − 6.52098e10i − 0.248120i
\(717\) 0 0
\(718\) −7.91456e10 −0.297803
\(719\) − 2.48269e11i − 0.928981i −0.885578 0.464491i \(-0.846237\pi\)
0.885578 0.464491i \(-0.153763\pi\)
\(720\) 0 0
\(721\) −3.47965e11 −1.28764
\(722\) − 1.12080e11i − 0.412458i
\(723\) 0 0
\(724\) 1.71599e11 0.624540
\(725\) 2.89460e10i 0.104770i
\(726\) 0 0
\(727\) 2.95500e11 1.05784 0.528921 0.848671i \(-0.322597\pi\)
0.528921 + 0.848671i \(0.322597\pi\)
\(728\) − 3.32047e11i − 1.18215i
\(729\) 0 0
\(730\) 3.12380e11 1.10000
\(731\) − 3.42943e11i − 1.20103i
\(732\) 0 0
\(733\) 4.27907e11 1.48229 0.741146 0.671344i \(-0.234283\pi\)
0.741146 + 0.671344i \(0.234283\pi\)
\(734\) − 1.39124e11i − 0.479310i
\(735\) 0 0
\(736\) 5.45667e11 1.85959
\(737\) − 4.70814e10i − 0.159580i
\(738\) 0 0
\(739\) −1.19830e10 −0.0401781 −0.0200890 0.999798i \(-0.506395\pi\)
−0.0200890 + 0.999798i \(0.506395\pi\)
\(740\) − 2.20035e10i − 0.0733779i
\(741\) 0 0
\(742\) 5.75260e11 1.89779
\(743\) 2.77564e11i 0.910769i 0.890295 + 0.455384i \(0.150498\pi\)
−0.890295 + 0.455384i \(0.849502\pi\)
\(744\) 0 0
\(745\) 8.97022e10 0.291191
\(746\) 2.18042e11i 0.704020i
\(747\) 0 0
\(748\) −4.69332e10 −0.149925
\(749\) 1.10600e12i 3.51421i
\(750\) 0 0
\(751\) 1.44914e10 0.0455566 0.0227783 0.999741i \(-0.492749\pi\)
0.0227783 + 0.999741i \(0.492749\pi\)
\(752\) − 7.65770e9i − 0.0239457i
\(753\) 0 0
\(754\) 1.41831e11 0.438819
\(755\) − 1.01785e11i − 0.313254i
\(756\) 0 0
\(757\) 1.94269e11 0.591590 0.295795 0.955251i \(-0.404415\pi\)
0.295795 + 0.955251i \(0.404415\pi\)
\(758\) − 1.87213e11i − 0.567100i
\(759\) 0 0
\(760\) 1.86529e11 0.559103
\(761\) − 4.48052e11i − 1.33595i −0.744185 0.667974i \(-0.767162\pi\)
0.744185 0.667974i \(-0.232838\pi\)
\(762\) 0 0
\(763\) −3.42372e11 −1.01018
\(764\) 2.78264e11i 0.816740i
\(765\) 0 0
\(766\) 1.49205e11 0.433379
\(767\) − 2.29073e11i − 0.661901i
\(768\) 0 0
\(769\) 2.27389e11 0.650225 0.325113 0.945675i \(-0.394598\pi\)
0.325113 + 0.945675i \(0.394598\pi\)
\(770\) − 9.13324e10i − 0.259814i
\(771\) 0 0
\(772\) −1.11677e11 −0.314409
\(773\) − 3.48003e11i − 0.974686i −0.873211 0.487343i \(-0.837966\pi\)
0.873211 0.487343i \(-0.162034\pi\)
\(774\) 0 0
\(775\) −3.45457e10 −0.0957605
\(776\) − 3.63831e11i − 1.00335i
\(777\) 0 0
\(778\) −1.68131e11 −0.458913
\(779\) − 3.92639e10i − 0.106621i
\(780\) 0 0
\(781\) 4.63956e8 0.00124702
\(782\) − 4.54764e11i − 1.21607i
\(783\) 0 0
\(784\) −1.96671e10 −0.0520566
\(785\) 4.29069e11i 1.12992i
\(786\) 0 0
\(787\) 2.54239e11 0.662741 0.331370 0.943501i \(-0.392489\pi\)
0.331370 + 0.943501i \(0.392489\pi\)
\(788\) 2.83267e11i 0.734669i
