Properties

Label 81.9.b.b.80.1
Level $81$
Weight $9$
Character 81.80
Analytic conductor $32.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,9,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1024 x^{14} + 419701 x^{12} + 88203292 x^{10} + 10121979748 x^{8} + 629108384896 x^{6} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{84} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.1
Root \(-17.2054i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.9.b.b.80.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-29.8006i q^{2} -632.074 q^{4} +177.778i q^{5} +3390.81 q^{7} +11207.2i q^{8} +5297.89 q^{10} -22713.7i q^{11} +48777.1 q^{13} -101048. i q^{14} +172170. q^{16} +36661.7i q^{17} -81528.6 q^{19} -112369. i q^{20} -676882. q^{22} -44680.0i q^{23} +359020. q^{25} -1.45359e6i q^{26} -2.14324e6 q^{28} -307029. i q^{29} -377888. q^{31} -2.26173e6i q^{32} +1.09254e6 q^{34} +602813. i q^{35} +1.82114e6 q^{37} +2.42960e6i q^{38} -1.99240e6 q^{40} -2.56535e6i q^{41} -859529. q^{43} +1.43568e7i q^{44} -1.33149e6 q^{46} -3.14001e6i q^{47} +5.73282e6 q^{49} -1.06990e7i q^{50} -3.08307e7 q^{52} -1.04587e7i q^{53} +4.03801e6 q^{55} +3.80016e7i q^{56} -9.14964e6 q^{58} +2.01171e7i q^{59} -1.06653e7 q^{61} +1.12613e7i q^{62} -2.33251e7 q^{64} +8.67151e6i q^{65} -3.37493e7 q^{67} -2.31729e7i q^{68} +1.79642e7 q^{70} -387108. i q^{71} +1.74105e7 q^{73} -5.42711e7i q^{74} +5.15321e7 q^{76} -7.70180e7i q^{77} +1.30586e7 q^{79} +3.06081e7i q^{80} -7.64487e7 q^{82} -6.25273e7i q^{83} -6.51766e6 q^{85} +2.56144e7i q^{86} +2.54558e8 q^{88} -6.33977e7i q^{89} +1.65394e8 q^{91} +2.82411e7i q^{92} -9.35740e7 q^{94} -1.44940e7i q^{95} -6.53962e7 q^{97} -1.70841e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2048 q^{4} + 3692 q^{7} + 10752 q^{10} + 63860 q^{13} + 95116 q^{16} + 185108 q^{19} - 691980 q^{22} - 541712 q^{25} - 997132 q^{28} + 571136 q^{31} + 1027656 q^{34} + 4354268 q^{37} - 2973768 q^{40}+ \cdots - 133878688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 29.8006i − 1.86254i −0.364336 0.931268i \(-0.618704\pi\)
0.364336 0.931268i \(-0.381296\pi\)
\(3\) 0 0
\(4\) −632.074 −2.46904
\(5\) 177.778i 0.284445i 0.989835 + 0.142223i \(0.0454249\pi\)
−0.989835 + 0.142223i \(0.954575\pi\)
\(6\) 0 0
\(7\) 3390.81 1.41225 0.706125 0.708087i \(-0.250441\pi\)
0.706125 + 0.708087i \(0.250441\pi\)
\(8\) 11207.2i 2.73614i
\(9\) 0 0
\(10\) 5297.89 0.529789
\(11\) − 22713.7i − 1.55138i −0.631115 0.775689i \(-0.717402\pi\)
0.631115 0.775689i \(-0.282598\pi\)
\(12\) 0 0
\(13\) 48777.1 1.70782 0.853911 0.520419i \(-0.174224\pi\)
0.853911 + 0.520419i \(0.174224\pi\)
\(14\) − 101048.i − 2.63037i
\(15\) 0 0
\(16\) 172170. 2.62711
\(17\) 36661.7i 0.438952i 0.975618 + 0.219476i \(0.0704348\pi\)
−0.975618 + 0.219476i \(0.929565\pi\)
\(18\) 0 0
\(19\) −81528.6 −0.625598 −0.312799 0.949819i \(-0.601267\pi\)
−0.312799 + 0.949819i \(0.601267\pi\)
\(20\) − 112369.i − 0.702306i
\(21\) 0 0
\(22\) −676882. −2.88950
\(23\) − 44680.0i − 0.159662i −0.996808 0.0798311i \(-0.974562\pi\)
0.996808 0.0798311i \(-0.0254381\pi\)
\(24\) 0 0
\(25\) 359020. 0.919091
\(26\) − 1.45359e6i − 3.18088i
\(27\) 0 0
\(28\) −2.14324e6 −3.48690
\(29\) − 307029.i − 0.434098i −0.976161 0.217049i \(-0.930357\pi\)
0.976161 0.217049i \(-0.0696431\pi\)
\(30\) 0 0
\(31\) −377888. −0.409182 −0.204591 0.978848i \(-0.565586\pi\)
−0.204591 + 0.978848i \(0.565586\pi\)
\(32\) − 2.26173e6i − 2.15695i
\(33\) 0 0
\(34\) 1.09254e6 0.817564
\(35\) 602813.i 0.401708i
\(36\) 0 0
\(37\) 1.82114e6 0.971711 0.485856 0.874039i \(-0.338508\pi\)
0.485856 + 0.874039i \(0.338508\pi\)
\(38\) 2.42960e6i 1.16520i
\(39\) 0 0
\(40\) −1.99240e6 −0.778280
\(41\) − 2.56535e6i − 0.907842i −0.891042 0.453921i \(-0.850025\pi\)
0.891042 0.453921i \(-0.149975\pi\)
\(42\) 0 0
\(43\) −859529. −0.251412 −0.125706 0.992068i \(-0.540120\pi\)
−0.125706 + 0.992068i \(0.540120\pi\)
\(44\) 1.43568e7i 3.83041i
\(45\) 0 0
\(46\) −1.33149e6 −0.297377
\(47\) − 3.14001e6i − 0.643487i −0.946827 0.321743i \(-0.895731\pi\)
0.946827 0.321743i \(-0.104269\pi\)
\(48\) 0 0
\(49\) 5.73282e6 0.994453
\(50\) − 1.06990e7i − 1.71184i
\(51\) 0 0
\(52\) −3.08307e7 −4.21668
\(53\) − 1.04587e7i − 1.32548i −0.748848 0.662742i \(-0.769393\pi\)
0.748848 0.662742i \(-0.230607\pi\)
\(54\) 0 0
\(55\) 4.03801e6 0.441282
\(56\) 3.80016e7i 3.86411i
\(57\) 0 0
\(58\) −9.14964e6 −0.808523
\(59\) 2.01171e7i 1.66019i 0.557625 + 0.830093i \(0.311713\pi\)
−0.557625 + 0.830093i \(0.688287\pi\)
\(60\) 0 0
\(61\) −1.06653e7 −0.770286 −0.385143 0.922857i \(-0.625848\pi\)
−0.385143 + 0.922857i \(0.625848\pi\)
\(62\) 1.12613e7i 0.762115i
\(63\) 0 0
\(64\) −2.33251e7 −1.39029
\(65\) 8.67151e6i 0.485782i
\(66\) 0 0
\(67\) −3.37493e7 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(68\) − 2.31729e7i − 1.08379i
\(69\) 0 0
\(70\) 1.79642e7 0.748195
