Properties

Label 81.8.e
Level $81$
Weight $8$
Character orbit 81.e
Rep. character $\chi_{81}(10,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $120$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(81, [\chi])\).

Total New Old
Modular forms 396 132 264
Cusp forms 360 120 240
Eisenstein series 36 12 24

Trace form

\( 120 q + 6 q^{2} - 6 q^{4} + 219 q^{5} - 6 q^{7} + 4611 q^{8} - 3 q^{10} - 9399 q^{11} - 6 q^{13} - 16647 q^{14} + 378 q^{16} + 58959 q^{17} - 3 q^{19} - 240243 q^{20} + 105762 q^{22} + 144084 q^{23} - 107997 q^{25}+ \cdots + 88493274 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.8.e.a 81.e 27.e $120$ $25.303$ None 27.8.e.a \(6\) \(0\) \(219\) \(-6\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{8}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)