\(789\) 0 0
\(790\) −2.84848e11 −0.731316
\(791\) 2.71565e11i 0.693695i
\(792\) 0 0
\(793\) −2.17044e11 −0.548851
\(794\) 3.64506e11i 0.917113i
\(795\) 0 0
\(796\) −2.96285e11 −0.738002
\(797\) 5.53726e11i 1.37234i 0.727442 + 0.686169i \(0.240709\pi\)
−0.727442 + 0.686169i \(0.759291\pi\)
\(798\) 0 0
\(799\) 4.61445e11 1.13222
\(800\) 3.88656e10i 0.0948866i
\(801\) 0 0
\(802\) 3.09854e10 0.0748962
\(803\) − 1.82580e11i − 0.439128i
\(804\) 0 0
\(805\) −1.37365e12 −3.27108
\(806\) 1.69268e11i 0.401084i
\(807\) 0 0
\(808\) −2.36680e11 −0.555285
\(809\) 1.00027e11i 0.233519i 0.993160 + 0.116759i \(0.0372506\pi\)
−0.993160 + 0.116759i \(0.962749\pi\)
\(810\) 0 0
\(811\) 9.06002e10 0.209433 0.104717 0.994502i \(-0.466606\pi\)
0.104717 + 0.994502i \(0.466606\pi\)
\(812\) 5.32351e11i 1.22454i
\(813\) 0 0
\(814\) 8.28546e9 0.0188720
\(815\) 1.13506e11i 0.257270i
\(816\) 0 0
\(817\) 3.01269e11 0.676185
\(818\) − 5.79726e10i − 0.129482i
\(819\) 0 0
\(820\) −4.77415e10 −0.105594
\(821\) − 6.19591e11i − 1.36374i −0.731472 0.681871i \(-0.761166\pi\)
0.731472 0.681871i \(-0.238834\pi\)
\(822\) 0 0
\(823\) 3.63723e10 0.0792813 0.0396407 0.999214i \(-0.487379\pi\)
0.0396407 + 0.999214i \(0.487379\pi\)
\(824\) − 3.25374e11i − 0.705788i
\(825\) 0 0
\(826\) −5.53933e11 −1.18997
\(827\) 6.85214e10i 0.146489i 0.997314 + 0.0732444i \(0.0233353\pi\)
−0.997314 + 0.0732444i \(0.976665\pi\)
\(828\) 0 0
\(829\) −6.13133e11 −1.29819 −0.649093 0.760709i \(-0.724851\pi\)
−0.649093 + 0.760709i \(0.724851\pi\)
\(830\) − 3.48407e11i − 0.734133i
\(831\) 0 0
\(832\) 1.97157e11 0.411452
\(833\) − 1.18512e12i − 2.46139i
\(834\) 0 0
\(835\) 3.32482e11 0.683947
\(836\) − 4.12299e10i − 0.0844087i
\(837\) 0 0
\(838\) 2.41985e11 0.490695
\(839\) − 3.69496e11i − 0.745697i −0.927892 0.372848i \(-0.878381\pi\)
0.927892 0.372848i \(-0.121619\pi\)
\(840\) 0 0
\(841\) −1.01027e11 −0.201954
\(842\) 1.16873e11i 0.232522i
\(843\) 0 0
\(844\) 2.48959e10 0.0490634
\(845\) 2.86610e11i 0.562167i
\(846\) 0 0
\(847\) 8.91836e11 1.73281
\(848\) 1.87282e10i 0.0362171i
\(849\) 0 0
\(850\) 3.23909e10 0.0620508
\(851\) − 1.24614e11i − 0.237601i
\(852\) 0 0
\(853\) 2.05380e11 0.387937 0.193969 0.981008i \(-0.437864\pi\)
0.193969 + 0.981008i \(0.437864\pi\)
\(854\) 5.24844e11i 0.986730i
\(855\) 0 0
\(856\) −1.03419e12 −1.92623
\(857\) − 5.65349e11i − 1.04808i −0.851694 0.524039i \(-0.824425\pi\)
0.851694 0.524039i \(-0.175575\pi\)
\(858\) 0 0
\(859\) 6.34065e10 0.116456 0.0582279 0.998303i \(-0.481455\pi\)
0.0582279 + 0.998303i \(0.481455\pi\)
\(860\) − 3.66316e11i − 0.669671i
\(861\) 0 0
\(862\) −6.45236e11 −1.16866
