Properties

Label 81.8.c.h.55.1
Level $81$
Weight $8$
Character 81.55
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(-1.76556 + 3.05805i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.8.c.h.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.79669 + 6.57607i) q^{2} +(35.1702 + 60.9166i) q^{4} +(32.9066 + 56.9959i) q^{5} +(369.202 - 639.477i) q^{7} -1506.08 q^{8} -499.745 q^{10} +(2480.63 - 4296.58i) q^{11} +(-2983.62 - 5167.78i) q^{13} +(2803.50 + 4855.80i) q^{14} +(1216.32 - 2106.72i) q^{16} -36651.6 q^{17} +22378.9 q^{19} +(-2314.67 + 4009.12i) q^{20} +(18836.4 + 32625.6i) q^{22} +(-25736.8 - 44577.4i) q^{23} +(36896.8 - 63907.1i) q^{25} +45311.5 q^{26} +51939.7 q^{28} +(-34247.9 + 59319.0i) q^{29} +(-75327.4 - 130471. i) q^{31} +(-87152.9 - 150953. i) q^{32} +(139155. - 241024. i) q^{34} +48596.8 q^{35} +489027. q^{37} +(-84966.0 + 147165. i) q^{38} +(-49559.9 - 85840.2i) q^{40} +(295318. + 511505. i) q^{41} +(421321. - 729750. i) q^{43} +348978. q^{44} +390859. q^{46} +(613184. - 1.06207e6i) q^{47} +(139151. + 241016. i) q^{49} +(280172. + 485272. i) q^{50} +(209869. - 363504. i) q^{52} -958904. q^{53} +326517. q^{55} +(-556047. + 963101. i) q^{56} +(-260057. - 450432. i) q^{58} +(-158135. - 273897. i) q^{59} +(14861.5 - 25740.8i) q^{61} +1.14398e6 q^{62} +1.63495e6 q^{64} +(196362. - 340108. i) q^{65} +(-146512. - 253767. i) q^{67} +(-1.28905e6 - 2.23270e6i) q^{68} +(-184507. + 319576. i) q^{70} -714537. q^{71} -3.96273e6 q^{73} +(-1.85669e6 + 3.21587e6i) q^{74} +(787073. + 1.36325e6i) q^{76} +(-1.83171e6 - 3.17262e6i) q^{77} +(-1.26902e6 + 2.19801e6i) q^{79} +160100. q^{80} -4.48492e6 q^{82} +(831556. - 1.44030e6i) q^{83} +(-1.20608e6 - 2.08899e6i) q^{85} +(3.19926e6 + 5.54128e6i) q^{86} +(-3.73602e6 + 6.47098e6i) q^{88} -4.64819e6 q^{89} -4.40624e6 q^{91} +(1.81034e6 - 3.13560e6i) q^{92} +(4.65614e6 + 8.06467e6i) q^{94} +(736415. + 1.27551e6i) q^{95} +(-7.35048e6 + 1.27314e7i) q^{97} -2.11325e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} - 77 q^{4} + 180 q^{5} - 700 q^{7} - 3654 q^{8} + 2790 q^{10} + 10890 q^{11} + 5480 q^{13} + 29475 q^{14} + 15967 q^{16} - 32832 q^{17} + 32048 q^{19} + 12195 q^{20} - 60705 q^{22} + 24372 q^{23}+ \cdots - 45559476 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.79669 + 6.57607i −0.335583 + 0.581248i −0.983597 0.180381i \(-0.942267\pi\)
0.648013 + 0.761629i \(0.275600\pi\)
\(3\) 0 0
\(4\) 35.1702 + 60.9166i 0.274767 + 0.475911i
\(5\) 32.9066 + 56.9959i 0.117730 + 0.203915i 0.918868 0.394565i \(-0.129105\pi\)
−0.801138 + 0.598480i \(0.795772\pi\)
\(6\) 0 0
\(7\) 369.202 639.477i 0.406838 0.704664i −0.587696 0.809082i \(-0.699965\pi\)
0.994533 + 0.104418i \(0.0332981\pi\)
\(8\) −1506.08 −1.04000
\(9\) 0 0
\(10\) −499.745 −0.158033
\(11\) 2480.63 4296.58i 0.561937 0.973304i −0.435390 0.900242i \(-0.643389\pi\)
0.997327 0.0730623i \(-0.0232772\pi\)
\(12\) 0 0
\(13\) −2983.62 5167.78i −0.376653 0.652382i 0.613920 0.789368i \(-0.289592\pi\)
−0.990573 + 0.136986i \(0.956258\pi\)
\(14\) 2803.50 + 4855.80i 0.273056 + 0.472947i
\(15\) 0 0
\(16\) 1216.32 2106.72i 0.0742381 0.128584i
\(17\) −36651.6 −1.80935 −0.904674 0.426104i \(-0.859886\pi\)