\(71\) − 387108.i − 0.0152335i −0.999971 0.00761673i \(-0.997575\pi\)
0.999971 0.00761673i \(-0.00242450\pi\)
\(72\) 0 0
\(73\) 1.74105e7 0.613083 0.306542 0.951857i \(-0.400828\pi\)
0.306542 + 0.951857i \(0.400828\pi\)
\(74\) − 5.42711e7i − 1.80985i
\(75\) 0 0
\(76\) 5.15321e7 1.54463
\(77\) − 7.70180e7i − 2.19094i
\(78\) 0 0
\(79\) 1.30586e7 0.335266 0.167633 0.985850i \(-0.446388\pi\)
0.167633 + 0.985850i \(0.446388\pi\)
\(80\) 3.06081e7i 0.747269i
\(81\) 0 0
\(82\) −7.64487e7 −1.69089
\(83\) − 6.25273e7i − 1.31752i −0.752353 0.658761i \(-0.771081\pi\)
0.752353 0.658761i \(-0.228919\pi\)
\(84\) 0 0
\(85\) −6.51766e6 −0.124858
\(86\) 2.56144e7i 0.468264i
\(87\) 0 0
\(88\) 2.54558e8 4.24478
\(89\) − 6.33977e7i − 1.01045i −0.862988 0.505224i \(-0.831410\pi\)
0.862988 0.505224i \(-0.168590\pi\)
\(90\) 0 0
\(91\) 1.65394e8 2.41187
\(92\) 2.82411e7i 0.394212i
\(93\) 0 0
\(94\) −9.35740e7 −1.19852
\(95\) − 1.44940e7i − 0.177948i
\(96\) 0 0
\(97\) −6.53962e7 −0.738696 −0.369348 0.929291i \(-0.620419\pi\)
−0.369348 + 0.929291i \(0.620419\pi\)
\(98\) − 1.70841e8i − 1.85220i
\(99\) 0 0
\(100\) −2.26927e8 −2.26927
\(101\) − 1.34466e7i − 0.129219i −0.997911 0.0646094i \(-0.979420\pi\)
0.997911 0.0646094i \(-0.0205802\pi\)
\(102\) 0 0
\(103\) −2.87838e7 −0.255740 −0.127870 0.991791i \(-0.540814\pi\)
−0.127870 + 0.991791i \(0.540814\pi\)
\(104\) 5.46655e8i 4.67283i
\(105\) 0 0
\(106\) −3.11675e8 −2.46876
\(107\) − 7.10303e7i − 0.541886i −0.962595 0.270943i \(-0.912664\pi\)
0.962595 0.270943i \(-0.0873356\pi\)
\(108\) 0 0
\(109\) 5.37568e7 0.380827 0.190413 0.981704i \(-0.439017\pi\)
0.190413 + 0.981704i \(0.439017\pi\)
\(110\) − 1.20335e8i − 0.821903i
\(111\) 0 0
\(112\) 5.83798e8 3.71014
\(113\) − 2.06482e8i − 1.26639i −0.773992 0.633195i \(-0.781743\pi\)
0.773992 0.633195i \(-0.218257\pi\)
\(114\) 0 0
\(115\) 7.94314e6 0.0454152
\(116\) 1.94065e8i 1.07180i
\(117\) 0 0
\(118\) 5.99500e8 3.09216
\(119\) 1.24313e8i 0.619910i
\(120\) 0 0
\(121\) −3.01555e8 −1.40677
\(122\) 3.17831e8i 1.43468i
\(123\) 0 0
\(124\) 2.38853e8 1.01029
\(125\) 1.33271e8i 0.545876i
\(126\) 0 0
\(127\) 3.63640e8 1.39784 0.698918 0.715201i \(-0.253665\pi\)
0.698918 + 0.715201i \(0.253665\pi\)
\(128\) 1.16100e8i 0.432508i
\(129\) 0 0
\(130\) 2.58416e8 0.904786
\(131\) 1.38241e7i 0.0469408i 0.999725 + 0.0234704i \(0.00747154\pi\)
−0.999725 + 0.0234704i \(0.992528\pi\)
\(132\) 0 0
\(133\) −2.76448e8 −0.883502
\(134\) 1.00575e9i 3.11939i
\(135\) 0 0
\(136\) −4.10876e8 −1.20103
\(137\) − 2.27263e7i − 0.0645130i −0.999480 0.0322565i \(-0.989731\pi\)
0.999480 0.0322565i \(-0.0102693\pi\)
\(138\) 0 0
\(139\) 5.08013e8 1.36087 0.680434 0.732809i \(-0.261791\pi\)
0.680434 + 0.732809i \(0.261791\pi\)
\(140\) − 3.81022e8i − 0.991832i
\(141\) 0 0
\(142\) −1.15360e7 −0.0283728
\(143\) − 1.10791e9i − 2.64948i
\(144\) 0 0
\(145\) 5.45831e7 0.123477
\(146\) − 5.18842e8i − 1.14189i
\(147\) 0 0
\(148\) −1.15110e9 −2.39919
\(149\) − 3.67381e8i − 0.745370i −0.927958 0.372685i \(-0.878437\pi\)
0.927958 0.372685i \(-0.121563\pi\)
\(150\) 0 0
\(151\) 2.15381e7 0.0414286 0.0207143 0.999785i \(-0.493406\pi\)
0.0207143 + 0.999785i \(0.493406\pi\)
\(152\) − 9.13708e8i − 1.71172i
\(153\) 0 0
\(154\) −2.29518e9 −4.08069
\(155\) − 6.71802e7i − 0.116390i
\(156\) 0 0
\(157\) −5.17571e8 −0.851866 −0.425933 0.904755i \(-0.640054\pi\)
−0.425933 + 0.904755i \(0.640054\pi\)
\(158\) − 3.89154e8i − 0.624444i
\(159\) 0 0
\(160\) 4.02086e8 0.613534
\(161\) − 1.51502e8i − 0.225483i
\(162\) 0 0
\(163\) 1.46155e8 0.207045 0.103522 0.994627i \(-0.466989\pi\)
0.103522 + 0.994627i \(0.466989\pi\)
\(164\) 1.62149e9i 2.24150i
\(165\) 0 0
\(166\) −1.86335e9 −2.45393
\(167\) 2.78172e8i 0.357642i 0.983882 + 0.178821i \(0.0572283\pi\)
−0.983882 + 0.178821i \(0.942772\pi\)
\(168\) 0 0
\(169\) 1.56348e9 1.91666
\(170\) 1.94230e8i 0.232552i
\(171\) 0 0
\(172\) 5.43285e8 0.620747
\(173\) 1.39445e9i 1.55675i 0.627800 + 0.778374i \(0.283955\pi\)
−0.627800 + 0.778374i \(0.716045\pi\)
\(174\) 0 0
\(175\) 1.21737e9 1.29799
\(176\) − 3.91063e9i − 4.07564i
\(177\) 0 0
\(178\) −1.88929e9 −1.88199
\(179\) 1.59335e9i 1.55203i 0.630717 + 0.776013i \(0.282761\pi\)
−0.630717 + 0.776013i \(0.717239\pi\)
\(180\) 0 0
\(181\) 4.20532e8 0.391818 0.195909 0.980622i \(-0.437234\pi\)
0.195909 + 0.980622i \(0.437234\pi\)
\(182\) − 4.92884e9i − 4.49220i
\(183\) 0 0
\(184\) 5.00739e8 0.436857
\(185\) 3.23760e8i 0.276399i
\(186\) 0 0
\(187\) 8.32724e8 0.680981
\(188\) 1.98472e9i 1.58879i
\(189\) 0 0
\(190\) −4.31930e8 −0.331435
\(191\) 1.22642e9i 0.921524i 0.887524 + 0.460762i \(0.152424\pi\)
−0.887524 + 0.460762i \(0.847576\pi\)
\(192\) 0 0
\(193\) 1.96083e9 1.41322 0.706612 0.707601i \(-0.250223\pi\)
0.706612 + 0.707601i \(0.250223\pi\)
\(194\) 1.94884e9i 1.37585i
\(195\) 0 0
\(196\) −3.62357e9 −2.45534