\(863\) 7.20037e11i 1.29811i 0.760742 + 0.649055i \(0.224835\pi\)
−0.760742 + 0.649055i \(0.775165\pi\)
\(864\) 0 0
\(865\) 3.60875e11 0.644602
\(866\) − 5.36596e11i − 0.954060i
\(867\) 0 0
\(868\) −6.35336e11 −1.11924
\(869\) 1.66488e11i 0.291947i
\(870\) 0 0
\(871\) −2.47126e11 −0.429384
\(872\) − 3.20145e11i − 0.553707i
\(873\) 0 0
\(874\) 3.99501e11 0.684655
\(875\) − 1.12165e12i − 1.91348i
\(876\) 0 0
\(877\) 4.86955e11 0.823171 0.411586 0.911371i \(-0.364975\pi\)
0.411586 + 0.911371i \(0.364975\pi\)
\(878\) − 4.28606e10i − 0.0721240i
\(879\) 0 0
\(880\) 2.97342e9 0.00495822
\(881\) 1.10625e12i 1.83633i 0.396196 + 0.918166i \(0.370330\pi\)
−0.396196 + 0.918166i \(0.629670\pi\)
\(882\) 0 0
\(883\) 7.45262e10 0.122593 0.0612966 0.998120i \(-0.480476\pi\)
0.0612966 + 0.998120i \(0.480476\pi\)
\(884\) 2.46348e11i 0.403405i
\(885\) 0 0
\(886\) −1.20933e11 −0.196251
\(887\) 1.15964e12i 1.87338i 0.350153 + 0.936692i \(0.386130\pi\)
−0.350153 + 0.936692i \(0.613870\pi\)
\(888\) 0 0
\(889\) −1.58004e12 −2.52965
\(890\) − 2.75387e11i − 0.438919i
\(891\) 0 0
\(892\) −9.54693e10 −0.150801
\(893\) 4.05370e11i 0.637449i
\(894\) 0 0
\(895\) −2.48949e11 −0.387988
\(896\) 6.98529e11i 1.08381i
\(897\) 0 0
\(898\) 3.18397e11 0.489626
\(899\) − 7.17591e11i − 1.09860i
\(900\) 0 0
\(901\) −1.12854e12 −1.71245
\(902\) − 1.79771e10i − 0.0271578i
\(903\) 0 0
\(904\) −2.53935e11 −0.380232
\(905\) − 6.55107e11i − 0.976602i
\(906\) 0 0
\(907\) 1.26174e12 1.86440 0.932201 0.361941i \(-0.117886\pi\)
0.932201 + 0.361941i \(0.117886\pi\)
\(908\) − 4.61567e11i − 0.679034i
\(909\) 0 0
\(910\) −4.79396e11 −0.699083
\(911\) 7.43367e11i 1.07927i 0.841899 + 0.539635i \(0.181438\pi\)
−0.841899 + 0.539635i \(0.818562\pi\)
\(912\) 0 0
\(913\) −2.03637e11 −0.293071
\(914\) − 8.31670e10i − 0.119170i
\(915\) 0 0
\(916\) −5.90025e11 −0.838086
\(917\) 8.25230e11i 1.16707i
\(918\) 0 0
\(919\) −8.99130e10 −0.126055 −0.0630276 0.998012i \(-0.520076\pi\)
−0.0630276 + 0.998012i \(0.520076\pi\)
\(920\) − 1.28446e12i − 1.79296i
\(921\) 0 0
\(922\) −3.19523e11 −0.442159
\(923\) − 2.43527e9i − 0.00335536i
\(924\) 0 0
\(925\) 8.87572e9 0.0121237
\(926\) 2.75962e11i 0.375323i
\(927\) 0 0
\(928\) −8.07325e11 −1.08857
\(929\) 8.58727e11i 1.15290i 0.817132 + 0.576451i \(0.195563\pi\)
−0.817132 + 0.576451i \(0.804437\pi\)
\(930\) 0 0
\(931\) 1.04110e12 1.38578
\(932\) 5.85991e11i 0.776653i
\(933\) 0 0
\(934\) 2.61097e11 0.343095
\(935\) 1.79175e11i 0.234440i
\(936\) 0 0
\(937\) 1.25416e11 0.162702 0.0813512 0.996685i \(-0.474076\pi\)
0.0813512 + 0.996685i \(0.474076\pi\)
\(938\) 5.97588e11i 0.771952i