−0.904674 + 0.426104i \(0.859886\pi\)
\(18\) 0 0
\(19\) 22378.9 0.748518 0.374259 0.927324i \(-0.377897\pi\)
0.374259 + 0.927324i \(0.377897\pi\)
\(20\) −2314.67 + 4009.12i −0.0646969 + 0.112058i
\(21\) 0 0
\(22\) 18836.4 + 32625.6i 0.377154 + 0.653250i
\(23\) −25736.8 44577.4i −0.441069 0.763955i 0.556700 0.830714i \(-0.312067\pi\)
−0.997769 + 0.0667591i \(0.978734\pi\)
\(24\) 0 0
\(25\) 36896.8 63907.1i 0.472279 0.818012i
\(26\) 45311.5 0.505594
\(27\) 0 0
\(28\) 51939.7 0.447143
\(29\) −34247.9 + 59319.0i −0.260760 + 0.451649i −0.966444 0.256877i \(-0.917306\pi\)
0.705684 + 0.708526i \(0.250640\pi\)
\(30\) 0 0
\(31\) −75327.4 130471.i −0.454137 0.786589i 0.544501 0.838760i \(-0.316719\pi\)
−0.998638 + 0.0521715i \(0.983386\pi\)
\(32\) −87152.9 150953.i −0.470172 0.814362i
\(33\) 0 0
\(34\) 139155. 241024.i 0.607187 1.05168i
\(35\) 48596.8 0.191589
\(36\) 0 0
\(37\) 489027. 1.58718 0.793591 0.608451i \(-0.208209\pi\)
0.793591 + 0.608451i \(0.208209\pi\)
\(38\) −84966.0 + 147165.i −0.251190 + 0.435074i
\(39\) 0 0
\(40\) −49559.9 85840.2i −0.122439 0.212071i
\(41\) 295318. + 511505.i 0.669184 + 1.15906i 0.978133 + 0.207982i \(0.0666897\pi\)
−0.308948 + 0.951079i \(0.599977\pi\)
\(42\) 0 0
\(43\) 421321. 729750.i 0.808117 1.39970i −0.106050 0.994361i \(-0.533820\pi\)
0.914167 0.405338i \(-0.132846\pi\)
\(44\) 348978. 0.617609
\(45\) 0 0
\(46\) 390859. 0.592062
\(47\) 613184. 1.06207e6i 0.861486 1.49214i −0.00900942 0.999959i \(-0.502868\pi\)
0.870495 0.492177i \(-0.163799\pi\)
\(48\) 0 0
\(49\) 139151. + 241016.i 0.168966 + 0.292658i
\(50\) 280172. + 485272.i 0.316978 + 0.549022i
\(51\) 0 0
\(52\) 209869. 363504.i 0.206984 0.358507i
\(53\) −958904. −0.884727 −0.442364 0.896836i \(-0.645860\pi\)
−0.442364 + 0.896836i \(0.645860\pi\)
\(54\) 0 0
\(55\) 326517. 0.264628
\(56\) −556047. + 963101.i −0.423110 + 0.732848i
\(57\) 0 0
\(58\) −260057. 450432.i −0.175013 0.303132i
\(59\) −158135. 273897.i −0.100241 0.173622i 0.811543 0.584293i \(-0.198628\pi\)
−0.911784 + 0.410670i \(0.865295\pi\)
\(60\) 0 0
\(61\) 14861.5 25740.8i 0.00838315 0.0145200i −0.861803 0.507242i \(-0.830665\pi\)
0.870187 + 0.492722i \(0.163998\pi\)
\(62\) 1.14398e6 0.609604
\(63\) 0 0
\(64\) 1.63495e6 0.779604
\(65\) 196362. 340108.i 0.0886870 0.153610i
\(66\) 0 0
\(67\) −146512. 253767.i −0.0595130 0.103080i 0.834734 0.550654i \(-0.185621\pi\)
−0.894247 + 0.447574i \(0.852288\pi\)
\(68\) −1.28905e6 2.23270e6i −0.497150 0.861089i
\(69\) 0 0
\(70\) −184507. + 319576.i −0.0642939 + 0.111360i
\(71\) −714537. −0.236930 −0.118465 0.992958i \(-0.537797\pi\)
−0.118465 + 0.992958i \(0.537797\pi\)
\(72\) 0 0
\(73\) −3.96273e6 −1.19224 −0.596121 0.802894i \(-0.703292\pi\)
−0.596121 + 0.802894i \(0.703292\pi\)
\(74\) −1.85669e6 + 3.21587e6i −0.532632 + 0.922546i
\(75\) 0 0
\(76\) 787073. + 1.36325e6i 0.205668 + 0.356228i
\(77\) −1.83171e6 3.17262e6i −0.457235 0.791954i
\(78\) 0 0
\(79\) −1.26902e6 + 2.19801e6i −0.289584 + 0.501574i −0.973710 0.227789i \(-0.926850\pi\)
0.684126 + 0.729363i \(0.260184\pi\)
\(80\) 160100. 0.0349603
\(81\) 0 0
\(82\) −4.48492e6 −0.898269
\(83\) 831556. 1.44030e6i 0.159631 0.276490i −0.775104 0.631833i \(-0.782303\pi\)
