Properties

Label 81.9.b.b.80.10
Level $81$
Weight $9$
Character 81.80
Analytic conductor $32.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1024 x^{14} + 419701 x^{12} + 88203292 x^{10} + 10121979748 x^{8} + 629108384896 x^{6} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{84} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.10
Root \(5.26228i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.9.b.b.80.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.11454i q^{2} +172.925 q^{4} +181.837i q^{5} -873.072 q^{7} +3909.46i q^{8} -1657.36 q^{10} -2607.53i q^{11} -25473.3 q^{13} -7957.65i q^{14} +8635.93 q^{16} +43929.5i q^{17} -107202. q^{19} +31444.1i q^{20} +23766.4 q^{22} +331625. i q^{23} +357560. q^{25} -232177. i q^{26} -150976. q^{28} -14672.0i q^{29} -979646. q^{31} +1.07953e6i q^{32} -400398. q^{34} -158757. i q^{35} -1.63930e6 q^{37} -977094. i q^{38} -710883. q^{40} +3.48515e6i q^{41} -4.63519e6 q^{43} -450907. i q^{44} -3.02261e6 q^{46} -8.23369e6i q^{47} -5.00255e6 q^{49} +3.25900e6i q^{50} -4.40497e6 q^{52} -1.20746e7i q^{53} +474145. q^{55} -3.41324e6i q^{56} +133728. q^{58} +2.11207e7i q^{59} -1.57894e7 q^{61} -8.92903e6i q^{62} -7.62865e6 q^{64} -4.63198e6i q^{65} -5.16949e6 q^{67} +7.59652e6i q^{68} +1.44699e6 q^{70} +1.07917e7i q^{71} -1.53154e6 q^{73} -1.49415e7i q^{74} -1.85379e7 q^{76} +2.27656e6i q^{77} +2.99414e7 q^{79} +1.57033e6i q^{80} -3.17656e7 q^{82} +2.23404e7i q^{83} -7.98801e6 q^{85} -4.22477e7i q^{86} +1.01940e7 q^{88} +7.39067e7i q^{89} +2.22400e7 q^{91} +5.73463e7i q^{92} +7.50463e7 q^{94} -1.94932e7i q^{95} +5.45203e7 q^{97} -4.55959e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2048 q^{4} + 3692 q^{7} + 10752 q^{10} + 63860 q^{13} + 95116 q^{16} + 185108 q^{19} - 691980 q^{22} - 541712 q^{25} - 997132 q^{28} + 571136 q^{31} + 1027656 q^{34} + 4354268 q^{37} - 2973768 q^{40}+ \cdots - 133878688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.11454i 0.569659i 0.958578 + 0.284829i \(0.0919370\pi\)
−0.958578 + 0.284829i \(0.908063\pi\)
\(3\) 0 0
\(4\) 172.925 0.675489
\(5\) 181.837i 0.290939i 0.989363 + 0.145469i \(0.0464692\pi\)
−0.989363 + 0.145469i \(0.953531\pi\)
\(6\) 0 0
\(7\) −873.072 −0.363628 −0.181814 0.983333i \(-0.558197\pi\)
−0.181814 + 0.983333i \(0.558197\pi\)
\(8\) 3909.46i 0.954457i
\(9\) 0 0
\(10\) −1657.36 −0.165736
\(11\) − 2607.53i − 0.178098i −0.996027 0.0890489i \(-0.971617\pi\)
0.996027 0.0890489i \(-0.0283827\pi\)
\(12\) 0 0
\(13\) −25473.3 −0.891891 −0.445945 0.895060i \(-0.647132\pi\)
−0.445945 + 0.895060i \(0.647132\pi\)
\(14\) − 7957.65i − 0.207144i
\(15\) 0 0
\(16\) 8635.93 0.131774
\(17\) 43929.5i 0.525970i 0.964800 + 0.262985i \(0.0847070\pi\)
−0.964800 + 0.262985i \(0.915293\pi\)
\(18\) 0 0
\(19\) −107202. −0.822597 −0.411299 0.911501i \(-0.634925\pi\)
−0.411299 + 0.911501i \(0.634925\pi\)
\(20\) 31444.1i 0.196526i
\(21\) 0 0
\(22\) 23766.4 0.101455
\(23\) 331625.i 1.18505i 0.805553 + 0.592524i \(0.201869\pi\)
−0.805553 + 0.592524i \(0.798131\pi\)
\(24\) 0 0
\(25\) 357560. 0.915355
\(26\) − 232177.i − 0.508073i
\(27\) 0 0
\(28\) −150976. −0.245627
\(29\) − 14672.0i − 0.0207442i −0.999946 0.0103721i \(-0.996698\pi\)
0.999946 0.0103721i \(-0.00330160\pi\)
\(30\) 0 0
\(31\) −979646. −1.06077 −0.530387 0.847756i \(-0.677953\pi\)
−0.530387 + 0.847756i \(0.677953\pi\)
\(32\) 1.07953e6i 1.02952i
\(33\) 0 0
\(34\) −400398. −0.299624
\(35\) − 158757.i − 0.105794i
\(36\) 0 0
\(37\) −1.63930e6 −0.874687 −0.437344 0.899294i \(-0.644081\pi\)
−0.437344 + 0.899294i \(0.644081\pi\)
\(38\) − 977094.i − 0.468600i
\(39\) 0 0
\(40\) −710883. −0.277689
\(41\) 3.48515e6i 1.23335i 0.787218 + 0.616675i \(0.211521\pi\)
−0.787218 + 0.616675i \(0.788479\pi\)
\(42\) 0 0
\(43\) −4.63519e6 −1.35579 −0.677897 0.735156i \(-0.737109\pi\)
−0.677897 + 0.735156i \(0.737109\pi\)
\(44\) − 450907.i − 0.120303i
\(45\) 0 0
\(46\) −3.02261e6 −0.675073
\(47\) − 8.23369e6i − 1.68734i −0.536860 0.843671i \(-0.680390\pi\)
0.536860 0.843671i \(-0.319610\pi\)
\(48\) 0 0
\(49\) −5.00255e6 −0.867774
\(50\) 3.25900e6i 0.521440i
\(51\) 0 0
\(52\) −4.40497e6 −0.602462
\(53\) − 1.20746e7i − 1.53027i −0.643870 0.765135i \(-0.722672\pi\)
0.643870 0.765135i \(-0.277328\pi\)
\(54\) 0 0
\(55\) 474145. 0.0518156
\(56\) − 3.41324e6i − 0.347068i
\(57\) 0 0
\(58\) 133728. 0.0118171
\(59\) 2.11207e7i 1.74301i 0.490386 + 0.871505i \(0.336856\pi\)
−0.490386 + 0.871505i \(0.663144\pi\)
\(60\) 0 0
\(61\) −1.57894e7 −1.14037 −0.570186 0.821516i \(-0.693129\pi\)
−0.570186 + 0.821516i \(0.693129\pi\)
\(62\) − 8.92903e6i − 0.604279i
\(63\) 0 0
\(64\) −7.62865e6 −0.454703
\(65\) − 4.63198e6i − 0.259486i
\(66\) 0 0
\(67\) −5.16949e6 −0.256536 −0.128268 0.991740i \(-0.540942\pi\)
−0.128268 + 0.991740i \(0.540942\pi\)
\(68\) 7.59652e6i 0.355287i
\(69\) 0 0
\(70\) 1.44699e6 0.0602663
\(71\) 1.07917e7i 0.424673i 0.977197 + 0.212337i \(0.0681074\pi\)