\(197\) − 4.53495e7i − 0.0301098i −0.999887 0.0150549i \(-0.995208\pi\)
0.999887 0.0150549i \(-0.00479231\pi\)
\(198\) 0 0
\(199\) −1.93844e9 −1.23606 −0.618029 0.786155i \(-0.712069\pi\)
−0.618029 + 0.786155i \(0.712069\pi\)
\(200\) 4.02361e9i 2.51476i
\(201\) 0 0
\(202\) −4.00715e8 −0.240675
\(203\) − 1.04108e9i − 0.613055i
\(204\) 0 0
\(205\) 4.56063e8 0.258231
\(206\) 8.57774e8i 0.476325i
\(207\) 0 0
\(208\) 8.39797e9 4.48664
\(209\) 1.85182e9i 0.970539i
\(210\) 0 0
\(211\) −5.65952e8 −0.285529 −0.142764 0.989757i \(-0.545599\pi\)
−0.142764 + 0.989757i \(0.545599\pi\)
\(212\) 6.61067e9i 3.27267i
\(213\) 0 0
\(214\) −2.11674e9 −1.00928
\(215\) − 1.52805e8i − 0.0715130i
\(216\) 0 0
\(217\) −1.28135e9 −0.577867
\(218\) − 1.60198e9i − 0.709304i
\(219\) 0 0
\(220\) −2.55232e9 −1.08954
\(221\) 1.78825e9i 0.749652i
\(222\) 0 0
\(223\) −1.96590e9 −0.794954 −0.397477 0.917612i \(-0.630114\pi\)
−0.397477 + 0.917612i \(0.630114\pi\)
\(224\) − 7.66910e9i − 3.04616i
\(225\) 0 0
\(226\) −6.15327e9 −2.35870
\(227\) 3.46174e9i 1.30374i 0.758330 + 0.651870i \(0.226015\pi\)
−0.758330 + 0.651870i \(0.773985\pi\)
\(228\) 0 0
\(229\) 5.09464e9 1.85256 0.926278 0.376842i \(-0.122990\pi\)
0.926278 + 0.376842i \(0.122990\pi\)
\(230\) − 2.36710e8i − 0.0845873i
\(231\) 0 0
\(232\) 3.44094e9 1.18775
\(233\) − 4.76326e9i − 1.61615i −0.589083 0.808073i \(-0.700511\pi\)
0.589083 0.808073i \(-0.299489\pi\)
\(234\) 0 0
\(235\) 5.58225e8 0.183037
\(236\) − 1.27155e10i − 4.09906i
\(237\) 0 0
\(238\) 3.70460e9 1.15461
\(239\) 1.69940e9i 0.520839i 0.965496 + 0.260419i \(0.0838608\pi\)
−0.965496 + 0.260419i \(0.916139\pi\)
\(240\) 0 0
\(241\) 5.48403e9 1.62567 0.812833 0.582497i \(-0.197924\pi\)
0.812833 + 0.582497i \(0.197924\pi\)
\(242\) 8.98650e9i 2.62017i
\(243\) 0 0
\(244\) 6.74123e9 1.90186
\(245\) 1.01917e9i 0.282867i
\(246\) 0 0
\(247\) −3.97673e9 −1.06841
\(248\) − 4.23507e9i − 1.11958i
\(249\) 0 0
\(250\) 3.97154e9 1.01671
\(251\) 2.82808e9i 0.712520i 0.934387 + 0.356260i \(0.115948\pi\)
−0.934387 + 0.356260i \(0.884052\pi\)
\(252\) 0 0
\(253\) −1.01485e9 −0.247697
\(254\) − 1.08367e10i − 2.60352i
\(255\) 0 0
\(256\) −2.51138e9 −0.584726
\(257\) − 3.86210e9i − 0.885301i −0.896694 0.442651i \(-0.854038\pi\)
0.896694 0.442651i \(-0.145962\pi\)
\(258\) 0 0
\(259\) 6.17516e9 1.37230
\(260\) − 5.48103e9i − 1.19941i
\(261\) 0 0
\(262\) 4.11965e8 0.0874289
\(263\) 7.12622e9i 1.48948i 0.667352 + 0.744742i \(0.267428\pi\)
−0.667352 + 0.744742i \(0.732572\pi\)
\(264\) 0 0
\(265\) 1.85933e9 0.377028
\(266\) 8.23831e9i 1.64555i
\(267\) 0 0
\(268\) 2.13320e10 4.13516
\(269\) 4.73081e9i 0.903496i 0.892146 + 0.451748i \(0.149199\pi\)
−0.892146 + 0.451748i \(0.850801\pi\)
\(270\) 0 0
\(271\) −4.16250e9 −0.771751 −0.385875 0.922551i \(-0.626100\pi\)
−0.385875 + 0.922551i \(0.626100\pi\)
\(272\) 6.31206e9i 1.15318i
\(273\) 0 0
\(274\) −6.77257e8 −0.120158
\(275\) − 8.15468e9i − 1.42586i
\(276\) 0 0
\(277\) −9.20052e9 −1.56276 −0.781382 0.624053i \(-0.785485\pi\)
−0.781382 + 0.624053i \(0.785485\pi\)
\(278\) − 1.51391e10i − 2.53466i
\(279\) 0 0
\(280\) −6.75585e9 −1.09913
\(281\) − 5.59520e9i − 0.897409i −0.893680 0.448705i \(-0.851886\pi\)
0.893680 0.448705i \(-0.148114\pi\)
\(282\) 0 0
\(283\) 6.72360e9 1.04823 0.524114 0.851648i \(-0.324396\pi\)
0.524114 + 0.851648i \(0.324396\pi\)
\(284\) 2.44681e8i 0.0376120i
\(285\) 0 0
\(286\) −3.30163e10 −4.93475
\(287\) − 8.69861e9i − 1.28210i
\(288\) 0 0
\(289\) 5.63168e9 0.807321
\(290\) − 1.62661e9i − 0.229980i
\(291\) 0 0
\(292\) −1.10047e10 −1.51373
\(293\) 8.45955e9i 1.14783i 0.818916 + 0.573914i \(0.194576\pi\)
−0.818916 + 0.573914i \(0.805424\pi\)
\(294\) 0 0
\(295\) −3.57638e9 −0.472232
\(296\) 2.04099e10i 2.65873i
\(297\) 0 0
\(298\) −1.09482e10 −1.38828
\(299\) − 2.17936e9i − 0.272675i
\(300\) 0 0
\(301\) −2.91450e9 −0.355057
\(302\) − 6.41848e8i − 0.0771622i
\(303\) 0 0
\(304\) −1.40368e10 −1.64352
\(305\) − 1.89605e9i − 0.219104i
\(306\) 0 0
\(307\) 1.52537e10 1.71721 0.858604 0.512639i \(-0.171332\pi\)
0.858604 + 0.512639i \(0.171332\pi\)
\(308\) 4.86811e10i 5.40950i
\(309\) 0 0
\(310\) −2.00201e9 −0.216780
\(311\) 2.26328e8i 0.0241934i 0.999927 + 0.0120967i \(0.00385059\pi\)
−0.999927 + 0.0120967i \(0.996149\pi\)
\(312\) 0 0
\(313\) 9.53020e9 0.992944 0.496472 0.868053i \(-0.334629\pi\)
0.496472 + 0.868053i \(0.334629\pi\)
\(314\) 1.54239e10i 1.58663i
\(315\) 0 0
\(316\) −8.25401e9 −0.827784
\(317\) − 1.07299e10i − 1.06257i −0.847192 0.531286i \(-0.821709\pi\)
0.847192 0.531286i \(-0.178291\pi\)
\(318\) 0 0
\(319\) −6.97378e9 −0.673450
\(320\) − 4.14670e9i − 0.395460i
\(321\) 0 0
\(322\) −4.51484e9 −0.419970
\(323\) − 2.98898e9i − 0.274608i
\(324\) 0 0
\(325\) 1.75120e10 1.56964
\(326\) − 4.35551e9i − 0.385628i
\(327\) 0 0
\(328\) 2.87504e10 2.48398
\(329\) − 1.06472e10i − 0.908764i
\(330\) 0 0
\(331\) −4.58004e9 −0.381555 −0.190778 0.981633i \(-0.561101\pi\)