0.934736 + 0.355344i \(0.115636\pi\)
\(84\) 0 0
\(85\) −1.20608e6 2.08899e6i −0.213015 0.368953i
\(86\) 3.19926e6 + 5.54128e6i 0.542381 + 0.939432i
\(87\) 0 0
\(88\) −3.73602e6 + 6.47098e6i −0.584413 + 1.01223i
\(89\) −4.64819e6 −0.698906 −0.349453 0.936954i \(-0.613632\pi\)
−0.349453 + 0.936954i \(0.613632\pi\)
\(90\) 0 0
\(91\) −4.40624e6 −0.612947
\(92\) 1.81034e6 3.13560e6i 0.242383 0.419820i
\(93\) 0 0
\(94\) 4.65614e6 + 8.06467e6i 0.578201 + 1.00147i
\(95\) 736415. + 1.27551e6i 0.0881232 + 0.152634i
\(96\) 0 0
\(97\) −7.35048e6 + 1.27314e7i −0.817738 + 1.41636i 0.0896064 + 0.995977i \(0.471439\pi\)
−0.907345 + 0.420387i \(0.861894\pi\)
\(98\) −2.11325e6 −0.226809
\(99\) 0 0
\(100\) 5.19068e6 0.519068
\(101\) 4.64190e6 8.04000e6i 0.448302 0.776482i −0.549973 0.835182i \(-0.685362\pi\)
0.998276 + 0.0587000i \(0.0186955\pi\)
\(102\) 0 0
\(103\) −2.05525e6 3.55979e6i −0.185325 0.320992i 0.758361 0.651835i \(-0.226000\pi\)
−0.943686 + 0.330843i \(0.892667\pi\)
\(104\) 4.49356e6 + 7.78307e6i 0.391718 + 0.678476i
\(105\) 0 0
\(106\) 3.64066e6 6.30581e6i 0.296900 0.514246i
\(107\) 1.77931e7 1.40414 0.702068 0.712110i \(-0.252260\pi\)
0.702068 + 0.712110i \(0.252260\pi\)
\(108\) 0 0
\(109\) −1.72244e7 −1.27394 −0.636972 0.770887i \(-0.719813\pi\)
−0.636972 + 0.770887i \(0.719813\pi\)
\(110\) −1.23968e6 + 2.14720e6i −0.0888049 + 0.153815i
\(111\) 0 0
\(112\) −898135. 1.55562e6i −0.0604058 0.104626i
\(113\) −1.08376e6 1.87712e6i −0.0706573 0.122382i 0.828532 0.559941i \(-0.189176\pi\)
−0.899190 + 0.437559i \(0.855843\pi\)
\(114\) 0 0
\(115\) 1.69382e6 2.93378e6i 0.103854 0.179881i
\(116\) −4.81802e6 −0.286593
\(117\) 0 0
\(118\) 2.40156e6 0.134557
\(119\) −1.35319e7 + 2.34379e7i −0.736112 + 1.27498i
\(120\) 0 0
\(121\) −2.56349e6 4.44009e6i −0.131547 0.227847i
\(122\) 112849. + 195460.i 0.00562649 + 0.00974537i
\(123\) 0 0
\(124\) 5.29857e6 9.17739e6i 0.249564 0.432258i
\(125\) 9.99825e6 0.457867
\(126\) 0 0
\(127\) 9.66827e6 0.418828 0.209414 0.977827i \(-0.432844\pi\)
0.209414 + 0.977827i \(0.432844\pi\)
\(128\) 4.94817e6 8.57048e6i 0.208550 0.361219i
\(129\) 0 0
\(130\) 1.49105e6 + 2.58257e6i 0.0595238 + 0.103098i
\(131\) −2.11215e7 3.65836e7i −0.820873 1.42179i −0.905033 0.425342i \(-0.860154\pi\)
0.0841598 0.996452i \(-0.473179\pi\)
\(132\) 0 0
\(133\) 8.26236e6 1.43108e7i 0.304525 0.527453i
\(134\) 2.22505e6 0.0798864
\(135\) 0 0
\(136\) 5.52002e7 1.88172
\(137\) −4.00725e6 + 6.94077e6i −0.133145 + 0.230614i −0.924887 0.380241i \(-0.875841\pi\)
0.791742 + 0.610855i \(0.209174\pi\)
\(138\) 0 0
\(139\) −7.30050e6 1.26448e7i −0.230569 0.399357i 0.727407 0.686207i \(-0.240725\pi\)
−0.957976 + 0.286849i \(0.907392\pi\)
\(140\) 1.70916e6 + 2.96035e6i 0.0526423 + 0.0911791i
\(141\) 0 0
\(142\) 2.71288e6 4.69884e6i 0.0795099 0.137715i
\(143\) −2.96050e7 −0.846622
\(144\) 0 0
\(145\) −4.50792e6 −0.122797
\(146\) 1.50453e7 2.60592e7i 0.400097 0.692988i
\(147\) 0 0
\(148\) 1.71992e7 + 2.97899e7i 0.436106 + 0.755358i
\(149\) 2.03543e7 + 3.52547e7i 0.504086 + 0.873103i 0.999989 + 0.00472499i \(0.00150402\pi\)
−0.495902 + 0.868378i \(0.665163\pi\)
\(150\) 0 0
\(151\) 2.64970e7 4.58941e7i 0.626293 1.08477i −0.361997 0.932179i \(-0.617905\pi\)