−0.977197 + 0.212337i \(0.931893\pi\)
\(72\) 0 0
\(73\) −1.53154e6 −0.0539308 −0.0269654 0.999636i \(-0.508584\pi\)
−0.0269654 + 0.999636i \(0.508584\pi\)
\(74\) − 1.49415e7i − 0.498273i
\(75\) 0 0
\(76\) −1.85379e7 −0.555655
\(77\) 2.27656e6i 0.0647614i
\(78\) 0 0
\(79\) 2.99414e7 0.768711 0.384356 0.923185i \(-0.374424\pi\)
0.384356 + 0.923185i \(0.374424\pi\)
\(80\) 1.57033e6i 0.0383381i
\(81\) 0 0
\(82\) −3.17656e7 −0.702589
\(83\) 2.23404e7i 0.470738i 0.971906 + 0.235369i \(0.0756299\pi\)
−0.971906 + 0.235369i \(0.924370\pi\)
\(84\) 0 0
\(85\) −7.98801e6 −0.153025
\(86\) − 4.22477e7i − 0.772341i
\(87\) 0 0
\(88\) 1.01940e7 0.169987
\(89\) 7.39067e7i 1.17794i 0.808154 + 0.588971i \(0.200467\pi\)
−0.808154 + 0.588971i \(0.799533\pi\)
\(90\) 0 0
\(91\) 2.22400e7 0.324317
\(92\) 5.73463e7i 0.800487i
\(93\) 0 0
\(94\) 7.50463e7 0.961210
\(95\) − 1.94932e7i − 0.239326i
\(96\) 0 0
\(97\) 5.45203e7 0.615845 0.307922 0.951411i \(-0.400366\pi\)
0.307922 + 0.951411i \(0.400366\pi\)
\(98\) − 4.55959e7i − 0.494335i
\(99\) 0 0
\(100\) 6.18312e7 0.618312
\(101\) 8.22803e7i 0.790698i 0.918531 + 0.395349i \(0.129376\pi\)
−0.918531 + 0.395349i \(0.870624\pi\)
\(102\) 0 0
\(103\) 6.46516e7 0.574421 0.287210 0.957868i \(-0.407272\pi\)
0.287210 + 0.957868i \(0.407272\pi\)
\(104\) − 9.95867e7i − 0.851271i
\(105\) 0 0
\(106\) 1.10054e8 0.871732
\(107\) 4.66645e7i 0.356001i 0.984030 + 0.178001i \(0.0569629\pi\)
−0.984030 + 0.178001i \(0.943037\pi\)
\(108\) 0 0
\(109\) 2.53493e8 1.79581 0.897904 0.440192i \(-0.145089\pi\)
0.897904 + 0.440192i \(0.145089\pi\)
\(110\) 4.32161e6i 0.0295172i
\(111\) 0 0
\(112\) −7.53979e6 −0.0479167
\(113\) − 2.29100e8i − 1.40511i −0.711627 0.702557i \(-0.752041\pi\)
0.711627 0.702557i \(-0.247959\pi\)
\(114\) 0 0
\(115\) −6.03016e7 −0.344777
\(116\) − 2.53715e6i − 0.0140125i
\(117\) 0 0
\(118\) −1.92505e8 −0.992921
\(119\) − 3.83537e7i − 0.191258i
\(120\) 0 0
\(121\) 2.07560e8 0.968281
\(122\) − 1.43913e8i − 0.649623i
\(123\) 0 0
\(124\) −1.69405e8 −0.716540
\(125\) 1.36048e8i 0.557251i
\(126\) 0 0
\(127\) 1.98537e8 0.763181 0.381591 0.924331i \(-0.375376\pi\)
0.381591 + 0.924331i \(0.375376\pi\)
\(128\) 2.06829e8i 0.770497i
\(129\) 0 0
\(130\) 4.22184e7 0.147818
\(131\) − 3.10300e7i − 0.105365i −0.998611 0.0526825i \(-0.983223\pi\)
0.998611 0.0526825i \(-0.0167771\pi\)
\(132\) 0 0
\(133\) 9.35948e7 0.299120
\(134\) − 4.71175e7i − 0.146138i
\(135\) 0 0
\(136\) −1.71741e8 −0.502016
\(137\) − 3.10592e8i − 0.881675i −0.897587 0.440838i \(-0.854681\pi\)
0.897587 0.440838i \(-0.145319\pi\)
\(138\) 0 0
\(139\) −2.37384e8 −0.635905 −0.317953 0.948107i \(-0.602995\pi\)
−0.317953 + 0.948107i \(0.602995\pi\)
\(140\) − 2.74530e7i − 0.0714624i
\(141\) 0 0
\(142\) −9.83611e7 −0.241919
\(143\) 6.64224e7i 0.158844i
\(144\) 0 0
\(145\) 2.66791e6 0.00603529
\(146\) − 1.39593e7i − 0.0307222i
\(147\) 0 0
\(148\) −2.83477e8 −0.590841
\(149\) 8.90891e8i 1.80750i 0.428056 + 0.903752i \(0.359198\pi\)
−0.428056 + 0.903752i \(0.640802\pi\)
\(150\) 0 0
\(151\) 3.03017e8 0.582853 0.291427 0.956593i \(-0.405870\pi\)
0.291427 + 0.956593i \(0.405870\pi\)
\(152\) − 4.19100e8i − 0.785134i
\(153\) 0 0
\(154\) −2.07498e7 −0.0368919
\(155\) − 1.78136e8i − 0.308620i
\(156\) 0 0
\(157\) −5.99222e7 −0.0986255 −0.0493128 0.998783i \(-0.515703\pi\)
−0.0493128 + 0.998783i \(0.515703\pi\)
\(158\) 2.72902e8i 0.437903i
\(159\) 0 0
\(160\) −1.96299e8 −0.299528
\(161\) − 2.89533e8i − 0.430917i
\(162\) 0 0
\(163\) −7.08582e8 −1.00378 −0.501891 0.864931i \(-0.667362\pi\)
−0.501891 + 0.864931i \(0.667362\pi\)
\(164\) 6.02671e8i 0.833115i
\(165\) 0 0
\(166\) −2.03623e8 −0.268160
\(167\) 1.33552e9i 1.71705i 0.512770 + 0.858526i \(0.328619\pi\)
−0.512770 + 0.858526i \(0.671381\pi\)
\(168\) 0 0
\(169\) −1.66842e8 −0.204531
\(170\) − 7.28070e7i − 0.0871721i
\(171\) 0 0
\(172\) −8.01541e8 −0.915824
\(173\) − 1.38680e9i − 1.54820i −0.633061 0.774102i \(-0.718202\pi\)
0.633061 0.774102i \(-0.281798\pi\)
\(174\) 0 0
\(175\) −3.12176e8 −0.332849
\(176\) − 2.25184e7i − 0.0234686i
\(177\) 0 0
\(178\) −6.73626e8 −0.671025
\(179\) 7.03513e8i 0.685268i 0.939469 + 0.342634i \(0.111319\pi\)
−0.939469 + 0.342634i \(0.888681\pi\)
\(180\) 0 0
\(181\) −1.61661e8 −0.150623 −0.0753114 0.997160i \(-0.523995\pi\)
−0.0753114 + 0.997160i \(0.523995\pi\)
\(182\) 2.02708e8i 0.184750i
\(183\) 0 0
\(184\) −1.29647e9 −1.13108
\(185\) − 2.98086e8i − 0.254481i
\(186\) 0 0
\(187\) 1.14548e8 0.0936741
\(188\) − 1.42381e9i − 1.13978i
\(189\) 0 0
\(190\) 1.77672e8 0.136334
\(191\) − 1.96614e9i − 1.47734i −0.674068 0.738669i \(-0.735454\pi\)
0.674068 0.738669i \(-0.264546\pi\)
\(192\) 0 0
\(193\) 9.74772e8 0.702545 0.351272 0.936273i \(-0.385749\pi\)
0.351272 + 0.936273i \(0.385749\pi\)
\(194\) 4.96928e8i 0.350821i
\(195\) 0 0
\(196\) −8.65066e8 −0.586172