−0.190778 + 0.981633i \(0.561101\pi\)
\(332\) 3.95219e10i 3.25301i
\(333\) 0 0
\(334\) 8.28970e9 0.666120
\(335\) − 5.99988e9i − 0.476391i
\(336\) 0 0
\(337\) −1.92192e10 −1.49010 −0.745051 0.667008i \(-0.767575\pi\)
−0.745051 + 0.667008i \(0.767575\pi\)
\(338\) − 4.65925e10i − 3.56984i
\(339\) 0 0
\(340\) 4.11964e9 0.308279
\(341\) 8.58324e9i 0.634796i
\(342\) 0 0
\(343\) −1.08437e8 −0.00783431
\(344\) − 9.63292e9i − 0.687898i
\(345\) 0 0
\(346\) 4.15554e10 2.89950
\(347\) 8.34109e7i 0.00575314i 0.999996 + 0.00287657i \(0.000915642\pi\)
−0.999996 + 0.00287657i \(0.999084\pi\)
\(348\) 0 0
\(349\) −2.14746e10 −1.44752 −0.723759 0.690053i \(-0.757587\pi\)
−0.723759 + 0.690053i \(0.757587\pi\)
\(350\) − 3.62783e10i − 2.41755i
\(351\) 0 0
\(352\) −5.13723e10 −3.34625
\(353\) 1.88260e10i 1.21244i 0.795297 + 0.606220i \(0.207315\pi\)
−0.795297 + 0.606220i \(0.792685\pi\)
\(354\) 0 0
\(355\) 6.88193e7 0.00433308
\(356\) 4.00720e10i 2.49483i
\(357\) 0 0
\(358\) 4.74827e10 2.89070
\(359\) − 1.82528e10i − 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(360\) 0 0
\(361\) −1.03367e10 −0.608627
\(362\) − 1.25321e10i − 0.729775i
\(363\) 0 0
\(364\) −1.04541e11 −5.95501
\(365\) 3.09521e9i 0.174389i
\(366\) 0 0
\(367\) −4.76601e9 −0.262719 −0.131359 0.991335i \(-0.541934\pi\)
−0.131359 + 0.991335i \(0.541934\pi\)
\(368\) − 7.69258e9i − 0.419450i
\(369\) 0 0
\(370\) 9.64822e9 0.514802
\(371\) − 3.54635e10i − 1.87192i
\(372\) 0 0
\(373\) −1.20517e10 −0.622607 −0.311303 0.950311i \(-0.600766\pi\)
−0.311303 + 0.950311i \(0.600766\pi\)
\(374\) − 2.48157e10i − 1.26835i
\(375\) 0 0
\(376\) 3.51907e10 1.76067
\(377\) − 1.49760e10i − 0.741362i
\(378\) 0 0
\(379\) −1.49538e10 −0.724759 −0.362380 0.932031i \(-0.618036\pi\)
−0.362380 + 0.932031i \(0.618036\pi\)
\(380\) 9.16128e9i 0.439361i
\(381\) 0 0
\(382\) 3.65481e10 1.71637
\(383\) 1.45100e10i 0.674332i 0.941445 + 0.337166i \(0.109468\pi\)
−0.941445 + 0.337166i \(0.890532\pi\)
\(384\) 0 0
\(385\) 1.36921e10 0.623201
\(386\) − 5.84339e10i − 2.63218i
\(387\) 0 0
\(388\) 4.13352e10 1.82387
\(389\) − 4.99907e9i − 0.218319i −0.994024 0.109159i \(-0.965184\pi\)
0.994024 0.109159i \(-0.0348159\pi\)
\(390\) 0 0
\(391\) 1.63805e9 0.0700841
\(392\) 6.42489e10i 2.72096i
\(393\) 0 0
\(394\) −1.35144e9 −0.0560806
\(395\) 2.32154e9i 0.0953647i
\(396\) 0 0
\(397\) −4.71797e9 −0.189930 −0.0949649 0.995481i \(-0.530274\pi\)
−0.0949649 + 0.995481i \(0.530274\pi\)
\(398\) 5.77665e10i 2.30220i
\(399\) 0 0
\(400\) 6.18126e10 2.41455
\(401\) − 4.33203e10i − 1.67538i −0.546143 0.837692i \(-0.683904\pi\)
0.546143 0.837692i \(-0.316096\pi\)
\(402\) 0 0
\(403\) −1.84323e10 −0.698810
\(404\) 8.49922e9i 0.319046i
\(405\) 0 0
\(406\) −3.10247e10 −1.14184
\(407\) − 4.13650e10i − 1.50749i
\(408\) 0 0
\(409\) 1.78697e10 0.638592 0.319296 0.947655i \(-0.396554\pi\)
0.319296 + 0.947655i \(0.396554\pi\)
\(410\) − 1.35909e10i − 0.480965i
\(411\) 0 0
\(412\) 1.81935e10 0.631433
\(413\) 6.82133e10i 2.34460i
\(414\) 0 0
\(415\) 1.11160e10 0.374763
\(416\) − 1.10321e11i − 3.68369i
\(417\) 0 0
\(418\) 5.51852e10 1.80766
\(419\) 4.40651e10i 1.42968i 0.699288 + 0.714840i \(0.253500\pi\)
−0.699288 + 0.714840i \(0.746500\pi\)
\(420\) 0 0
\(421\) −1.84667e10 −0.587842 −0.293921 0.955830i \(-0.594960\pi\)
−0.293921 + 0.955830i \(0.594960\pi\)
\(422\) 1.68657e10i 0.531807i
\(423\) 0 0
\(424\) 1.17213e11 3.62670
\(425\) 1.31623e10i 0.403437i
\(426\) 0 0
\(427\) −3.61639e10 −1.08784
\(428\) 4.48964e10i 1.33794i
\(429\) 0 0
\(430\) −4.55369e9 −0.133196
\(431\) 3.36109e10i 0.974026i 0.873395 + 0.487013i \(0.161914\pi\)
−0.873395 + 0.487013i \(0.838086\pi\)
\(432\) 0 0
\(433\) 1.68004e10 0.477933 0.238966 0.971028i \(-0.423191\pi\)
0.238966 + 0.971028i \(0.423191\pi\)
\(434\) 3.81849e10i 1.07630i
\(435\) 0 0
\(436\) −3.39783e10 −0.940276
\(437\) 3.64270e9i 0.0998844i
\(438\) 0 0
\(439\) 2.40634e10 0.647887 0.323944 0.946076i \(-0.394991\pi\)
0.323944 + 0.946076i \(0.394991\pi\)
\(440\) 4.52548e10i 1.20741i
\(441\) 0 0
\(442\) 5.32909e10 1.39625
\(443\) 4.06896e10i 1.05650i 0.849090 + 0.528249i \(0.177151\pi\)
−0.849090 + 0.528249i \(0.822849\pi\)
\(444\) 0 0
\(445\) 1.12707e10 0.287417
\(446\) 5.85850e10i 1.48063i
\(447\) 0 0
\(448\) −7.90912e10 −1.96343
\(449\) 2.01989e10i 0.496983i 0.968634 + 0.248492i \(0.0799349\pi\)
−0.968634 + 0.248492i \(0.920065\pi\)
\(450\) 0 0
\(451\) −5.82686e10 −1.40841
\(452\) 1.30512e11i 3.12677i
\(453\) 0 0
\(454\) 1.03162e11 2.42826
\(455\) 2.94035e10i 0.686046i
\(456\) 0 0
\(457\) 2.89357e9 0.0663391 0.0331695 0.999450i \(-0.489440\pi\)
0.0331695 + 0.999450i \(0.489440\pi\)
\(458\) − 1.51823e11i − 3.45045i
\(459\) 0 0
\(460\) −5.02065e9 −0.112132
\(461\) − 9.00677e10i − 1.99418i −0.0762042 0.997092i \(-0.524280\pi\)
0.0762042 0.997092i \(-0.475720\pi\)
\(462\) 0 0
