Properties

Label 81.8.c.j
Level $81$
Weight $8$
Character orbit 81.c
Analytic conductor $25.303$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 229x^{6} + 13863x^{4} + 85327x^{2} + 40804 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 4 \beta_1 + 4) q^{2} + ( - \beta_{7} + \beta_{4} + \cdots - 59 \beta_1) q^{4} + (\beta_{7} + \beta_{6} + \cdots + 50 \beta_1) q^{5} + (\beta_{7} - 3 \beta_{6} - 3 \beta_{5} + \cdots - 207) q^{7}+ \cdots + ( - 7420 \beta_{5} - 8680 \beta_{4} + \cdots - 3832980) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} - 229 q^{4} + 192 q^{5} - 800 q^{7} - 5010 q^{8} + 10938 q^{10} - 5016 q^{11} + 2200 q^{13} + 19452 q^{14} - 40849 q^{16} + 39240 q^{17} + 22480 q^{19} + 96951 q^{20} + 41280 q^{22} + 154560 q^{23}+ \cdots - 31542030 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 229x^{6} + 13863x^{4} + 85327x^{2} + 40804 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 330\nu^{5} + 25377\nu^{3} + 117748\nu + 43632 ) / 87264 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 101\nu^{6} + 330\nu^{5} + 11514\nu^{4} + 25377\nu^{3} + 32421\nu^{2} + 248644\nu - 84436 ) / 87264 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 101\nu^{6} + 330\nu^{5} - 11514\nu^{4} + 25377\nu^{3} - 32421\nu^{2} + 248644\nu + 84436 ) / 87264 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 114\nu^{4} + 975\nu^{2} + 75140 ) / 432 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - 186\nu^{4} - 8601\nu^{2} - 28444 ) / 48 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 601 \nu^{7} + 909 \nu^{6} + 132882 \nu^{5} + 169074 \nu^{4} + 7855953 \nu^{3} + 7818309 \nu^{2} + \cdots + 25855596 ) / 87264 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 476 \nu^{7} - 101 \nu^{6} - 91632 \nu^{5} - 11514 \nu^{4} - 4487484 \nu^{3} + 98475 \nu^{2} + \cdots + 7589140 ) / 87264 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - \beta_{3} + \beta_{2} - 172 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{7} + 4\beta_{6} + 2\beta_{5} - 2\beta_{4} - 325\beta_{3} - 325\beta_{2} + 150\beta _1 - 75 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{5} - 115\beta_{4} + 133\beta_{3} - 133\beta_{2} + 18560 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 452 \beta_{7} - 464 \beta_{6} - 232 \beta_{5} + 226 \beta_{4} + 36065 \beta_{3} + 36065 \beta_{2} + \cdots + 4209 ) / 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 76\beta_{5} + 4263\beta_{4} - 5379\beta_{3} + 5379\beta_{2} - 686040 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 15884 \beta_{7} + 17204 \beta_{6} + 8602 \beta_{5} - 7942 \beta_{4} - 1335723 \beta_{3} - 1335723 \beta_{2} + \cdots - 77209 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
10.5702i
0.722576i
2.51694i
10.5078i
10.5702i
0.722576i
2.51694i
10.5078i
−7.65402 13.2572i 0 −53.1681 + 92.0899i −26.6928 + 46.2333i 0 −121.554 210.538i −331.630 0 817.229
28.2 0.874231 + 1.51421i 0 62.4714 108.204i 180.817 313.184i 0 758.855 + 1314.38i 442.261 0 632.303
28.3 3.67973 + 6.37349i 0 36.9191 63.9458i −234.236 + 405.708i 0 −655.845 1135.96i 1485.42 0 −3447.70
28.4 10.6001 + 18.3598i 0 −160.722 + 278.379i 176.112 305.034i 0 −381.456 660.702i −4101.05 0 7467.17
55.1 −7.65402 + 13.2572i 0 −53.1681 92.0899i −26.6928 46.2333i 0 −121.554 + 210.538i −331.630 0 817.229
55.2 0.874231 1.51421i 0 62.4714 + 108.204i 180.817 + 313.184i 0 758.855 1314.38i 442.261 0 632.303
55.3 3.67973 6.37349i 0 36.9191 + 63.9458i −234.236 405.708i 0 −655.845 + 1135.96i 1485.42 0 −3447.70
55.4 10.6001 18.3598i 0 −160.722 278.379i 176.112 + 305.034i 0 −381.456 + 660.702i −4101.05 0 7467.17
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.c.j 8
3.b odd 2 1 81.8.c.i 8
9.c even 3 1 81.8.a.a 4
9.c even 3 1 inner 81.8.c.j 8
9.d odd 6 1 81.8.a.b yes 4
9.d odd 6 1 81.8.c.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.8.a.a 4 9.c even 3 1
81.8.a.b yes 4 9.d odd 6 1
81.8.c.i 8 3.b odd 2 1
81.8.c.i 8 9.d odd 6 1
81.8.c.j 8 1.a even 1 1 trivial
81.8.c.j 8 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 15 T_{2}^{7} + 483 T_{2}^{6} - 1890 T_{2}^{5} + 113940 T_{2}^{4} - 868320 T_{2}^{3} + \cdots + 17438976 \) acting on \(S_{8}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 15 T^{7} + \cdots + 17438976 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 10\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 50\!\cdots\!01 \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 35\!\cdots\!89)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots - 59\!\cdots\!96)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 27\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 83\!\cdots\!21 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 57\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots + 15\!\cdots\!49)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 47\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 29\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 67\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots - 94\!\cdots\!04)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 73\!\cdots\!41 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 67\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots - 18\!\cdots\!24)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 12\!\cdots\!89)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots - 34\!\cdots\!79)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
show more
show less