\(197\) 5.21456e8i 0.346220i 0.984902 + 0.173110i \(0.0553817\pi\)
−0.984902 + 0.173110i \(0.944618\pi\)
\(198\) 0 0
\(199\) 1.16358e9 0.741968 0.370984 0.928639i \(-0.379020\pi\)
0.370984 + 0.928639i \(0.379020\pi\)
\(200\) 1.39787e9i 0.873667i
\(201\) 0 0
\(202\) −7.49948e8 −0.450428
\(203\) 1.28097e7i 0.00754318i
\(204\) 0 0
\(205\) −6.33729e8 −0.358830
\(206\) 5.89269e8i 0.327224i
\(207\) 0 0
\(208\) −2.19985e8 −0.117528
\(209\) 2.79532e8i 0.146503i
\(210\) 0 0
\(211\) 3.16340e9 1.59597 0.797985 0.602677i \(-0.205899\pi\)
0.797985 + 0.602677i \(0.205899\pi\)
\(212\) − 2.08800e9i − 1.03368i
\(213\) 0 0
\(214\) −4.25326e8 −0.202799
\(215\) − 8.42849e8i − 0.394453i
\(216\) 0 0
\(217\) 8.55302e8 0.385727
\(218\) 2.31047e9i 1.02300i
\(219\) 0 0
\(220\) 8.19916e7 0.0350008
\(221\) − 1.11903e9i − 0.469108i
\(222\) 0 0
\(223\) 3.02468e9 1.22310 0.611548 0.791208i \(-0.290547\pi\)
0.611548 + 0.791208i \(0.290547\pi\)
\(224\) − 9.42510e8i − 0.374364i
\(225\) 0 0
\(226\) 2.08814e9 0.800436
\(227\) − 1.80522e9i − 0.679870i −0.940449 0.339935i \(-0.889595\pi\)
0.940449 0.339935i \(-0.110405\pi\)
\(228\) 0 0
\(229\) 1.90665e8 0.0693311 0.0346656 0.999399i \(-0.488963\pi\)
0.0346656 + 0.999399i \(0.488963\pi\)
\(230\) − 5.49622e8i − 0.196405i
\(231\) 0 0
\(232\) 5.73595e7 0.0197994
\(233\) 1.24700e9i 0.423099i 0.977367 + 0.211550i \(0.0678510\pi\)
−0.977367 + 0.211550i \(0.932149\pi\)
\(234\) 0 0
\(235\) 1.49719e9 0.490913
\(236\) 3.65230e9i 1.17738i
\(237\) 0 0
\(238\) 3.49576e8 0.108952
\(239\) − 3.88186e9i − 1.18973i −0.803825 0.594865i \(-0.797205\pi\)
0.803825 0.594865i \(-0.202795\pi\)
\(240\) 0 0
\(241\) 5.01748e9 1.48737 0.743683 0.668533i \(-0.233077\pi\)
0.743683 + 0.668533i \(0.233077\pi\)
\(242\) 1.89181e9i 0.551590i
\(243\) 0 0
\(244\) −2.73038e9 −0.770308
\(245\) − 9.09647e8i − 0.252469i
\(246\) 0 0
\(247\) 2.73078e9 0.733667
\(248\) − 3.82988e9i − 1.01246i
\(249\) 0 0
\(250\) −1.24001e9 −0.317443
\(251\) 7.11370e9i 1.79226i 0.443793 + 0.896129i \(0.353633\pi\)
−0.443793 + 0.896129i \(0.646367\pi\)
\(252\) 0 0
\(253\) 8.64723e8 0.211055
\(254\) 1.80958e9i 0.434753i
\(255\) 0 0
\(256\) −3.83809e9 −0.893624
\(257\) 1.89939e9i 0.435393i 0.976017 + 0.217696i \(0.0698543\pi\)
−0.976017 + 0.217696i \(0.930146\pi\)
\(258\) 0 0
\(259\) 1.43123e9 0.318061
\(260\) − 8.00986e8i − 0.175280i
\(261\) 0 0
\(262\) 2.82824e8 0.0600221
\(263\) 4.95165e9i 1.03497i 0.855693 + 0.517484i \(0.173131\pi\)
−0.855693 + 0.517484i \(0.826869\pi\)
\(264\) 0 0
\(265\) 2.19560e9 0.445215
\(266\) 8.53074e8i 0.170396i
\(267\) 0 0
\(268\) −8.93934e8 −0.173287
\(269\) − 4.96899e8i − 0.0948985i −0.998874 0.0474492i \(-0.984891\pi\)
0.998874 0.0474492i \(-0.0151092\pi\)
\(270\) 0 0
\(271\) −1.12765e9 −0.209072 −0.104536 0.994521i \(-0.533336\pi\)
−0.104536 + 0.994521i \(0.533336\pi\)
\(272\) 3.79372e8i 0.0693091i
\(273\) 0 0
\(274\) 2.83091e9 0.502254
\(275\) − 9.32350e8i − 0.163023i
\(276\) 0 0
\(277\) 2.48144e9 0.421488 0.210744 0.977541i \(-0.432411\pi\)
0.210744 + 0.977541i \(0.432411\pi\)
\(278\) − 2.16365e9i − 0.362249i
\(279\) 0 0
\(280\) 6.20652e8 0.100976
\(281\) − 5.60122e9i − 0.898374i −0.893438 0.449187i \(-0.851714\pi\)
0.893438 0.449187i \(-0.148286\pi\)
\(282\) 0 0
\(283\) −7.50388e9 −1.16988 −0.584938 0.811078i \(-0.698881\pi\)
−0.584938 + 0.811078i \(0.698881\pi\)
\(284\) 1.86615e9i 0.286862i
\(285\) 0 0
\(286\) −6.05410e8 −0.0904868
\(287\) − 3.04279e9i − 0.448481i
\(288\) 0 0
\(289\) 5.04595e9 0.723356
\(290\) 2.43167e7i 0.00343806i
\(291\) 0 0
\(292\) −2.64842e8 −0.0364296
\(293\) 4.54136e9i 0.616192i 0.951355 + 0.308096i \(0.0996918\pi\)
−0.951355 + 0.308096i \(0.900308\pi\)
\(294\) 0 0
\(295\) −3.84052e9 −0.507109
\(296\) − 6.40879e9i − 0.834851i
\(297\) 0 0
\(298\) −8.12006e9 −1.02966
\(299\) − 8.44758e9i − 1.05693i
\(300\) 0 0
\(301\) 4.04686e9 0.493006
\(302\) 2.76186e9i 0.332028i
\(303\) 0 0
\(304\) −9.25786e8 −0.108397
\(305\) − 2.87109e9i − 0.331778i
\(306\) 0 0
\(307\) −2.23711e9 −0.251845 −0.125923 0.992040i \(-0.540189\pi\)
−0.125923 + 0.992040i \(0.540189\pi\)
\(308\) 3.93675e8i 0.0437456i
\(309\) 0 0
\(310\) 1.62363e9 0.175808
\(311\) 1.18006e10i 1.26143i 0.776016 + 0.630713i \(0.217237\pi\)
−0.776016 + 0.630713i \(0.782763\pi\)
\(312\) 0 0
\(313\) −1.78305e10 −1.85774 −0.928870 0.370405i \(-0.879219\pi\)
−0.928870 + 0.370405i \(0.879219\pi\)
\(314\) − 5.46164e8i − 0.0561829i
\(315\) 0 0
\(316\) 5.17761e9 0.519256
\(317\) − 4.28295e9i − 0.424137i −0.977255 0.212068i \(-0.931980\pi\)
0.977255 0.212068i \(-0.0680199\pi\)
\(318\) 0 0
\(319\) −3.82576e7 −0.00369450
\(320\) − 1.38717e9i − 0.132291i
\(321\) 0 0
\(322\) 2.63896e9 0.245476
\(323\) − 4.70932e9i − 0.432662i
\(324\) 0 0
\(325\) −9.10824e9 −0.816396
\(326\) − 6.45840e9i − 0.571814i
\(327\) 0 0
\(328\) −1.36251e10 −1.17718
\(329\) 7.18861e9i 0.613566i
\(330\) 0 0
\(331\) −1.55202e10 −1.29296 −0.646481 0.762930i \(-0.723760\pi\)