\(463\) 5.64711e9 0.122886 0.0614430 0.998111i \(-0.480430\pi\)
0.0614430 + 0.998111i \(0.480430\pi\)
\(464\) − 5.28613e10i − 1.14042i
\(465\) 0 0
\(466\) −1.41948e11 −3.01013
\(467\) − 3.24590e10i − 0.682445i −0.939983 0.341223i \(-0.889159\pi\)
0.939983 0.341223i \(-0.110841\pi\)
\(468\) 0 0
\(469\) −1.14437e11 −2.36525
\(470\) − 1.66354e10i − 0.340912i
\(471\) 0 0
\(472\) −2.25456e11 −4.54249
\(473\) 1.95231e10i 0.390036i
\(474\) 0 0
\(475\) −2.92704e10 −0.574982
\(476\) − 7.85750e10i − 1.53058i
\(477\) 0 0
\(478\) 5.06430e10 0.970080
\(479\) 9.77923e10i 1.85764i 0.370526 + 0.928822i \(0.379178\pi\)
−0.370526 + 0.928822i \(0.620822\pi\)
\(480\) 0 0
\(481\) 8.88301e10 1.65951
\(482\) − 1.63427e11i − 3.02786i
\(483\) 0 0
\(484\) 1.90605e11 3.47338
\(485\) − 1.16260e10i − 0.210119i
\(486\) 0 0
\(487\) −5.47177e10 −0.972774 −0.486387 0.873743i \(-0.661685\pi\)
−0.486387 + 0.873743i \(0.661685\pi\)
\(488\) − 1.19528e11i − 2.10761i
\(489\) 0 0
\(490\) 3.03719e10 0.526850
\(491\) 9.79400e9i 0.168513i 0.996444 + 0.0842566i \(0.0268516\pi\)
−0.996444 + 0.0842566i \(0.973148\pi\)
\(492\) 0 0
\(493\) 1.12562e10 0.190548
\(494\) 1.18509e11i 1.98995i
\(495\) 0 0
\(496\) −6.50611e10 −1.07497
\(497\) − 1.31261e9i − 0.0215135i
\(498\) 0 0
\(499\) −2.61258e10 −0.421373 −0.210687 0.977554i \(-0.567570\pi\)
−0.210687 + 0.977554i \(0.567570\pi\)
\(500\) − 8.42368e10i − 1.34779i
\(501\) 0 0
\(502\) 8.42784e10 1.32709
\(503\) 7.49906e10i 1.17148i 0.810499 + 0.585740i \(0.199196\pi\)
−0.810499 + 0.585740i \(0.800804\pi\)
\(504\) 0 0
\(505\) 2.39051e9 0.0367557
\(506\) 3.02431e10i 0.461344i
\(507\) 0 0
\(508\) −2.29847e11 −3.45131
\(509\) 1.01569e11i 1.51317i 0.653894 + 0.756586i \(0.273134\pi\)
−0.653894 + 0.756586i \(0.726866\pi\)
\(510\) 0 0
\(511\) 5.90357e10 0.865827
\(512\) 1.04562e11i 1.52158i
\(513\) 0 0
\(514\) −1.15093e11 −1.64890
\(515\) − 5.11713e9i − 0.0727441i
\(516\) 0 0
\(517\) −7.13213e10 −0.998291
\(518\) − 1.84023e11i − 2.55596i
\(519\) 0 0
\(520\) −9.71834e10 −1.32916
\(521\) 3.32430e10i 0.451179i 0.974222 + 0.225590i \(0.0724309\pi\)
−0.974222 + 0.225590i \(0.927569\pi\)
\(522\) 0 0
\(523\) 1.23700e10 0.165334 0.0826669 0.996577i \(-0.473656\pi\)
0.0826669 + 0.996577i \(0.473656\pi\)
\(524\) − 8.73782e9i − 0.115899i
\(525\) 0 0
\(526\) 2.12365e11 2.77422
\(527\) − 1.38540e10i − 0.179611i
\(528\) 0 0
\(529\) 7.63147e10 0.974508
\(530\) − 5.54091e10i − 0.702227i
\(531\) 0 0
\(532\) 1.74736e11 2.18140
\(533\) − 1.25130e11i − 1.55043i
\(534\) 0 0
\(535\) 1.26276e10 0.154137
\(536\) − 3.78235e11i − 4.58250i
\(537\) 0 0
\(538\) 1.40981e11 1.68279
\(539\) − 1.30214e11i − 1.54277i
\(540\) 0 0
\(541\) 6.00939e10 0.701522 0.350761 0.936465i \(-0.385923\pi\)
0.350761 + 0.936465i \(0.385923\pi\)
\(542\) 1.24045e11i 1.43741i
\(543\) 0 0
\(544\) 8.29188e10 0.946798
\(545\) 9.55679e9i 0.108324i
\(546\) 0 0
\(547\) −7.31649e10 −0.817248 −0.408624 0.912703i \(-0.633991\pi\)
−0.408624 + 0.912703i \(0.633991\pi\)
\(548\) 1.43647e10i 0.159285i
\(549\) 0 0
\(550\) −2.43014e11 −2.65571
\(551\) 2.50317e10i 0.271571i
\(552\) 0 0
\(553\) 4.42794e10 0.473479
\(554\) 2.74181e11i 2.91070i
\(555\) 0 0
\(556\) −3.21102e11 −3.36003
\(557\) 1.00228e11i 1.04128i 0.853775 + 0.520642i \(0.174308\pi\)
−0.853775 + 0.520642i \(0.825692\pi\)
\(558\) 0 0
\(559\) −4.19253e10 −0.429368
\(560\) 1.03787e11i 1.05533i
\(561\) 0 0
\(562\) −1.66740e11 −1.67146
\(563\) 1.05362e10i 0.104870i 0.998624 + 0.0524350i \(0.0166982\pi\)
−0.998624 + 0.0524350i \(0.983302\pi\)
\(564\) 0 0
\(565\) 3.67079e10 0.360219
\(566\) − 2.00367e11i − 1.95236i
\(567\) 0 0
\(568\) 4.33840e9 0.0416808
\(569\) 1.14538e11i 1.09270i 0.837556 + 0.546351i \(0.183984\pi\)
−0.837556 + 0.546351i \(0.816016\pi\)
\(570\) 0 0
\(571\) −3.37288e10 −0.317290 −0.158645 0.987336i \(-0.550713\pi\)
−0.158645 + 0.987336i \(0.550713\pi\)
\(572\) 7.00281e11i 6.54166i
\(573\) 0 0
\(574\) −2.59223e11 −2.38796
\(575\) − 1.60410e10i − 0.146744i
\(576\) 0 0
\(577\) 1.77096e11 1.59773 0.798867 0.601508i \(-0.205433\pi\)
0.798867 + 0.601508i \(0.205433\pi\)
\(578\) − 1.67827e11i − 1.50366i
\(579\) 0 0
\(580\) −3.45006e10 −0.304870
\(581\) − 2.12019e11i − 1.86067i
\(582\) 0 0
\(583\) −2.37556e11 −2.05633
\(584\) 1.95123e11i 1.67748i
\(585\) 0 0
\(586\) 2.52099e11 2.13787
\(587\) 1.00900e11i 0.849841i 0.905231 + 0.424920i \(0.139698\pi\)
−0.905231 + 0.424920i \(0.860302\pi\)
\(588\) 0 0
\(589\) 3.08087e10 0.255983
\(590\) 1.06578e11i 0.879549i
\(591\) 0 0
\(592\) 3.13547e11 2.55279
\(593\) − 2.10071e10i − 0.169882i −0.996386 0.0849410i \(-0.972930\pi\)
0.996386 0.0849410i \(-0.0270702\pi\)
\(594\) 0 0
\(595\) −2.21002e10 −0.176331
\(596\) 2.32212e11i 1.84035i
\(597\) 0 0
\(598\) −6.49463e10 −0.507866
\(599\) − 1.88088e11i − 1.46101i −0.682908 0.730505i \(-0.739285\pi\)
0.682908 0.730505i \(-0.260715\pi\)
\(600\) 0 0
