Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,8,Mod(10,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.10");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.e (of order \(9\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(25.3031870642\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −3.78531 | − | 21.4676i | 0 | −326.247 | + | 118.744i | −5.44265 | − | 4.56692i | 0 | −1251.57 | − | 455.534i | 2388.97 | + | 4137.82i | 0 | −77.4386 | + | 134.128i | ||||||
10.2 | −3.37304 | − | 19.1294i | 0 | −234.277 | + | 85.2699i | 84.6713 | + | 71.0477i | 0 | 549.429 | + | 199.976i | 1178.22 | + | 2040.74i | 0 | 1073.50 | − | 1859.36i | ||||||
10.3 | −3.12991 | − | 17.7506i | 0 | −185.007 | + | 67.3369i | −339.472 | − | 284.851i | 0 | −71.6195 | − | 26.0674i | 620.762 | + | 1075.19i | 0 | −3993.75 | + | 6917.39i | ||||||
10.4 | −2.62261 | − | 14.8736i | 0 | −94.0647 | + | 34.2368i | 415.153 | + | 348.355i | 0 | −977.702 | − | 355.854i | −210.675 | − | 364.901i | 0 | 4092.50 | − | 7088.41i | ||||||
10.5 | −2.40701 | − | 13.6508i | 0 | −60.2708 | + | 21.9368i | −33.9324 | − | 28.4726i | 0 | 674.611 | + | 245.538i | −442.603 | − | 766.611i | 0 | −307.000 | + | 531.739i | ||||||
10.6 | −2.28109 | − | 12.9367i | 0 | −41.8741 | + | 15.2409i | 86.4596 | + | 72.5482i | 0 | 1303.70 | + | 474.509i | −548.035 | − | 949.224i | 0 | 741.312 | − | 1283.99i | ||||||
10.7 | −1.81920 | − | 10.3172i | 0 | 17.1451 | − | 6.24032i | −372.643 | − | 312.684i | 0 | −1217.91 | − | 443.285i | −766.062 | − | 1326.86i | 0 | −2548.12 | + | 4413.47i | ||||||
10.8 | −0.995547 | − | 5.64603i | 0 | 89.3941 | − | 32.5368i | 164.412 | + | 137.958i | 0 | −753.757 | − | 274.345i | −639.620 | − | 1107.85i | 0 | 615.234 | − | 1065.62i | ||||||
10.9 | −0.678939 | − | 3.85046i | 0 | 105.916 | − | 38.5501i | 178.863 | + | 150.084i | 0 | −703.275 | − | 255.971i | −470.577 | − | 815.063i | 0 | 456.455 | − | 790.603i | ||||||
10.10 | −0.649023 | − | 3.68079i | 0 | 107.154 | − | 39.0007i | −80.9975 | − | 67.9649i | 0 | 791.204 | + | 287.975i | −452.304 | − | 783.413i | 0 | −197.596 | + | 342.246i | ||||||
10.11 | 0.0387020 | + | 0.219490i | 0 | 120.234 | − | 43.7616i | −199.491 | − | 167.393i | 0 | −867.130 | − | 315.610i | 28.5226 | + | 49.4026i | 0 | 29.0204 | − | 50.2647i | ||||||
10.12 | 0.898071 | + | 5.09321i | 0 | 95.1464 | − | 34.6305i | −331.543 | − | 278.197i | 0 | 981.429 | + | 357.211i | 592.822 | + | 1026.80i | 0 | 1119.17 | − | 1938.46i | ||||||
10.13 | 1.10962 | + | 6.29299i | 0 | 81.9102 | − | 29.8129i | 292.309 | + | 245.276i | 0 | 1306.69 | + | 475.598i | 687.466 | + | 1190.73i | 0 | −1219.17 | + | 2111.66i | ||||||
10.14 | 1.12676 | + | 6.39019i | 0 | 80.7157 | − | 29.3781i | 233.744 | + | 196.135i | 0 | 100.767 | + | 36.6762i | 693.960 | + | 1201.97i | 0 | −989.964 | + | 1714.67i | ||||||
10.15 | 1.90051 | + | 10.7783i | 0 | 7.72077 | − | 2.81013i | −235.564 | − | 197.662i | 0 | 277.012 | + | 100.824i | 745.415 | + | 1291.10i | 0 | 1682.77 | − | 2914.64i | ||||||
10.16 | 2.26179 | + | 12.8272i | 0 | −39.1414 | + | 14.2463i | 4.19097 | + | 3.51664i | 0 | −1350.63 | − | 491.588i | 562.337 | + | 973.996i | 0 | −35.6297 | + | 61.7124i | ||||||
10.17 | 2.63245 | + | 14.9293i | 0 | −95.6749 | + | 34.8228i | 128.706 | + | 107.997i | 0 | −237.509 | − | 86.4462i | 198.477 | + | 343.772i | 0 | −1273.52 | + | 2205.80i | ||||||
10.18 | 3.35424 | + | 19.0228i | 0 | −230.336 | + | 83.8354i | −74.1505 | − | 62.2197i | 0 | −569.519 | − | 207.288i | −1131.15 | − | 1959.20i | 0 | 934.875 | − | 1619.25i | ||||||
10.19 | 3.52519 | + | 19.9924i | 0 | −266.987 | + | 97.1752i | −333.918 | − | 280.190i | 0 | 999.181 | + | 363.672i | −1584.69 | − | 2744.76i | 0 | 4424.54 | − | 7663.53i | ||||||
10.20 | 3.56548 | + | 20.2208i | 0 | −275.889 | + | 100.415i | 330.525 | + | 277.343i | 0 | 1014.82 | + | 369.366i | −1700.06 | − | 2944.59i | 0 | −4429.63 | + | 7672.35i | ||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 81.8.e.a | 120 | |
3.b | odd | 2 | 1 | 27.8.e.a | ✓ | 120 | |
27.e | even | 9 | 1 | inner | 81.8.e.a | 120 | |
27.f | odd | 18 | 1 | 27.8.e.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.8.e.a | ✓ | 120 | 3.b | odd | 2 | 1 | |
27.8.e.a | ✓ | 120 | 27.f | odd | 18 | 1 | |
81.8.e.a | 120 | 1.a | even | 1 | 1 | trivial | |
81.8.e.a | 120 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(81, [\chi])\).