0.988289 0.152591i \(-0.0487618\pi\)
\(152\) −3.37044e7 −0.778456
\(153\) 0 0
\(154\) 2.78178e7 0.613762
\(155\) 4.95754e6 8.58671e6i 0.106931 0.185211i
\(156\) 0 0
\(157\) −2.05335e7 3.55650e7i −0.423461 0.733456i 0.572814 0.819685i \(-0.305852\pi\)
−0.996275 + 0.0862290i \(0.972518\pi\)
\(158\) −9.63618e6 1.66904e7i −0.194359 0.336640i
\(159\) 0 0
\(160\) 5.73581e6 9.93472e6i 0.110707 0.191750i
\(161\) −3.80083e7 −0.717775
\(162\) 0 0
\(163\) −4.33772e7 −0.784522 −0.392261 0.919854i \(-0.628307\pi\)
−0.392261 + 0.919854i \(0.628307\pi\)
\(164\) −2.07728e7 + 3.59795e7i −0.367740 + 0.636945i
\(165\) 0 0
\(166\) 6.31433e6 + 1.09367e7i 0.107139 + 0.185571i
\(167\) 1.93422e7 + 3.35017e7i 0.321365 + 0.556621i 0.980770 0.195167i \(-0.0625249\pi\)
−0.659405 + 0.751788i \(0.729192\pi\)
\(168\) 0 0
\(169\) 1.35703e7 2.35044e7i 0.216265 0.374582i
\(170\) 1.83165e7 0.285937
\(171\) 0 0
\(172\) 5.92719e7 0.888177
\(173\) 2.65274e7 4.59467e7i 0.389523 0.674673i −0.602863 0.797845i \(-0.705973\pi\)
0.992385 + 0.123172i \(0.0393067\pi\)
\(174\) 0 0
\(175\) −2.72448e7 4.71893e7i −0.384282 0.665596i
\(176\) −6.03447e6 1.04520e7i −0.0834344 0.144513i
\(177\) 0 0
\(178\) 1.76477e7 3.05668e7i 0.234541 0.406237i
\(179\) 1.34132e8 1.74802 0.874012 0.485904i \(-0.161509\pi\)
0.874012 + 0.485904i \(0.161509\pi\)
\(180\) 0 0
\(181\) 6.35105e6 0.0796105 0.0398053 0.999207i \(-0.487326\pi\)
0.0398053 + 0.999207i \(0.487326\pi\)
\(182\) 1.67291e7 2.89757e7i 0.205695 0.356274i
\(183\) 0 0
\(184\) 3.87616e7 + 6.71370e7i 0.458711 + 0.794510i
\(185\) 1.60922e7 + 2.78726e7i 0.186859 + 0.323650i
\(186\) 0 0
\(187\) −9.09193e7 + 1.57477e8i −1.01674 + 1.76105i
\(188\) 8.62633e7 0.946833
\(189\) 0 0
\(190\) −1.11838e7 −0.118291
\(191\) −5.79216e7 + 1.00323e8i −0.601483 + 1.04180i 0.391113 + 0.920343i \(0.372090\pi\)
−0.992597 + 0.121457i \(0.961243\pi\)
\(192\) 0 0
\(193\) −2.86928e7 4.96974e7i −0.287291 0.497603i 0.685871 0.727723i \(-0.259421\pi\)
−0.973162 + 0.230120i \(0.926088\pi\)
\(194\) −5.58150e7 9.66744e7i −0.548839 0.950617i
\(195\) 0 0
\(196\) −9.78793e6 + 1.69532e7i −0.0928527 + 0.160826i
\(197\) −1.04846e8 −0.977059 −0.488530 0.872547i \(-0.662467\pi\)
−0.488530 + 0.872547i \(0.662467\pi\)
\(198\) 0 0
\(199\) −2.10623e8 −1.89461 −0.947304 0.320335i \(-0.896205\pi\)
−0.947304 + 0.320335i \(0.896205\pi\)
\(200\) −5.55694e7 + 9.62490e7i −0.491169 + 0.850729i
\(201\) 0 0
\(202\) 3.52477e7 + 6.10509e7i 0.300886 + 0.521149i
\(203\) 2.52888e7 + 4.38015e7i 0.212174 + 0.367496i
\(204\) 0 0
\(205\) −1.94358e7 + 3.36638e7i −0.157567 + 0.272913i
\(206\) 3.12125e7 0.248768
\(207\) 0 0
\(208\) −1.45161e7 −0.111848
\(209\) 5.55139e7 9.61529e7i 0.420620 0.728535i
\(210\) 0 0
\(211\) 3.24596e7 + 5.62218e7i 0.237878 + 0.412018i 0.960105 0.279639i \(-0.0902147\pi\)
−0.722227 + 0.691656i \(0.756881\pi\)
\(212\) −3.37249e7 5.84132e7i −0.243094 0.421052i
\(213\) 0 0
\(214\) −6.75551e7 + 1.17009e8i −0.471205 + 0.816151i
\(215\) 5.54570e7 0.380559
\(216\) 0 0
\(217\) −1.11244e8 −0.739041
\(218\) 6.53956e7 1.13269e8i 0.427515 0.740477i
\(219\) 0 0
\(220\) 1.14837e7 + 1.98903e7i 0.0727112 + 0.125940i
\(221\) 1.09355e8 + 1.89408e8i 0.681497 + 1.18039i