\(601\) 9.67891e10 0.741871 0.370936 0.928659i \(-0.379037\pi\)
0.370936 + 0.928659i \(0.379037\pi\)
\(602\) 8.68538e10i 0.661307i
\(603\) 0 0
\(604\) −1.36137e10 −0.102289
\(605\) − 5.36098e10i − 0.400150i
\(606\) 0 0
\(607\) 6.56597e10 0.483664 0.241832 0.970318i \(-0.422252\pi\)
0.241832 + 0.970318i \(0.422252\pi\)
\(608\) 1.84395e11i 1.34938i
\(609\) 0 0
\(610\) −5.65034e10 −0.408089
\(611\) − 1.53161e11i − 1.09896i
\(612\) 0 0
\(613\) 1.95329e10 0.138333 0.0691665 0.997605i \(-0.477966\pi\)
0.0691665 + 0.997605i \(0.477966\pi\)
\(614\) − 4.54570e11i − 3.19836i
\(615\) 0 0
\(616\) 8.63157e11 5.99469
\(617\) 8.36525e10i 0.577216i 0.957447 + 0.288608i \(0.0931924\pi\)
−0.957447 + 0.288608i \(0.906808\pi\)
\(618\) 0 0
\(619\) −3.10110e10 −0.211229 −0.105614 0.994407i \(-0.533681\pi\)
−0.105614 + 0.994407i \(0.533681\pi\)
\(620\) 4.24629e10i 0.287371i
\(621\) 0 0
\(622\) 6.74470e9 0.0450610
\(623\) − 2.14970e11i − 1.42701i
\(624\) 0 0
\(625\) 1.16550e11 0.763819
\(626\) − 2.84005e11i − 1.84939i
\(627\) 0 0
\(628\) 3.27143e11 2.10329
\(629\) 6.67662e10i 0.426535i
\(630\) 0 0
\(631\) 9.80750e10 0.618644 0.309322 0.950957i \(-0.399898\pi\)
0.309322 + 0.950957i \(0.399898\pi\)
\(632\) 1.46351e11i 0.917332i
\(633\) 0 0
\(634\) −3.19757e11 −1.97908
\(635\) 6.46472e10i 0.397608i
\(636\) 0 0
\(637\) 2.79630e11 1.69835
\(638\) 2.07823e11i 1.25432i
\(639\) 0 0
\(640\) −2.06401e10 −0.123025
\(641\) 1.32995e11i 0.787774i 0.919159 + 0.393887i \(0.128870\pi\)
−0.919159 + 0.393887i \(0.871130\pi\)
\(642\) 0 0
\(643\) −2.49007e11 −1.45669 −0.728346 0.685210i \(-0.759711\pi\)
−0.728346 + 0.685210i \(0.759711\pi\)
\(644\) 9.57603e10i 0.556726i
\(645\) 0 0
\(646\) −8.90732e10 −0.511466
\(647\) − 2.38080e11i − 1.35864i −0.733840 0.679322i \(-0.762274\pi\)
0.733840 0.679322i \(-0.237726\pi\)
\(648\) 0 0
\(649\) 4.56934e11 2.57558
\(650\) − 5.21866e11i − 2.92352i
\(651\) 0 0
\(652\) −9.23810e10 −0.511202
\(653\) − 1.87979e11i − 1.03385i −0.856031 0.516925i \(-0.827077\pi\)
0.856031 0.516925i \(-0.172923\pi\)
\(654\) 0 0
\(655\) −2.45762e9 −0.0133521
\(656\) − 4.41676e11i − 2.38500i
\(657\) 0 0
\(658\) −3.17292e11 −1.69261
\(659\) 2.06881e11i 1.09693i 0.836173 + 0.548466i \(0.184788\pi\)
−0.836173 + 0.548466i \(0.815212\pi\)
\(660\) 0 0
\(661\) −1.68874e11 −0.884623 −0.442312 0.896861i \(-0.645841\pi\)
−0.442312 + 0.896861i \(0.645841\pi\)
\(662\) 1.36488e11i 0.710660i
\(663\) 0 0
\(664\) 7.00757e11 3.60492
\(665\) − 4.91465e10i − 0.251308i
\(666\) 0 0
\(667\) −1.37181e10 −0.0693090
\(668\) − 1.75826e11i − 0.883031i
\(669\) 0 0
\(670\) −1.78800e11 −0.887295
\(671\) 2.42248e11i 1.19500i
\(672\) 0 0
\(673\) −3.26072e11 −1.58947 −0.794736 0.606955i \(-0.792391\pi\)
−0.794736 + 0.606955i \(0.792391\pi\)
\(674\) 5.72743e11i 2.77537i
\(675\) 0 0
\(676\) −9.88232e11 −4.73230
\(677\) − 3.62544e9i − 0.0172586i −0.999963 0.00862930i \(-0.997253\pi\)
0.999963 0.00862930i \(-0.00274683\pi\)
\(678\) 0 0
\(679\) −2.21747e11 −1.04322
\(680\) − 7.30447e10i − 0.341628i
\(681\) 0 0
\(682\) 2.55785e11 1.18233
\(683\) − 2.50569e11i − 1.15145i −0.817644 0.575724i \(-0.804720\pi\)
0.817644 0.575724i \(-0.195280\pi\)
\(684\) 0 0
\(685\) 4.04025e9 0.0183504
\(686\) 3.23148e9i 0.0145917i
\(687\) 0 0
\(688\) −1.47985e11 −0.660488
\(689\) − 5.10146e11i − 2.26369i
\(690\) 0 0
\(691\) −7.90594e10 −0.346770 −0.173385 0.984854i \(-0.555470\pi\)
−0.173385 + 0.984854i \(0.555470\pi\)
\(692\) − 8.81395e11i − 3.84367i
\(693\) 0 0
\(694\) 2.48569e9 0.0107154
\(695\) 9.03137e10i 0.387092i
\(696\) 0 0
\(697\) 9.40500e10 0.398499
\(698\) 6.39956e11i 2.69605i
\(699\) 0 0
\(700\) −7.69467e11 −3.20478
\(701\) − 1.92497e11i − 0.797173i −0.917131 0.398587i \(-0.869501\pi\)
0.917131 0.398587i \(-0.130499\pi\)
\(702\) 0 0
\(703\) −1.48475e11 −0.607901
\(704\) 5.29801e11i 2.15686i
\(705\) 0 0
\(706\) 5.61027e11 2.25821
\(707\) − 4.55948e10i − 0.182489i
\(708\) 0 0
\(709\) 8.03148e10 0.317842 0.158921 0.987291i \(-0.449199\pi\)
0.158921 + 0.987291i \(0.449199\pi\)
\(710\) − 2.05085e9i − 0.00807052i
\(711\) 0 0
\(712\) 7.10512e11 2.76472
\(713\) 1.68840e10i 0.0653309i
\(714\) 0 0
\(715\) 1.96962e11 0.753631
\(716\) − 1.00711e12i − 3.83201i
\(717\) 0 0
\(718\) −5.43944e11 −2.04671
\(719\) − 2.23610e11i − 0.836712i −0.908283 0.418356i \(-0.862607\pi\)
0.908283 0.418356i \(-0.137393\pi\)
\(720\) 0 0
\(721\) −9.76005e10 −0.361170
\(722\) 3.08038e11i 1.13359i
\(723\) 0 0
\(724\) −2.65807e11 −0.967414
\(725\) − 1.10230e11i − 0.398975i
\(726\) 0 0
\(727\) 3.67423e11 1.31531 0.657656 0.753318i \(-0.271548\pi\)
0.657656 + 0.753318i \(0.271548\pi\)
\(728\) 1.85361e12i 6.59921i
\(729\) 0 0
\(730\) 9.22389e10 0.324805
\(731\) − 3.15118e10i − 0.110358i
\(732\) 0 0
\(733\) 4.29526e11 1.48790 0.743950 0.668235i \(-0.232950\pi\)
0.743950 + 0.668235i \(0.232950\pi\)
\(734\) 1.42030e11i 0.489323i
\(735\) 0 0