\(939\) 0 0
\(940\) 4.92893e11 0.631308
\(941\) − 1.01295e12i − 1.29191i −0.763377 0.645954i \(-0.776460\pi\)
0.763377 0.645954i \(-0.223540\pi\)
\(942\) 0 0
\(943\) −2.70377e11 −0.341919
\(944\) − 1.80339e10i − 0.0227092i
\(945\) 0 0
\(946\) 1.37937e11 0.172233
\(947\) 2.99006e11i 0.371774i 0.982571 + 0.185887i \(0.0595159\pi\)
−0.982571 + 0.185887i \(0.940484\pi\)
\(948\) 0 0
\(949\) −9.58346e11 −1.18156
\(950\) 2.84548e10i 0.0349350i
\(951\) 0 0
\(952\) 1.57520e12 1.91773
\(953\) 9.57954e11i 1.16138i 0.814126 + 0.580688i \(0.197217\pi\)
−0.814126 + 0.580688i \(0.802783\pi\)
\(954\) 0 0
\(955\) 1.06232e12 1.27715
\(956\) − 8.24804e10i − 0.0987460i
\(957\) 0 0
\(958\) 2.22471e10 0.0264126
\(959\) − 6.62220e11i − 0.782939i
\(960\) 0 0
\(961\) 3.51989e9 0.00412701
\(962\) − 4.34896e10i − 0.0507792i
\(963\) 0 0
\(964\) −1.30612e11 −0.151243
\(965\) 4.26345e11i 0.491646i
\(966\) 0 0
\(967\) 1.18590e12 1.35626 0.678131 0.734941i \(-0.262790\pi\)
0.678131 + 0.734941i \(0.262790\pi\)
\(968\) 8.33936e11i 0.949798i
\(969\) 0 0
\(970\) −5.25284e11 −0.593345
\(971\) 5.47759e10i 0.0616187i 0.999525 + 0.0308093i \(0.00980847\pi\)
−0.999525 + 0.0308093i \(0.990192\pi\)
\(972\) 0 0
\(973\) 5.73077e11 0.639384
\(974\) 8.63838e11i 0.959835i
\(975\) 0 0
\(976\) −1.70869e10 −0.0188305
\(977\) − 9.25105e11i − 1.01534i −0.861551 0.507672i \(-0.830506\pi\)
0.861551 0.507672i \(-0.169494\pi\)
\(978\) 0 0
\(979\) −1.60958e11 −0.175219
\(980\) − 1.26589e12i − 1.37243i
\(981\) 0 0
\(982\) −4.41116e10 −0.0474358
\(983\) 5.78240e11i 0.619290i 0.950852 + 0.309645i \(0.100210\pi\)
−0.950852 + 0.309645i \(0.899790\pi\)
\(984\) 0 0
\(985\) 1.08142e12 1.14881
\(986\) 6.72832e11i 0.711867i
\(987\) 0 0
\(988\) −2.16412e11 −0.227119
\(989\) − 2.07458e12i − 2.16843i
\(990\) 0 0
\(991\) −1.41284e11 −0.146487 −0.0732435 0.997314i \(-0.523335\pi\)
−0.0732435 + 0.997314i \(0.523335\pi\)
\(992\) − 9.63505e11i − 0.994963i
\(993\) 0 0
\(994\) −5.88884e9 −0.00603231
\(995\) 1.13112e12i 1.15402i
\(996\) 0 0
\(997\) −1.24199e12 −1.25700 −0.628502 0.777808i \(-0.716332\pi\)
−0.628502 + 0.777808i \(0.716332\pi\)
\(998\) − 2.77464e11i − 0.279695i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.b.b.80.11 yes 16
3.2 odd 2 inner 81.9.b.b.80.6 16
9.2 odd 6 81.9.d.g.53.6 32
9.4 even 3 81.9.d.g.26.6 32
9.5 odd 6 81.9.d.g.26.11 32
9.7 even 3 81.9.d.g.53.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.9.b.b.80.6 16 3.2 odd 2 inner
81.9.b.b.80.11 yes 16 1.1 even 1 trivial
81.9.d.g.26.6 32 9.4 even 3
81.9.d.g.26.11 32 9.5 odd 6
81.9.d.g.53.6 32 9.2 odd 6
81.9.d.g.53.11 32 9.7 even 3