\(222\) 0 0
\(223\) −7.04395e7 + 1.22005e8i −0.425352 + 0.736732i −0.996453 0.0841479i \(-0.973183\pi\)
0.571101 + 0.820880i \(0.306517\pi\)
\(224\) −1.28708e8 −0.765135
\(225\) 0 0
\(226\) 1.64588e7 0.0948457
\(227\) −1.70081e6 + 2.94589e6i −0.00965086 + 0.0167158i −0.870811 0.491619i \(-0.836405\pi\)
0.861160 + 0.508335i \(0.169739\pi\)
\(228\) 0 0
\(229\) 1.38084e7 + 2.39169e7i 0.0759836 + 0.131608i 0.901514 0.432751i \(-0.142457\pi\)
−0.825530 + 0.564358i \(0.809124\pi\)
\(230\) 1.28618e7 + 2.22774e7i 0.0697037 + 0.120730i
\(231\) 0 0
\(232\) 5.15799e7 8.93390e7i 0.271189 0.469713i
\(233\) −3.51458e8 −1.82023 −0.910117 0.414351i \(-0.864008\pi\)
−0.910117 + 0.414351i \(0.864008\pi\)
\(234\) 0 0
\(235\) 8.07112e7 0.405692
\(236\) 1.11233e7 1.92661e7i 0.0550859 0.0954116i
\(237\) 0 0
\(238\) −1.02753e8 1.77973e8i −0.494054 0.855726i
\(239\) −1.89598e8 3.28393e8i −0.898339 1.55597i −0.829617 0.558334i \(-0.811441\pi\)
−0.0687228 0.997636i \(-0.521892\pi\)
\(240\) 0 0
\(241\) −1.49638e7 + 2.59180e7i −0.0688624 + 0.119273i −0.898401 0.439177i \(-0.855270\pi\)
0.829538 + 0.558450i \(0.188604\pi\)
\(242\) 3.89311e7 0.176581
\(243\) 0 0
\(244\) 2.09072e6 0.00921367
\(245\) −9.15796e6 + 1.58620e7i −0.0397848 + 0.0689093i
\(246\) 0 0
\(247\) −6.67702e7 1.15649e8i −0.281932 0.488320i
\(248\) 1.13449e8 + 1.96499e8i 0.472301 + 0.818050i
\(249\) 0 0
\(250\) −3.79603e7 + 6.57492e7i −0.153653 + 0.266134i
\(251\) 1.71456e7 0.0684374 0.0342187 0.999414i \(-0.489106\pi\)
0.0342187 + 0.999414i \(0.489106\pi\)
\(252\) 0 0
\(253\) −2.55374e8 −0.991414
\(254\) −3.67074e7 + 6.35792e7i −0.140552 + 0.243443i
\(255\) 0 0
\(256\) 1.42210e8 + 2.46315e8i 0.529774 + 0.917595i
\(257\) −4.89725e7 8.48228e7i −0.179964 0.311707i 0.761904 0.647690i \(-0.224265\pi\)
−0.941868 + 0.335983i \(0.890932\pi\)
\(258\) 0 0
\(259\) 1.80550e8 3.12722e8i 0.645726 1.11843i
\(260\) 2.76243e7 0.0974732
\(261\) 0 0
\(262\) 3.20768e8 1.10189
\(263\) −4.46270e7 + 7.72962e7i −0.151270 + 0.262007i −0.931695 0.363243i \(-0.881670\pi\)
0.780425 + 0.625250i \(0.215003\pi\)
\(264\) 0 0
\(265\) −3.15543e7 5.46536e7i −0.104159 0.180409i
\(266\) 6.27393e7 + 1.08668e8i 0.204387 + 0.354009i
\(267\) 0 0
\(268\) 1.03057e7 1.78501e7i 0.0327045 0.0566459i
\(269\) 5.34653e8 1.67471 0.837354 0.546662i \(-0.184102\pi\)
0.837354 + 0.546662i \(0.184102\pi\)
\(270\) 0 0
\(271\) 2.11501e8 0.645535 0.322768 0.946478i \(-0.395387\pi\)
0.322768 + 0.946478i \(0.395387\pi\)
\(272\) −4.45800e7 + 7.72149e7i −0.134323 + 0.232654i
\(273\) 0 0
\(274\) −3.04286e7 5.27039e7i −0.0893625 0.154780i
\(275\) −1.83055e8 3.17060e8i −0.530783 0.919343i
\(276\) 0 0
\(277\) 1.62009e8 2.80607e8i 0.457993 0.793267i −0.540862 0.841111i \(-0.681902\pi\)
0.998855 + 0.0478444i \(0.0152352\pi\)
\(278\) 1.10871e8 0.309501
\(279\) 0 0
\(280\) −7.31905e7 −0.199251
\(281\) 2.45605e7 4.25400e7i 0.0660336 0.114373i −0.831118 0.556095i \(-0.812299\pi\)
0.897152 + 0.441722i \(0.145632\pi\)
\(282\) 0 0
\(283\) 2.01509e8 + 3.49023e8i 0.528495 + 0.915381i 0.999448 + 0.0332225i \(0.0105770\pi\)
−0.470952 + 0.882159i \(0.656090\pi\)
\(284\) −2.51304e7 4.35272e7i −0.0651008 0.112758i
\(285\) 0 0