\(736\) −1.01054e11 −0.344384
\(737\) 7.66571e11i 2.59826i
\(738\) 0 0
\(739\) 5.45040e11 1.82747 0.913736 0.406309i \(-0.133184\pi\)
0.913736 + 0.406309i \(0.133184\pi\)
\(740\) − 2.04640e11i − 0.682439i
\(741\) 0 0
\(742\) −1.05683e12 −3.48651
\(743\) 5.96208e11i 1.95633i 0.207824 + 0.978166i \(0.433362\pi\)
−0.207824 + 0.978166i \(0.566638\pi\)
\(744\) 0 0
\(745\) 6.53124e10 0.212017
\(746\) 3.59148e11i 1.15963i
\(747\) 0 0
\(748\) −5.26343e11 −1.68137
\(749\) − 2.40850e11i − 0.765280i
\(750\) 0 0
\(751\) 2.63816e11 0.829356 0.414678 0.909968i \(-0.363894\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(752\) − 5.40616e11i − 1.69051i
\(753\) 0 0
\(754\) −4.46293e11 −1.38081
\(755\) 3.82901e9i 0.0117842i
\(756\) 0 0
\(757\) −6.45369e10 −0.196528 −0.0982641 0.995160i \(-0.531329\pi\)
−0.0982641 + 0.995160i \(0.531329\pi\)
\(758\) 4.45631e11i 1.34989i
\(759\) 0 0
\(760\) 1.62437e11 0.486891
\(761\) − 4.40862e10i − 0.131451i −0.997838 0.0657256i \(-0.979064\pi\)
0.997838 0.0657256i \(-0.0209362\pi\)
\(762\) 0 0
\(763\) 1.82279e11 0.537823
\(764\) − 7.75190e11i − 2.27528i
\(765\) 0 0
\(766\) 4.32407e11 1.25597
\(767\) 9.81253e11i 2.83530i
\(768\) 0 0
\(769\) 1.64096e11 0.469238 0.234619 0.972087i \(-0.424616\pi\)
0.234619 + 0.972087i \(0.424616\pi\)
\(770\) − 4.08033e11i − 1.16073i
\(771\) 0 0
\(772\) −1.23939e12 −3.48930
\(773\) 6.54118e11i 1.83205i 0.401116 + 0.916027i \(0.368622\pi\)
−0.401116 + 0.916027i \(0.631378\pi\)
\(774\) 0 0
\(775\) −1.35669e11 −0.376075
\(776\) − 7.32909e11i − 2.02117i
\(777\) 0 0
\(778\) −1.48975e11 −0.406626
\(779\) 2.09149e11i 0.567944i
\(780\) 0 0
\(781\) −8.79266e9 −0.0236328
\(782\) − 4.88147e10i − 0.130534i
\(783\) 0 0
\(784\) 9.87022e11 2.61254
\(785\) − 9.20128e10i − 0.242309i
\(786\) 0 0
\(787\) −1.17983e11 −0.307554 −0.153777 0.988106i \(-0.549144\pi\)
−0.153777 + 0.988106i \(0.549144\pi\)
\(788\) 2.86643e10i 0.0743423i
\(789\) 0 0
\(790\) 6.91832e10 0.177620
\(791\) − 7.00141e11i − 1.78846i
\(792\) 0 0
\(793\) −5.20220e11 −1.31551
\(794\) 1.40598e11i 0.353751i
\(795\) 0 0
\(796\) 1.22523e12 3.05188
\(797\) − 4.89318e10i − 0.121271i −0.998160 0.0606356i \(-0.980687\pi\)
0.998160 0.0606356i \(-0.0193128\pi\)
\(798\) 0 0
\(799\) 1.15118e11 0.282460
\(800\) − 8.12005e11i − 1.98243i
\(801\) 0 0
\(802\) −1.29097e12 −3.12046
\(803\) − 3.95457e11i − 0.951124i
\(804\) 0 0
\(805\) 2.69337e10 0.0641376
\(806\) 5.49292e11i 1.30156i
\(807\) 0 0
\(808\) 1.50698e11 0.353560
\(809\) − 8.81881e10i − 0.205881i −0.994688 0.102940i \(-0.967175\pi\)
0.994688 0.102940i \(-0.0328251\pi\)
\(810\) 0 0
\(811\) −7.58870e11 −1.75422 −0.877110 0.480290i \(-0.840532\pi\)
−0.877110 + 0.480290i \(0.840532\pi\)
\(812\) 6.58039e11i 1.51366i
\(813\) 0 0
\(814\) −1.23270e12 −2.80776
\(815\) 2.59833e10i 0.0588929i
\(816\) 0 0
\(817\) 7.00761e10 0.157283
\(818\) − 5.32527e11i − 1.18940i
\(819\) 0 0
\(820\) −2.88265e11 −0.637583
\(821\) 4.29292e11i 0.944888i 0.881361 + 0.472444i \(0.156628\pi\)
−0.881361 + 0.472444i \(0.843372\pi\)
\(822\) 0 0
\(823\) −5.63516e11 −1.22831 −0.614154 0.789187i \(-0.710502\pi\)
−0.614154 + 0.789187i \(0.710502\pi\)
\(824\) − 3.22586e11i − 0.699740i
\(825\) 0 0
\(826\) 2.03279e12 4.36690
\(827\) 2.13022e11i 0.455410i 0.973730 + 0.227705i \(0.0731221\pi\)
−0.973730 + 0.227705i \(0.926878\pi\)
\(828\) 0 0
\(829\) 5.16375e11 1.09332 0.546660 0.837355i \(-0.315899\pi\)
0.546660 + 0.837355i \(0.315899\pi\)
\(830\) − 3.31263e11i − 0.698008i
\(831\) 0 0
\(832\) −1.13773e12 −2.37436
\(833\) 2.10175e11i 0.436517i
\(834\) 0 0
\(835\) −4.94530e10 −0.101729
\(836\) − 1.17049e12i − 2.39630i
\(837\) 0 0
\(838\) 1.31317e12 2.66283
\(839\) − 6.87922e10i − 0.138833i −0.997588 0.0694163i \(-0.977886\pi\)
0.997588 0.0694163i \(-0.0221137\pi\)
\(840\) 0 0
\(841\) 4.05979e11 0.811559
\(842\) 5.50318e11i 1.09488i
\(843\) 0 0
\(844\) 3.57723e11 0.704981
\(845\) 2.77952e11i 0.545184i
\(846\) 0 0
\(847\) −1.02252e12 −1.98672
\(848\) − 1.80068e12i − 3.48219i
\(849\) 0 0
\(850\) 3.92244e11 0.751415
\(851\) − 8.13688e10i − 0.155146i
\(852\) 0 0
\(853\) 2.33984e11 0.441967 0.220984 0.975278i \(-0.429073\pi\)
0.220984 + 0.975278i \(0.429073\pi\)
\(854\) 1.07770e12i 2.02613i
\(855\) 0 0
\(856\) 7.96051e11 1.48267
\(857\) − 8.48896e11i − 1.57373i −0.617123 0.786867i \(-0.711702\pi\)
0.617123 0.786867i \(-0.288298\pi\)
\(858\) 0 0
\(859\) 1.16729e11 0.214390 0.107195 0.994238i \(-0.465813\pi\)
0.107195 + 0.994238i \(0.465813\pi\)
\(860\) 9.65843e10i 0.176568i
\(861\) 0 0
\(862\) 1.00162e12 1.81416
\(863\) − 5.73876e11i − 1.03461i −0.855803 0.517303i \(-0.826936\pi\)
0.855803 0.517303i \(-0.173064\pi\)
\(864\) 0 0
\(865\) −2.47903e11 −0.442810
\(866\) − 5.00660e11i − 0.890167i
\(867\) 0 0
\(868\) 8.09906e11 1.42678
\(869\) − 2.96610e11i − 0.520124i
\(870\) 0 0
\(871\) −1.64619e12 −2.86027
\(872\) 6.02464e11i 1.04199i
\(873\) 0 0