−0.646481 + 0.762930i \(0.723760\pi\)
\(332\) 3.86322e9i 0.317978i
\(333\) 0 0
\(334\) −1.21726e10 −0.978134
\(335\) − 9.40003e8i − 0.0746363i
\(336\) 0 0
\(337\) −1.86578e10 −1.44657 −0.723287 0.690547i \(-0.757370\pi\)
−0.723287 + 0.690547i \(0.757370\pi\)
\(338\) − 1.52069e9i − 0.116513i
\(339\) 0 0
\(340\) −1.38133e9 −0.103367
\(341\) 2.55446e9i 0.188921i
\(342\) 0 0
\(343\) 9.40067e9 0.679176
\(344\) − 1.81211e10i − 1.29405i
\(345\) 0 0
\(346\) 1.26400e10 0.881948
\(347\) 7.90715e8i 0.0545384i 0.999628 + 0.0272692i \(0.00868112\pi\)
−0.999628 + 0.0272692i \(0.991319\pi\)
\(348\) 0 0
\(349\) 2.50802e10 1.69056 0.845278 0.534326i \(-0.179435\pi\)
0.845278 + 0.534326i \(0.179435\pi\)
\(350\) − 2.84534e9i − 0.189610i
\(351\) 0 0
\(352\) 2.81492e9 0.183356
\(353\) 2.21719e10i 1.42792i 0.700185 + 0.713961i \(0.253101\pi\)
−0.700185 + 0.713961i \(0.746899\pi\)
\(354\) 0 0
\(355\) −1.96232e9 −0.123554
\(356\) 1.27803e10i 0.795687i
\(357\) 0 0
\(358\) −6.41220e9 −0.390369
\(359\) − 1.72279e9i − 0.103718i −0.998654 0.0518589i \(-0.983485\pi\)
0.998654 0.0518589i \(-0.0165146\pi\)
\(360\) 0 0
\(361\) −5.49136e9 −0.323334
\(362\) − 1.47346e9i − 0.0858036i
\(363\) 0 0
\(364\) 3.84586e9 0.219072
\(365\) − 2.78490e8i − 0.0156906i
\(366\) 0 0
\(367\) −2.29525e9 −0.126522 −0.0632611 0.997997i \(-0.520150\pi\)
−0.0632611 + 0.997997i \(0.520150\pi\)
\(368\) 2.86389e9i 0.156158i
\(369\) 0 0
\(370\) 2.71692e9 0.144967
\(371\) 1.05420e10i 0.556450i
\(372\) 0 0
\(373\) 9.21146e9 0.475875 0.237938 0.971280i \(-0.423529\pi\)
0.237938 + 0.971280i \(0.423529\pi\)
\(374\) 1.04405e9i 0.0533623i
\(375\) 0 0
\(376\) 3.21893e10 1.61050
\(377\) 3.73744e8i 0.0185016i
\(378\) 0 0
\(379\) −1.60658e10 −0.778656 −0.389328 0.921099i \(-0.627293\pi\)
−0.389328 + 0.921099i \(0.627293\pi\)
\(380\) − 3.37087e9i − 0.161662i
\(381\) 0 0
\(382\) 1.79204e10 0.841579
\(383\) − 1.51904e10i − 0.705951i −0.935633 0.352976i \(-0.885170\pi\)
0.935633 0.352976i \(-0.114830\pi\)
\(384\) 0 0
\(385\) −4.13963e8 −0.0188416
\(386\) 8.88460e9i 0.400211i
\(387\) 0 0
\(388\) 9.42793e9 0.415996
\(389\) 2.81033e10i 1.22732i 0.789569 + 0.613662i \(0.210304\pi\)
−0.789569 + 0.613662i \(0.789696\pi\)
\(390\) 0 0
\(391\) −1.45681e10 −0.623300
\(392\) − 1.95572e10i − 0.828253i
\(393\) 0 0
\(394\) −4.75283e9 −0.197228
\(395\) 5.44444e9i 0.223648i
\(396\) 0 0
\(397\) 3.42573e10 1.37909 0.689543 0.724244i \(-0.257811\pi\)
0.689543 + 0.724244i \(0.257811\pi\)
\(398\) 1.06055e10i 0.422669i
\(399\) 0 0
\(400\) 3.08786e9 0.120620
\(401\) − 2.12611e10i − 0.822258i −0.911577 0.411129i \(-0.865135\pi\)
0.911577 0.411129i \(-0.134865\pi\)
\(402\) 0 0
\(403\) 2.49548e10 0.946094
\(404\) 1.42283e10i 0.534107i
\(405\) 0 0
\(406\) −1.16754e8 −0.00429704
\(407\) 4.27454e9i 0.155780i
\(408\) 0 0
\(409\) 8.96413e9 0.320343 0.160171 0.987089i \(-0.448795\pi\)
0.160171 + 0.987089i \(0.448795\pi\)
\(410\) − 5.77615e9i − 0.204411i
\(411\) 0 0
\(412\) 1.11799e10 0.388015
\(413\) − 1.84399e10i − 0.633808i
\(414\) 0 0
\(415\) −4.06231e9 −0.136956
\(416\) − 2.74993e10i − 0.918222i
\(417\) 0 0
\(418\) −2.54780e9 −0.0834566
\(419\) − 5.17120e10i − 1.67778i −0.544300 0.838891i \(-0.683205\pi\)
0.544300 0.838891i \(-0.316795\pi\)
\(420\) 0 0
\(421\) −3.51595e10 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(422\) 2.88330e10i 0.909159i
\(423\) 0 0
\(424\) 4.72050e10 1.46058
\(425\) 1.57075e10i 0.481449i
\(426\) 0 0
\(427\) 1.37853e10 0.414672
\(428\) 8.06947e9i 0.240475i
\(429\) 0 0
\(430\) 7.68218e9 0.224704
\(431\) 4.11665e10i 1.19298i 0.802619 + 0.596492i \(0.203439\pi\)
−0.802619 + 0.596492i \(0.796561\pi\)
\(432\) 0 0
\(433\) −2.99706e10 −0.852598 −0.426299 0.904582i \(-0.640183\pi\)
−0.426299 + 0.904582i \(0.640183\pi\)
\(434\) 7.79569e9i 0.219733i
\(435\) 0 0
\(436\) 4.38353e10 1.21305
\(437\) − 3.55508e10i − 0.974818i
\(438\) 0 0
\(439\) −3.84956e10 −1.03646 −0.518231 0.855241i \(-0.673409\pi\)
−0.518231 + 0.855241i \(0.673409\pi\)
\(440\) 1.85365e9i 0.0494557i
\(441\) 0 0
\(442\) 1.01994e10 0.267231
\(443\) 1.63124e10i 0.423548i 0.977319 + 0.211774i \(0.0679241\pi\)
−0.977319 + 0.211774i \(0.932076\pi\)
\(444\) 0 0
\(445\) −1.34390e10 −0.342709
\(446\) 2.75686e10i 0.696747i
\(447\) 0 0
\(448\) 6.66037e9 0.165343
\(449\) − 6.80379e10i − 1.67404i −0.547174 0.837019i \(-0.684296\pi\)
0.547174 0.837019i \(-0.315704\pi\)
\(450\) 0 0
\(451\) 9.08765e9 0.219657
\(452\) − 3.96172e10i − 0.949139i
\(453\) 0 0
\(454\) 1.64537e10 0.387294
\(455\) 4.04405e9i 0.0943564i
\(456\) 0 0
\(457\) 4.67693e10 1.07225 0.536125 0.844138i \(-0.319887\pi\)
0.536125 + 0.844138i \(0.319887\pi\)
\(458\) 1.73782e9i 0.0394951i
\(459\) 0 0
\(460\) −1.04277e10 −0.232893
\(461\) 1.57255e10i 0.348178i 0.984730 + 0.174089i \(0.0556980\pi\)
−0.984730 + 0.174089i \(0.944302\pi\)
\(462\) 0 0
\(463\) −2.47842e9 −0.0539326 −0.0269663 0.999636i \(-0.508585\pi\)