\(286\) 1.12401e8 1.94685e8i 0.284112 0.492097i
\(287\) 4.36128e8 1.08900
\(288\) 0 0
\(289\) 9.33004e8 2.27374
\(290\) 1.71152e7 2.96444e7i 0.0412087 0.0713756i
\(291\) 0 0
\(292\) −1.39370e8 2.41396e8i −0.327590 0.567402i
\(293\) 2.42953e8 + 4.20807e8i 0.564268 + 0.977340i 0.997117 + 0.0758743i \(0.0241748\pi\)
−0.432850 + 0.901466i \(0.642492\pi\)
\(294\) 0 0
\(295\) 1.04074e7 1.80261e7i 0.0236028 0.0408812i
\(296\) −7.36512e8 −1.65066
\(297\) 0 0
\(298\) −3.09117e8 −0.676652
\(299\) −1.53578e8 + 2.66004e8i −0.332260 + 0.575492i
\(300\) 0 0
\(301\) −3.11106e8 5.38851e8i −0.657545 1.13890i
\(302\) 2.01202e8 + 3.48492e8i 0.420347 + 0.728062i
\(303\) 0 0
\(304\) 2.72199e7 4.71463e7i 0.0555686 0.0962476i
\(305\) 1.95616e6 0.00394780
\(306\) 0 0
\(307\) 2.82215e8 0.556668 0.278334 0.960484i \(-0.410218\pi\)
0.278334 + 0.960484i \(0.410218\pi\)
\(308\) 1.28843e8 2.23163e8i 0.251267 0.435206i
\(309\) 0 0
\(310\) 3.76445e7 + 6.52022e7i 0.0717688 + 0.124307i
\(311\) 3.52220e7 + 6.10063e7i 0.0663977 + 0.115004i 0.897313 0.441395i \(-0.145516\pi\)
−0.830915 + 0.556399i \(0.812183\pi\)
\(312\) 0 0
\(313\) 2.39048e8 4.14044e8i 0.440636 0.763205i −0.557100 0.830445i \(-0.688086\pi\)
0.997737 + 0.0672406i \(0.0214195\pi\)
\(314\) 3.11837e8 0.568426
\(315\) 0 0
\(316\) −1.78527e8 −0.318273
\(317\) 3.44735e8 5.97099e8i 0.607824 1.05278i −0.383774 0.923427i \(-0.625376\pi\)
0.991598 0.129355i \(-0.0412908\pi\)
\(318\) 0 0
\(319\) 1.69913e8 + 2.94297e8i 0.293061 + 0.507597i
\(320\) 5.38006e7 + 9.31854e7i 0.0917830 + 0.158973i
\(321\) 0 0
\(322\) 1.44306e8 2.49945e8i 0.240873 0.417205i
\(323\) −8.20225e8 −1.35433
\(324\) 0 0
\(325\) −4.40344e8 −0.711542
\(326\) 1.64690e8 2.85251e8i 0.263273 0.456002i
\(327\) 0 0
\(328\) −4.44771e8 7.70365e8i −0.695949 1.20542i
\(329\) −4.52778e8 7.84234e8i −0.700970 1.21412i
\(330\) 0 0
\(331\) −2.68417e8 + 4.64911e8i −0.406829 + 0.704648i −0.994532 0.104428i \(-0.966699\pi\)
0.587704 + 0.809076i \(0.300032\pi\)
\(332\) 1.16984e8 0.175446
\(333\) 0 0
\(334\) −2.93746e8 −0.431379
\(335\) 9.64244e6 1.67012e7i 0.0140130 0.0242712i
\(336\) 0 0
\(337\) 6.20056e8 + 1.07397e9i 0.882524 + 1.52858i 0.848526 + 0.529154i \(0.177491\pi\)
0.0339983 + 0.999422i \(0.489176\pi\)
\(338\) 1.03044e8 + 1.78478e8i 0.145150 + 0.251407i
\(339\) 0 0
\(340\) 8.48364e7 1.46941e8i 0.117059 0.202753i
\(341\) −7.47438e8 −1.02079
\(342\) 0 0
\(343\) 8.13607e8 1.08864
\(344\) −6.34542e8 + 1.09906e9i −0.840438 + 1.45568i
\(345\) 0 0
\(346\) 2.01433e8 + 3.48891e8i 0.261435 + 0.452818i
\(347\) 2.43383e7 + 4.21552e7i 0.0312706 + 0.0541623i 0.881237 0.472674i \(-0.156711\pi\)
−0.849967 + 0.526837i \(0.823378\pi\)
\(348\) 0 0
\(349\) −6.18327e8 + 1.07097e9i −0.778626 + 1.34862i 0.154107 + 0.988054i \(0.450750\pi\)
−0.932734 + 0.360566i \(0.882584\pi\)
\(350\) 4.13760e8 0.515835
\(351\) 0 0
\(352\) −8.64777e8 −1.05683
\(353\) 3.03429e7 5.25555e7i 0.0367152 0.0635926i −0.847084 0.531459i \(-0.821644\pi\)
0.883799 + 0.467867i \(0.154977\pi\)
\(354\) 0 0
\(355\) −2.35130e7 4.07257e7i −0.0278939 0.0483136i
\(356\) −1.63478e8 2.83152e8i −0.192037 0.332617i
\(357\) 0 0
\(358\) −5.09259e8 + 8.82062e8i −0.586608 + 1.01604i