\(874\) 1.08555e11 0.186038
\(875\) 4.51896e11i 0.770914i
\(876\) 0 0
\(877\) 7.33529e11 1.23999 0.619996 0.784605i \(-0.287134\pi\)
0.619996 + 0.784605i \(0.287134\pi\)
\(878\) − 7.17104e11i − 1.20671i
\(879\) 0 0
\(880\) 6.95225e11 1.15930
\(881\) 1.09657e12i 1.82026i 0.414327 + 0.910128i \(0.364017\pi\)
−0.414327 + 0.910128i \(0.635983\pi\)
\(882\) 0 0
\(883\) −3.36234e11 −0.553093 −0.276547 0.961001i \(-0.589190\pi\)
−0.276547 + 0.961001i \(0.589190\pi\)
\(884\) − 1.13031e12i − 1.85092i
\(885\) 0 0
\(886\) 1.21257e12 1.96776
\(887\) 5.92998e11i 0.957985i 0.877819 + 0.478993i \(0.158998\pi\)
−0.877819 + 0.478993i \(0.841002\pi\)
\(888\) 0 0
\(889\) 1.23304e12 1.97410
\(890\) − 3.35874e11i − 0.535324i
\(891\) 0 0
\(892\) 1.24259e12 1.96277
\(893\) 2.56000e11i 0.402564i
\(894\) 0 0
\(895\) −2.83263e11 −0.441466
\(896\) 3.93675e11i 0.610809i
\(897\) 0 0
\(898\) 6.01938e11 0.925649
\(899\) 1.16023e11i 0.177625i
\(900\) 0 0
\(901\) 3.83434e11 0.581824
\(902\) 1.73644e12i 2.62321i
\(903\) 0 0
\(904\) 2.31408e12 3.46502
\(905\) 7.47614e10i 0.111451i
\(906\) 0 0
\(907\) −3.25524e11 −0.481010 −0.240505 0.970648i \(-0.577313\pi\)
−0.240505 + 0.970648i \(0.577313\pi\)
\(908\) − 2.18808e12i − 3.21899i
\(909\) 0 0
\(910\) 8.76240e11 1.27778
\(911\) 1.14396e11i 0.166088i 0.996546 + 0.0830441i \(0.0264642\pi\)
−0.996546 + 0.0830441i \(0.973536\pi\)
\(912\) 0 0
\(913\) −1.42023e12 −2.04397
\(914\) − 8.62301e10i − 0.123559i
\(915\) 0 0
\(916\) −3.22019e12 −4.57403
\(917\) 4.68748e10i 0.0662922i
\(918\) 0 0
\(919\) −5.33897e11 −0.748506 −0.374253 0.927327i \(-0.622101\pi\)
−0.374253 + 0.927327i \(0.622101\pi\)
\(920\) 8.90204e10i 0.124262i
\(921\) 0 0
\(922\) −2.68407e12 −3.71424
\(923\) − 1.88820e10i − 0.0260160i
\(924\) 0 0
\(925\) 6.53827e11 0.893091
\(926\) − 1.68287e11i − 0.228879i
\(927\) 0 0
\(928\) −6.94416e11 −0.936328
\(929\) − 2.79883e11i − 0.375763i −0.982192 0.187882i \(-0.939838\pi\)
0.982192 0.187882i \(-0.0601621\pi\)
\(930\) 0 0
\(931\) −4.67389e11 −0.622128
\(932\) 3.01073e12i 3.99032i
\(933\) 0 0
\(934\) −9.67297e11 −1.27108
\(935\) 1.48040e11i 0.193702i
\(936\) 0 0
\(937\) 9.25694e11 1.20091 0.600453 0.799660i \(-0.294987\pi\)
0.600453 + 0.799660i \(0.294987\pi\)
\(938\) 3.41030e12i 4.40536i
\(939\) 0 0
\(940\) −3.52840e11 −0.451924
\(941\) 1.24170e12i 1.58364i 0.610754 + 0.791820i \(0.290866\pi\)
−0.610754 + 0.791820i \(0.709134\pi\)
\(942\) 0 0
\(943\) −1.14620e11 −0.144948
\(944\) 3.46356e12i 4.36149i
\(945\) 0 0
\(946\) 5.81799e11 0.726455
\(947\) − 1.34995e12i − 1.67849i −0.543757 0.839243i \(-0.682999\pi\)
0.543757 0.839243i \(-0.317001\pi\)
\(948\) 0 0
\(949\) 8.49233e11 1.04704
\(950\) 8.72274e11i 1.07092i
\(951\) 0 0
\(952\) −1.39320e12 −1.69616
\(953\) 6.09272e11i 0.738651i 0.929300 + 0.369326i \(0.120411\pi\)
−0.929300 + 0.369326i \(0.879589\pi\)
\(954\) 0 0
\(955\) −2.18031e11 −0.262123
\(956\) − 1.07414e12i − 1.28597i
\(957\) 0 0
\(958\) 2.91427e12 3.45993
\(959\) − 7.70607e10i − 0.0911085i
\(960\) 0 0
\(961\) −7.10092e11 −0.832570
\(962\) − 2.64719e12i − 3.09090i
\(963\) 0 0
\(964\) −3.46631e12 −4.01383
\(965\) 3.48593e11i 0.401985i
\(966\) 0 0
\(967\) −3.43524e11 −0.392872 −0.196436 0.980517i \(-0.562937\pi\)
−0.196436 + 0.980517i \(0.562937\pi\)
\(968\) − 3.37959e12i − 3.84912i
\(969\) 0 0
\(970\) −3.46462e11 −0.391353
\(971\) − 8.09302e11i − 0.910403i −0.890388 0.455202i \(-0.849567\pi\)
0.890388 0.455202i \(-0.150433\pi\)
\(972\) 0 0
\(973\) 1.72258e12 1.92189
\(974\) 1.63062e12i 1.81183i
\(975\) 0 0
\(976\) −1.83624e12 −2.02363
\(977\) − 1.12752e12i − 1.23750i −0.785586 0.618752i \(-0.787639\pi\)
0.785586 0.618752i \(-0.212361\pi\)
\(978\) 0 0
\(979\) −1.44000e12 −1.56759
\(980\) − 6.44191e11i − 0.698410i
\(981\) 0 0
\(982\) 2.91867e11 0.313862
\(983\) − 6.57547e11i − 0.704228i −0.935957 0.352114i \(-0.885463\pi\)
0.935957 0.352114i \(-0.114537\pi\)
\(984\) 0 0
\(985\) 8.06216e9 0.00856459
\(986\) − 3.35442e11i − 0.354903i
\(987\) 0 0
\(988\) 2.51359e12 2.63795
\(989\) 3.84038e10i 0.0401411i
\(990\) 0 0
\(991\) 3.09933e11 0.321347 0.160673 0.987008i \(-0.448633\pi\)
0.160673 + 0.987008i \(0.448633\pi\)
\(992\) 8.54679e11i 0.882585i
\(993\) 0 0
\(994\) −3.91165e10 −0.0400696
\(995\) − 3.44612e11i − 0.351591i
\(996\) 0 0
\(997\) −8.26093e11 −0.836081 −0.418040 0.908428i \(-0.637283\pi\)
−0.418040 + 0.908428i \(0.637283\pi\)
\(998\) 7.78563e11i 0.784823i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.b.b.80.1 16
3.2 odd 2 inner 81.9.b.b.80.16 yes 16
9.2 odd 6 81.9.d.g.53.16 32
9.4 even 3 81.9.d.g.26.16 32
9.5 odd 6 81.9.d.g.26.1 32
9.7 even 3 81.9.d.g.53.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.9.b.b.80.1 16 1.1 even 1 trivial
81.9.b.b.80.16 yes 16 3.2 odd 2 inner
81.9.d.g.26.1 32 9.5 odd 6
81.9.d.g.26.16 32 9.4 even 3
81.9.d.g.53.1 32 9.7 even 3
81.9.d.g.53.16 32 9.2 odd 6