−0.0269663 + 0.999636i \(0.508585\pi\)
\(464\) − 1.26706e8i − 0.00273354i
\(465\) 0 0
\(466\) −1.13658e10 −0.241022
\(467\) − 4.52500e10i − 0.951373i −0.879615 0.475687i \(-0.842200\pi\)
0.879615 0.475687i \(-0.157800\pi\)
\(468\) 0 0
\(469\) 4.51333e9 0.0932838
\(470\) 1.36462e10i 0.279653i
\(471\) 0 0
\(472\) −8.25704e10 −1.66363
\(473\) 1.20864e10i 0.241464i
\(474\) 0 0
\(475\) −3.83311e10 −0.752968
\(476\) − 6.63231e9i − 0.129192i
\(477\) 0 0
\(478\) 3.53814e10 0.677741
\(479\) − 8.22196e9i − 0.156183i −0.996946 0.0780914i \(-0.975117\pi\)
0.996946 0.0780914i \(-0.0248826\pi\)
\(480\) 0 0
\(481\) 4.17585e10 0.780125
\(482\) 4.57320e10i 0.847291i
\(483\) 0 0
\(484\) 3.58923e10 0.654063
\(485\) 9.91379e9i 0.179173i
\(486\) 0 0
\(487\) −1.03191e11 −1.83453 −0.917266 0.398276i \(-0.869609\pi\)
−0.917266 + 0.398276i \(0.869609\pi\)
\(488\) − 6.17280e10i − 1.08844i
\(489\) 0 0
\(490\) 8.29102e9 0.143821
\(491\) 5.64706e10i 0.971620i 0.874064 + 0.485810i \(0.161475\pi\)
−0.874064 + 0.485810i \(0.838525\pi\)
\(492\) 0 0
\(493\) 6.44533e8 0.0109108
\(494\) 2.48898e10i 0.417940i
\(495\) 0 0
\(496\) −8.46015e9 −0.139782
\(497\) − 9.42190e9i − 0.154423i
\(498\) 0 0
\(499\) −1.13472e11 −1.83016 −0.915078 0.403277i \(-0.867871\pi\)
−0.915078 + 0.403277i \(0.867871\pi\)
\(500\) 2.35261e10i 0.376417i
\(501\) 0 0
\(502\) −6.48381e10 −1.02098
\(503\) 1.07680e10i 0.168214i 0.996457 + 0.0841071i \(0.0268038\pi\)
−0.996457 + 0.0841071i \(0.973196\pi\)
\(504\) 0 0
\(505\) −1.49616e10 −0.230045
\(506\) 7.88155e9i 0.120229i
\(507\) 0 0
\(508\) 3.43321e10 0.515520
\(509\) 1.26178e11i 1.87981i 0.341435 + 0.939905i \(0.389087\pi\)
−0.341435 + 0.939905i \(0.610913\pi\)
\(510\) 0 0
\(511\) 1.33714e9 0.0196108
\(512\) 1.79658e10i 0.261437i
\(513\) 0 0
\(514\) −1.73121e10 −0.248025
\(515\) 1.17560e10i 0.167121i
\(516\) 0 0
\(517\) −2.14696e10 −0.300512
\(518\) 1.30450e10i 0.181186i
\(519\) 0 0
\(520\) 1.81085e10 0.247668
\(521\) − 4.35596e10i − 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955192\pi\)
\(522\) 0 0
\(523\) −7.05635e10 −0.943133 −0.471567 0.881830i \(-0.656311\pi\)
−0.471567 + 0.881830i \(0.656311\pi\)
\(524\) − 5.36586e9i − 0.0711728i
\(525\) 0 0
\(526\) −4.51320e10 −0.589579
\(527\) − 4.30354e10i − 0.557935i
\(528\) 0 0
\(529\) −3.16642e10 −0.404340
\(530\) 2.00119e10i 0.253621i
\(531\) 0 0
\(532\) 1.61849e10 0.202052
\(533\) − 8.87784e10i − 1.10001i
\(534\) 0 0
\(535\) −8.48533e9 −0.103575
\(536\) − 2.02099e10i − 0.244853i
\(537\) 0 0
\(538\) 4.52901e9 0.0540597
\(539\) 1.30443e10i 0.154549i
\(540\) 0 0
\(541\) −6.48118e10 −0.756598 −0.378299 0.925684i \(-0.623491\pi\)
−0.378299 + 0.925684i \(0.623491\pi\)
\(542\) − 1.02780e10i − 0.119100i
\(543\) 0 0
\(544\) −4.74234e10 −0.541498
\(545\) 4.60943e10i 0.522470i
\(546\) 0 0
\(547\) −1.16187e10 −0.129780 −0.0648901 0.997892i \(-0.520670\pi\)
−0.0648901 + 0.997892i \(0.520670\pi\)
\(548\) − 5.37092e10i − 0.595562i
\(549\) 0 0
\(550\) 8.49794e9 0.0928673
\(551\) 1.57286e9i 0.0170641i
\(552\) 0 0
\(553\) −2.61410e10 −0.279525
\(554\) 2.26172e10i 0.240104i
\(555\) 0 0
\(556\) −4.10497e10 −0.429547
\(557\) − 7.67569e10i − 0.797437i −0.917073 0.398719i \(-0.869455\pi\)
0.917073 0.398719i \(-0.130545\pi\)
\(558\) 0 0
\(559\) 1.18074e11 1.20922
\(560\) − 1.37101e9i − 0.0139408i
\(561\) 0 0
\(562\) 5.10526e10 0.511767
\(563\) − 6.25521e10i − 0.622599i −0.950312 0.311299i \(-0.899236\pi\)
0.950312 0.311299i \(-0.100764\pi\)
\(564\) 0 0
\(565\) 4.16589e10 0.408803
\(566\) − 6.83944e10i − 0.666430i
\(567\) 0 0
\(568\) −4.21895e10 −0.405333
\(569\) 6.16316e10i 0.587969i 0.955810 + 0.293985i \(0.0949814\pi\)
−0.955810 + 0.293985i \(0.905019\pi\)
\(570\) 0 0
\(571\) 1.73991e11 1.63675 0.818374 0.574686i \(-0.194876\pi\)
0.818374 + 0.574686i \(0.194876\pi\)
\(572\) 1.14861e10i 0.107297i
\(573\) 0 0
\(574\) 2.77336e10 0.255481
\(575\) 1.18576e11i 1.08474i
\(576\) 0 0
\(577\) 1.61116e11 1.45357 0.726786 0.686864i \(-0.241013\pi\)
0.726786 + 0.686864i \(0.241013\pi\)
\(578\) 4.59915e10i 0.412066i
\(579\) 0 0
\(580\) 4.61348e8 0.00407677
\(581\) − 1.95048e10i − 0.171174i
\(582\) 0 0
\(583\) −3.14848e10 −0.272538
\(584\) − 5.98749e9i − 0.0514746i
\(585\) 0 0
\(586\) −4.13925e10 −0.351019
\(587\) − 1.04941e11i − 0.883880i −0.897045 0.441940i \(-0.854290\pi\)
0.897045 0.441940i \(-0.145710\pi\)
\(588\) 0 0
\(589\) 1.05020e11 0.872589
\(590\) − 3.50046e10i − 0.288879i
\(591\) 0 0
\(592\) −1.41569e10 −0.115261
\(593\) − 2.84415e10i − 0.230003i −0.993365 0.115002i \(-0.963313\pi\)
0.993365 0.115002i \(-0.0366873\pi\)
\(594\) 0 0
\(595\) 6.97411e9 0.0556443
\(596\) 1.54057e11i 1.22095i
\(597\) 0 0
\(598\) 7.69959e10 0.602092
\(599\) − 1.42403e11i − 1.10614i −0.833133 0.553072i \(-0.813455\pi\)
0.833133 0.553072i \(-0.186545\pi\)
\(600\) 0 0
\(601\) −4.44715e10 −0.340866 −0.170433 0.985369i \(-0.554517\pi\)