\(359\) 5.36061e8 0.611482 0.305741 0.952115i \(-0.401096\pi\)
0.305741 + 0.952115i \(0.401096\pi\)
\(360\) 0 0
\(361\) −3.93055e8 −0.439722
\(362\) −2.41130e7 + 4.17649e7i −0.0267160 + 0.0462734i
\(363\) 0 0
\(364\) −1.54968e8 2.68413e8i −0.168418 0.291708i
\(365\) −1.30400e8 2.25860e8i −0.140363 0.243116i
\(366\) 0 0
\(367\) 2.15664e8 3.73540e8i 0.227743 0.394463i −0.729396 0.684092i \(-0.760199\pi\)
0.957139 + 0.289629i \(0.0935319\pi\)
\(368\) −1.25216e8 −0.130977
\(369\) 0 0
\(370\) −2.44389e8 −0.250828
\(371\) −3.54030e8 + 6.13197e8i −0.359941 + 0.623435i
\(372\) 0 0
\(373\) −1.34844e8 2.33557e8i −0.134540 0.233030i 0.790882 0.611969i \(-0.209622\pi\)
−0.925422 + 0.378939i \(0.876289\pi\)
\(374\) −6.90385e8 1.19578e9i −0.682403 1.18196i
\(375\) 0 0
\(376\) −9.23501e8 + 1.59955e9i −0.895942 + 1.55182i
\(377\) 4.08730e8 0.392864
\(378\) 0 0
\(379\) −8.03807e8 −0.758429 −0.379214 0.925309i \(-0.623806\pi\)
−0.379214 + 0.925309i \(0.623806\pi\)
\(380\) −5.17998e7 + 8.97199e7i −0.0484268 + 0.0838776i
\(381\) 0 0
\(382\) −4.39821e8 7.61792e8i −0.403696 0.699222i
\(383\) 4.91962e8 + 8.52103e8i 0.447441 + 0.774990i 0.998219 0.0596617i \(-0.0190022\pi\)
−0.550778 + 0.834652i \(0.685669\pi\)
\(384\) 0 0
\(385\) 1.20551e8 2.08800e8i 0.107661 0.186474i
\(386\) 4.35751e8 0.385641
\(387\) 0 0
\(388\) −1.03407e9 −0.898752
\(389\) −1.08125e8 + 1.87278e8i −0.0931326 + 0.161310i −0.908828 0.417172i \(-0.863021\pi\)
0.815695 + 0.578482i \(0.196355\pi\)
\(390\) 0 0
\(391\) 9.43296e8 + 1.63384e9i 0.798048 + 1.38226i
\(392\) −2.09571e8 3.62988e8i −0.175724 0.304363i
\(393\) 0 0
\(394\) 3.98069e8 6.89475e8i 0.327885 0.567913i
\(395\) −1.67037e8 −0.136371
\(396\) 0 0
\(397\) 4.33533e8 0.347741 0.173870 0.984769i \(-0.444373\pi\)
0.173870 + 0.984769i \(0.444373\pi\)
\(398\) 7.99670e8 1.38507e9i 0.635799 1.10124i
\(399\) 0 0
\(400\) −8.97565e7 1.55463e8i −0.0701223 0.121455i
\(401\) 1.21357e9 + 2.10196e9i 0.939849 + 1.62787i 0.765751 + 0.643137i \(0.222368\pi\)
0.174098 + 0.984728i \(0.444299\pi\)
\(402\) 0 0
\(403\) −4.49497e8 + 7.78551e8i −0.342104 + 0.592542i
\(404\) 6.53027e8 0.492715
\(405\) 0 0
\(406\) −3.84055e8 −0.284808
\(407\) 1.21310e9 2.10114e9i 0.891897 1.54481i
\(408\) 0 0
\(409\) −4.59488e8 7.95857e8i −0.332080 0.575179i 0.650839 0.759215i \(-0.274417\pi\)
−0.982920 + 0.184036i \(0.941084\pi\)
\(410\) −1.47584e8 2.55622e8i −0.105753 0.183170i
\(411\) 0 0
\(412\) 1.44567e8 2.50397e8i 0.101842 0.176396i
\(413\) −2.33535e8 −0.163127
\(414\) 0 0
\(415\) 1.09455e8 0.0751738
\(416\) −5.20062e8 + 9.00774e8i −0.354184 + 0.613464i
\(417\) 0 0
\(418\) 4.21539e8 + 7.30126e8i 0.282306 + 0.488969i
\(419\) 5.50120e8 + 9.52836e8i 0.365349 + 0.632804i 0.988832 0.149033i \(-0.0476162\pi\)
−0.623483 + 0.781837i \(0.714283\pi\)
\(420\) 0 0
\(421\) 1.07454e9 1.86116e9i 0.701837 1.21562i −0.265984 0.963978i \(-0.585697\pi\)
0.967821 0.251640i \(-0.0809699\pi\)
\(422\) −4.92957e8 −0.319312
\(423\) 0 0
\(424\) 1.44418e9 0.920113
\(425\) −1.35233e9 + 2.34230e9i −0.854518 + 1.48007i
\(426\) 0 0
\(427\) −1.09738e7 1.90071e7i −0.00682116 0.0118146i
\(428\) 6.25789e8 + 1.08390e9i 0.385811 + 0.668244i
\(429\) 0 0
\(430\) −2.10553e8 + 3.64689e8i −0.127709 + 0.221199i