−0.170433 + 0.985369i \(0.554517\pi\)
\(602\) 3.68853e10i 0.280845i
\(603\) 0 0
\(604\) 5.23992e10 0.393711
\(605\) 3.77420e10i 0.281711i
\(606\) 0 0
\(607\) −2.18843e11 −1.61205 −0.806024 0.591883i \(-0.798385\pi\)
−0.806024 + 0.591883i \(0.798385\pi\)
\(608\) − 1.15728e11i − 0.846883i
\(609\) 0 0
\(610\) 2.61687e10 0.189001
\(611\) 2.09739e11i 1.50493i
\(612\) 0 0
\(613\) 2.20837e11 1.56397 0.781987 0.623295i \(-0.214206\pi\)
0.781987 + 0.623295i \(0.214206\pi\)
\(614\) − 2.03902e10i − 0.143466i
\(615\) 0 0
\(616\) −8.90012e9 −0.0618120
\(617\) − 1.36342e11i − 0.940781i −0.882458 0.470390i \(-0.844113\pi\)
0.882458 0.470390i \(-0.155887\pi\)
\(618\) 0 0
\(619\) 1.55549e11 1.05951 0.529755 0.848151i \(-0.322284\pi\)
0.529755 + 0.848151i \(0.322284\pi\)
\(620\) − 3.08041e10i − 0.208469i
\(621\) 0 0
\(622\) −1.07557e11 −0.718582
\(623\) − 6.45259e10i − 0.428333i
\(624\) 0 0
\(625\) 1.14934e11 0.753229
\(626\) − 1.62516e11i − 1.05828i
\(627\) 0 0
\(628\) −1.03621e10 −0.0666204
\(629\) − 7.20139e10i − 0.460059i
\(630\) 0 0
\(631\) −5.86878e10 −0.370195 −0.185097 0.982720i \(-0.559260\pi\)
−0.185097 + 0.982720i \(0.559260\pi\)
\(632\) 1.17054e11i 0.733702i
\(633\) 0 0
\(634\) 3.90371e10 0.241613
\(635\) 3.61014e10i 0.222039i
\(636\) 0 0
\(637\) 1.27431e11 0.773960
\(638\) − 3.48701e8i − 0.00210460i
\(639\) 0 0
\(640\) −3.76091e10 −0.224168
\(641\) 2.36986e11i 1.40375i 0.712300 + 0.701875i \(0.247654\pi\)
−0.712300 + 0.701875i \(0.752346\pi\)
\(642\) 0 0
\(643\) 4.28799e10 0.250848 0.125424 0.992103i \(-0.459971\pi\)
0.125424 + 0.992103i \(0.459971\pi\)
\(644\) − 5.00675e10i − 0.291080i
\(645\) 0 0
\(646\) 4.29233e10 0.246469
\(647\) 2.79793e11i 1.59668i 0.602204 + 0.798342i \(0.294289\pi\)
−0.602204 + 0.798342i \(0.705711\pi\)
\(648\) 0 0
\(649\) 5.50728e10 0.310426
\(650\) − 8.30174e10i − 0.465067i
\(651\) 0 0
\(652\) −1.22532e11 −0.678044
\(653\) 1.86068e11i 1.02334i 0.859183 + 0.511669i \(0.170972\pi\)
−0.859183 + 0.511669i \(0.829028\pi\)
\(654\) 0 0
\(655\) 5.64239e9 0.0306547
\(656\) 3.00975e10i 0.162523i
\(657\) 0 0
\(658\) −6.55209e10 −0.349523
\(659\) − 1.52675e11i − 0.809517i −0.914424 0.404758i \(-0.867356\pi\)
0.914424 0.404758i \(-0.132644\pi\)
\(660\) 0 0
\(661\) 2.24390e11 1.17543 0.587717 0.809066i \(-0.300027\pi\)
0.587717 + 0.809066i \(0.300027\pi\)
\(662\) − 1.41460e11i − 0.736548i
\(663\) 0 0
\(664\) −8.73390e10 −0.449299
\(665\) 1.70190e10i 0.0870256i
\(666\) 0 0
\(667\) 4.86560e9 0.0245829
\(668\) 2.30944e11i 1.15985i
\(669\) 0 0
\(670\) 8.56769e9 0.0425172
\(671\) 4.11714e10i 0.203098i
\(672\) 0 0
\(673\) 3.64364e11 1.77613 0.888066 0.459716i \(-0.152049\pi\)
0.888066 + 0.459716i \(0.152049\pi\)
\(674\) − 1.70057e11i − 0.824054i
\(675\) 0 0
\(676\) −2.88512e10 −0.138158
\(677\) − 6.27441e10i − 0.298688i −0.988785 0.149344i \(-0.952284\pi\)
0.988785 0.149344i \(-0.0477162\pi\)
\(678\) 0 0
\(679\) −4.76001e10 −0.223939
\(680\) − 3.12288e10i − 0.146056i
\(681\) 0 0
\(682\) −2.32827e10 −0.107621
\(683\) 1.33372e11i 0.612888i 0.951889 + 0.306444i \(0.0991392\pi\)
−0.951889 + 0.306444i \(0.900861\pi\)
\(684\) 0 0
\(685\) 5.64771e10 0.256514
\(686\) 8.56828e10i 0.386899i
\(687\) 0 0
\(688\) −4.00292e10 −0.178658
\(689\) 3.07579e11i 1.36483i
\(690\) 0 0
\(691\) −2.10513e11 −0.923353 −0.461676 0.887048i \(-0.652752\pi\)
−0.461676 + 0.887048i \(0.652752\pi\)
\(692\) − 2.39812e11i − 1.04579i
\(693\) 0 0
\(694\) −7.20700e9 −0.0310683
\(695\) − 4.31652e10i − 0.185010i
\(696\) 0 0
\(697\) −1.53101e11 −0.648706
\(698\) 2.28595e11i 0.963041i
\(699\) 0 0
\(700\) −5.39831e10 −0.224836
\(701\) − 1.97734e11i − 0.818859i −0.912342 0.409429i \(-0.865728\pi\)
0.912342 0.409429i \(-0.134272\pi\)
\(702\) 0 0
\(703\) 1.75736e11 0.719515
\(704\) 1.98919e10i 0.0809817i
\(705\) 0 0
\(706\) −2.02087e11 −0.813429
\(707\) − 7.18367e10i − 0.287520i
\(708\) 0 0
\(709\) 8.72608e10 0.345330 0.172665 0.984981i \(-0.444762\pi\)
0.172665 + 0.984981i \(0.444762\pi\)
\(710\) − 1.78857e10i − 0.0703836i
\(711\) 0 0
\(712\) −2.88935e11 −1.12430
\(713\) − 3.24875e11i − 1.25707i
\(714\) 0 0
\(715\) −1.20780e10 −0.0462138
\(716\) 1.21655e11i 0.462890i
\(717\) 0 0
\(718\) 1.57024e10 0.0590838
\(719\) − 7.40213e10i − 0.276975i −0.990364 0.138488i \(-0.955776\pi\)
0.990364 0.138488i \(-0.0442241\pi\)
\(720\) 0 0
\(721\) −5.64455e10 −0.208876
\(722\) − 5.00512e10i − 0.184190i
\(723\) 0 0
\(724\) −2.79552e10 −0.101744
\(725\) − 5.24612e9i − 0.0189883i
\(726\) 0 0
\(727\) −4.22377e11 −1.51204 −0.756019 0.654550i \(-0.772858\pi\)
−0.756019 + 0.654550i \(0.772858\pi\)
\(728\) 8.69464e10i 0.309547i
\(729\) 0 0
\(730\) 2.53831e9 0.00893827
\(731\) − 2.03622e11i − 0.713108i
\(732\) 0 0
\(733\) 4.80823e10 0.166560 0.0832798 0.996526i \(-0.473460\pi\)
0.0832798 + 0.996526i \(0.473460\pi\)
\(734\) − 2.09202e10i − 0.0720745i
\(735\) 0 0
\(736\) −3.58000e11 −1.22003
\(737\) 1.34796e10i 0.0456885i
\(738\) 0 0
\(739\) −3.18346e11 −1.06739 −0.533693 0.845678i \(-0.679196\pi\)
−0.533693 + 0.845678i \(0.679196\pi\)
\(740\) − 5.15465e10i − 0.171899i
\(741\) 0 0
\(742\) −9.60852e10 −0.316987
\(743\) 2.47368e11i 0.811686i 0.913943 + 0.405843i \(0.133022\pi\)
−0.913943 + 0.405843i \(0.866978\pi\)
\(744\) 0 0
\(745\) −1.61997e11 −0.525873
\(746\) 8.39582e10i 0.271087i
\(747\) 0 0
\(748\) 1.98082e10 0.0632758
\(749\) − 4.07415e10i − 0.129452i
\(750\) 0 0
\(751\) −3.11386e10 −0.0978903 −0.0489452 0.998801i \(-0.515586\pi\)
−0.0489452 + 0.998801i \(0.515586\pi\)
\(752\) − 7.11056e10i − 0.222347i
\(753\) 0 0
\(754\) −3.40650e9 −0.0105396
\(755\) 5.50996e10i 0.169575i
\(756\) 0 0
\(757\) 2.81381e10 0.0856862 0.0428431 0.999082i \(-0.486358\pi\)
0.0428431 + 0.999082i \(0.486358\pi\)
\(758\) − 1.46433e11i − 0.443569i
\(759\) 0 0
\(760\) 7.62079e10 0.228426
\(761\) 5.60784e11i 1.67208i 0.548670 + 0.836039i \(0.315134\pi\)
−0.548670 + 0.836039i \(0.684866\pi\)
\(762\) 0 0
\(763\) −2.21318e11 −0.653007
\(764\) − 3.39994e11i − 0.997926i
\(765\) 0 0
\(766\) 1.38454e11 0.402151
\(767\) − 5.38013e11i − 1.55457i
\(768\) 0 0
\(769\) 2.88371e11 0.824607 0.412303 0.911047i \(-0.364724\pi\)
0.412303 + 0.911047i \(0.364724\pi\)
\(770\) − 3.77308e9i − 0.0107333i
\(771\) 0 0
\(772\) 1.68563e11 0.474561
\(773\) − 2.78651e11i − 0.780445i −0.920721 0.390222i \(-0.872398\pi\)
0.920721 0.390222i \(-0.127602\pi\)
\(774\) 0 0
\(775\) −3.50283e11 −0.970984
\(776\) 2.13145e11i 0.587797i
\(777\) 0 0
\(778\) −2.56149e11 −0.699156
\(779\) − 3.73614e11i − 1.01455i
\(780\) 0 0
\(781\) 2.81396e10 0.0756334
\(782\) − 1.32782e11i − 0.355068i
\(783\) 0 0
\(784\) −4.32016e10 −0.114350
\(785\) − 1.08961e10i − 0.0286940i
\(786\) 0 0
\(787\) −6.16668e11 −1.60751 −0.803753 0.594963i \(-0.797167\pi\)
−0.803753 + 0.594963i \(0.797167\pi\)
\(788\) 9.01728e10i 0.233868i
\(789\) 0 0
\(790\) −4.96236e10 −0.127403
\(791\) 2.00021e11i 0.510940i
\(792\) 0 0
\(793\) 4.02208e11 1.01709
\(794\) 3.12240e11i 0.785609i
\(795\) 0 0
\(796\) 2.01213e11 0.501191
\(797\) − 3.10128e10i − 0.0768614i −0.999261 0.0384307i \(-0.987764\pi\)
0.999261 0.0384307i \(-0.0122359\pi\)
\(798\) 0 0
\(799\) 3.61702e11 0.887492
\(800\) 3.85998e11i 0.942379i
\(801\) 0 0
\(802\) 1.93785e11 0.468406
\(803\) 3.99354e9i 0.00960496i
\(804\) 0 0
\(805\) 5.26477e10 0.125371
\(806\) 2.27452e11i 0.538951i
\(807\) 0 0
\(808\) −3.21671e11 −0.754687
\(809\) − 7.09731e11i − 1.65691i −0.560053 0.828457i \(-0.689219\pi\)
0.560053 0.828457i \(-0.310781\pi\)
\(810\) 0 0
\(811\) −1.66915e11 −0.385845 −0.192922 0.981214i \(-0.561797\pi\)
−0.192922 + 0.981214i \(0.561797\pi\)
\(812\) 2.21512e9i 0.00509533i
\(813\) 0 0
\(814\) −3.89604e10 −0.0887414
\(815\) − 1.28846e11i − 0.292039i
\(816\) 0 0
\(817\) 4.96901e11 1.11527
\(818\) 8.17040e10i 0.182486i
\(819\) 0 0
\(820\) −1.09588e11 −0.242385
\(821\) 5.28938e11i 1.16421i 0.813113 + 0.582106i \(0.197771\pi\)
−0.813113 + 0.582106i \(0.802229\pi\)
\(822\) 0 0
\(823\) 3.82958e11 0.834740 0.417370 0.908737i \(-0.362952\pi\)
0.417370 + 0.908737i \(0.362952\pi\)
\(824\) 2.52752e11i 0.548260i
\(825\) 0 0
\(826\) 1.68071e11 0.361055
\(827\) 7.05611e11i 1.50849i 0.656591 + 0.754247i \(0.271998\pi\)
−0.656591 + 0.754247i \(0.728002\pi\)
\(828\) 0 0
\(829\) −2.63063e10 −0.0556982 −0.0278491 0.999612i \(-0.508866\pi\)
−0.0278491 + 0.999612i \(0.508866\pi\)
\(830\) − 3.70261e10i − 0.0780182i
\(831\) 0 0
\(832\) 1.94327e11 0.405546
\(833\) − 2.19760e11i − 0.456423i
\(834\) 0 0
\(835\) −2.42846e11 −0.499557
\(836\) 4.83380e10i 0.0989610i
\(837\) 0 0
\(838\) 4.71331e11 0.955763
\(839\) 5.22454e11i 1.05439i 0.849745 + 0.527194i \(0.176756\pi\)
−0.849745 + 0.527194i \(0.823244\pi\)
\(840\) 0 0
\(841\) 5.00031e11 0.999570
\(842\) − 3.20463e11i − 0.637572i
\(843\) 0 0
\(844\) 5.47032e11 1.07806
\(845\) − 3.03381e10i − 0.0595060i
\(846\) 0 0
\(847\) −1.81215e11 −0.352095
\(848\) − 1.04275e11i − 0.201649i
\(849\) 0 0
\(850\) −1.43166e11 −0.274262
\(851\) − 5.43635e11i − 1.03655i
\(852\) 0 0
\(853\) 8.00236e11 1.51155 0.755774 0.654833i \(-0.227261\pi\)
0.755774 + 0.654833i \(0.227261\pi\)
\(854\) 1.25647e11i 0.236221i
\(855\) 0 0
\(856\) −1.82433e11 −0.339788
\(857\) 2.96033e11i 0.548803i 0.961615 + 0.274401i \(0.0884797\pi\)
−0.961615 + 0.274401i \(0.911520\pi\)
\(858\) 0 0
\(859\) −3.75039e11 −0.688818 −0.344409 0.938820i \(-0.611921\pi\)
−0.344409 + 0.938820i \(0.611921\pi\)
\(860\) − 1.45750e11i − 0.266449i
\(861\) 0 0
\(862\) −3.75214e11 −0.679594
\(863\) 4.47076e11i 0.806005i 0.915199 + 0.403002i \(0.132033\pi\)
−0.915199 + 0.403002i \(0.867967\pi\)
\(864\) 0 0
\(865\) 2.52171e11 0.450433
\(866\) − 2.73169e11i − 0.485690i
\(867\) 0 0
\(868\) 1.47903e11 0.260555
\(869\) − 7.80730e10i − 0.136906i
\(870\) 0 0
\(871\) 1.31684e11 0.228802
\(872\) 9.91019e11i 1.71402i
\(873\) 0 0
\(874\) 3.24029e11 0.555313
\(875\) − 1.18779e11i − 0.202632i
\(876\) 0 0
\(877\) 3.50046e10 0.0591735 0.0295867 0.999562i \(-0.490581\pi\)
0.0295867 + 0.999562i \(0.490581\pi\)
\(878\) − 3.50870e11i − 0.590430i
\(879\) 0 0
\(880\) 4.09468e9 0.00682793
\(881\) − 5.09104e11i − 0.845090i −0.906342 0.422545i \(-0.861137\pi\)
0.906342 0.422545i \(-0.138863\pi\)
\(882\) 0 0
\(883\) −8.34773e11 −1.37317 −0.686587 0.727048i \(-0.740892\pi\)
−0.686587 + 0.727048i \(0.740892\pi\)
\(884\) − 1.93508e11i − 0.316877i
\(885\) 0 0
\(886\) −1.48680e11 −0.241278
\(887\) − 1.15850e12i − 1.87155i −0.352603 0.935773i \(-0.614704\pi\)
0.352603 0.935773i \(-0.385296\pi\)
\(888\) 0 0
\(889\) −1.73338e11 −0.277514
\(890\) − 1.22490e11i − 0.195227i
\(891\) 0 0
\(892\) 5.23044e11 0.826187
\(893\) 8.82666e11i 1.38800i
\(894\) 0 0
\(895\) −1.27925e11 −0.199371
\(896\) − 1.80576e11i − 0.280175i
\(897\) 0 0
\(898\) 6.20134e11 0.953631
\(899\) 1.43734e10i 0.0220049i
\(900\) 0 0
\(901\) 5.30430e11 0.804876
\(902\) 8.28297e10i 0.125130i
\(903\) 0 0
\(904\) 8.95657e11 1.34112
\(905\) − 2.93959e10i − 0.0438220i
\(906\) 0 0
\(907\) −4.11434e11 −0.607954 −0.303977 0.952679i \(-0.598315\pi\)
−0.303977 + 0.952679i \(0.598315\pi\)
\(908\) − 3.12167e11i − 0.459245i
\(909\) 0 0
\(910\) −3.68597e10 −0.0537510
\(911\) − 4.57566e10i − 0.0664324i −0.999448 0.0332162i \(-0.989425\pi\)
0.999448 0.0332162i \(-0.0105750\pi\)
\(912\) 0 0
\(913\) 5.82534e10 0.0838374
\(914\) 4.26281e11i 0.610817i
\(915\) 0 0
\(916\) 3.29707e10 0.0468324
\(917\) 2.70914e10i 0.0383137i
\(918\) 0 0
\(919\) 1.14471e12 1.60485 0.802425 0.596753i \(-0.203543\pi\)
0.802425 + 0.596753i \(0.203543\pi\)
\(920\) − 2.35747e11i − 0.329074i
\(921\) 0 0
\(922\) −1.43331e11 −0.198342
\(923\) − 2.74899e11i − 0.378762i
\(924\) 0 0
\(925\) −5.86150e11 −0.800649
\(926\) − 2.25897e10i − 0.0307232i
\(927\) 0 0
\(928\) 1.58389e10 0.0213566
\(929\) 4.85565e11i 0.651906i 0.945386 + 0.325953i \(0.105685\pi\)
−0.945386 + 0.325953i \(0.894315\pi\)
\(930\) 0 0
\(931\) 5.36281e11 0.713829
\(932\) 2.15637e11i 0.285799i
\(933\) 0 0
\(934\) 4.12433e11 0.541958
\(935\) 2.08290e10i 0.0272534i
\(936\) 0 0
\(937\) −1.18902e12 −1.54252 −0.771258 0.636523i \(-0.780372\pi\)
−0.771258 + 0.636523i \(0.780372\pi\)
\(938\) 4.11370e10i 0.0531399i
\(939\) 0 0
\(940\) 2.58901e11 0.331607
\(941\) 7.54055e11i 0.961711i 0.876800 + 0.480856i \(0.159674\pi\)
−0.876800 + 0.480856i \(0.840326\pi\)
\(942\) 0 0
\(943\) −1.15576e12 −1.46158
\(944\) 1.82397e11i 0.229683i
\(945\) 0 0
\(946\) −1.10162e11 −0.137552
\(947\) − 4.73039e11i − 0.588162i −0.955781 0.294081i \(-0.904986\pi\)
0.955781 0.294081i \(-0.0950135\pi\)
\(948\) 0 0
\(949\) 3.90134e10 0.0481004
\(950\) − 3.49370e11i − 0.428935i
\(951\) 0 0
\(952\) 1.49942e11 0.182547
\(953\) − 1.57467e12i − 1.90906i −0.298118 0.954529i \(-0.596359\pi\)
0.298118 0.954529i \(-0.403641\pi\)
\(954\) 0 0
\(955\) 3.57516e11 0.429815
\(956\) − 6.71272e11i − 0.803650i
\(957\) 0 0
\(958\) 7.49394e10 0.0889710
\(959\) 2.71170e11i 0.320602i
\(960\) 0 0
\(961\) 1.06816e11 0.125240
\(962\) 3.80609e11i 0.444405i
\(963\) 0 0
\(964\) 8.67649e11 1.00470
\(965\) 1.77249e11i 0.204398i
\(966\) 0 0
\(967\) −1.36908e12 −1.56575 −0.782875 0.622179i \(-0.786248\pi\)
−0.782875 + 0.622179i \(0.786248\pi\)
\(968\) 8.11445e11i 0.924183i
\(969\) 0 0
\(970\) −9.03597e10 −0.102068
\(971\) 6.81686e11i 0.766845i 0.923573 + 0.383422i \(0.125255\pi\)
−0.923573 + 0.383422i \(0.874745\pi\)
\(972\) 0 0
\(973\) 2.07253e11 0.231233
\(974\) − 9.40537e11i − 1.04506i
\(975\) 0 0
\(976\) −1.36356e11 −0.150271
\(977\) − 1.69136e11i − 0.185634i −0.995683 0.0928170i \(-0.970413\pi\)
0.995683 0.0928170i \(-0.0295872\pi\)
\(978\) 0 0
\(979\) 1.92714e11 0.209789
\(980\) − 1.57301e11i − 0.170540i
\(981\) 0 0
\(982\) −5.14704e11 −0.553492
\(983\) 5.53061e11i 0.592323i 0.955138 + 0.296161i \(0.0957067\pi\)
−0.955138 + 0.296161i \(0.904293\pi\)
\(984\) 0 0
\(985\) −9.48199e10 −0.100729
\(986\) 5.87463e9i 0.00621545i
\(987\) 0 0
\(988\) 4.72220e11 0.495584
\(989\) − 1.53715e12i − 1.60668i
\(990\) 0 0
\(991\) −1.81811e12 −1.88506 −0.942529 0.334125i \(-0.891559\pi\)
−0.942529 + 0.334125i \(0.891559\pi\)
\(992\) − 1.05756e12i − 1.09209i
\(993\) 0 0
\(994\) 8.58763e10 0.0879686
\(995\) 2.11582e11i 0.215867i
\(996\) 0 0
\(997\) −1.18104e12 −1.19532 −0.597660 0.801750i \(-0.703903\pi\)
−0.597660 + 0.801750i \(0.703903\pi\)
\(998\) − 1.03425e12i − 1.04256i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.b.b.80.10 yes 16
3.2 odd 2 inner 81.9.b.b.80.7 16
9.2 odd 6 81.9.d.g.53.7 32
9.4 even 3 81.9.d.g.26.7 32
9.5 odd 6 81.9.d.g.26.10 32
9.7 even 3 81.9.d.g.53.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.9.b.b.80.7 16 3.2 odd 2 inner
81.9.b.b.80.10 yes 16 1.1 even 1 trivial
81.9.d.g.26.7 32 9.4 even 3
81.9.d.g.26.10 32 9.5 odd 6
81.9.d.g.53.7 32 9.2 odd 6
81.9.d.g.53.10 32 9.7 even 3