\(431\) −1.61850e9 −0.973737 −0.486869 0.873475i \(-0.661861\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(432\) 0 0
\(433\) 1.16527e9 0.689794 0.344897 0.938641i \(-0.387914\pi\)
0.344897 + 0.938641i \(0.387914\pi\)
\(434\) 4.22360e8 7.31549e8i 0.248010 0.429566i
\(435\) 0 0
\(436\) −6.05785e8 1.04925e9i −0.350039 0.606285i
\(437\) −5.75962e8 9.97596e8i −0.330148 0.571834i
\(438\) 0 0
\(439\) −1.04048e9 + 1.80216e9i −0.586958 + 1.01664i 0.407670 + 0.913129i \(0.366341\pi\)
−0.994628 + 0.103512i \(0.966992\pi\)
\(440\) −4.91759e8 −0.275212
\(441\) 0 0
\(442\) −1.66074e9 −0.914796
\(443\) 1.11550e9 1.93210e9i 0.609616 1.05589i −0.381687 0.924292i \(-0.624657\pi\)
0.991304 0.131595i \(-0.0420098\pi\)
\(444\) 0 0
\(445\) −1.52956e8 2.64928e8i −0.0822824 0.142517i
\(446\) −5.34874e8 9.26429e8i −0.285482 0.494470i
\(447\) 0 0
\(448\) 6.03627e8 1.04551e9i 0.317173 0.549359i
\(449\) 2.52631e9 1.31712 0.658559 0.752529i \(-0.271166\pi\)
0.658559 + 0.752529i \(0.271166\pi\)
\(450\) 0 0
\(451\) 2.93030e9 1.50416
\(452\) 7.62319e7 1.32038e8i 0.0388287 0.0672532i
\(453\) 0 0
\(454\) −1.29149e7 2.23693e7i −0.00647734 0.0112191i
\(455\) −1.44994e8 2.51138e8i −0.0721624 0.124989i
\(456\) 0 0
\(457\) 9.38136e8 1.62490e9i 0.459790 0.796379i −0.539160 0.842203i \(-0.681258\pi\)
0.998950 + 0.0458245i \(0.0145915\pi\)
\(458\) −2.09705e8 −0.101995
\(459\) 0 0
\(460\) 2.38288e8 0.114143
\(461\) −9.86604e8 + 1.70885e9i −0.469018 + 0.812363i −0.999373 0.0354126i \(-0.988725\pi\)
0.530355 + 0.847776i \(0.322059\pi\)
\(462\) 0 0
\(463\) 8.01719e8 + 1.38862e9i 0.375395 + 0.650203i 0.990386 0.138331i \(-0.0441737\pi\)
−0.614991 + 0.788534i \(0.710840\pi\)
\(464\) 8.33126e7 + 1.44302e8i 0.0387166 + 0.0670592i
\(465\) 0 0
\(466\) 1.33438e9 2.31121e9i 0.610840 1.05801i
\(467\) 1.32390e9 0.601515 0.300757 0.953701i \(-0.402761\pi\)
0.300757 + 0.953701i \(0.402761\pi\)
\(468\) 0 0
\(469\) −2.16371e8 −0.0968486
\(470\) −3.06436e8 + 5.30762e8i −0.136143 + 0.235807i
\(471\) 0 0
\(472\) 2.38163e8 + 4.12510e8i 0.104250 + 0.180567i
\(473\) −2.09029e9 3.62048e9i −0.908222 1.57309i
\(474\) 0 0
\(475\) 8.25712e8 1.43017e9i 0.353509 0.612296i
\(476\) −1.90368e9 −0.809038
\(477\) 0 0
\(478\) 2.87938e9 1.20587
\(479\) −1.22113e9 + 2.11505e9i −0.507675 + 0.879319i 0.492285 + 0.870434i \(0.336162\pi\)
−0.999961 + 0.00888546i \(0.997172\pi\)
\(480\) 0 0
\(481\) −1.45907e9 2.52718e9i −0.597817 1.03545i
\(482\) −1.13626e8 1.96806e8i −0.0462181 0.0800522i
\(483\) 0 0
\(484\) 1.80317e8 3.12318e8i 0.0722899 0.125210i
\(485\) −9.67517e8 −0.385090
\(486\) 0 0
\(487\) −1.37309e7 −0.00538701 −0.00269350 0.999996i \(-0.500857\pi\)
−0.00269350 + 0.999996i \(0.500857\pi\)
\(488\) −2.23825e7 + 3.87676e7i −0.00871845 + 0.0151008i
\(489\) 0 0
\(490\) −6.95399e7 1.20447e8i −0.0267022 0.0462496i
\(491\) −3.16121e8 5.47538e8i −0.120522 0.208751i 0.799451 0.600731i \(-0.205124\pi\)
−0.919974 + 0.391980i \(0.871790\pi\)
\(492\) 0 0
\(493\) 1.25524e9 2.17414e9i 0.471805 0.817191i
\(494\) 1.01402e9 0.378446
\(495\) 0 0
\(496\) −3.66488e8 −0.134857
\(497\) −2.63809e8 + 4.56930e8i −0.0963922 + 0.166956i
\(498\) 0 0
\(499\) 1.21683e9 + 2.10761e9i 0.438406 + 0.759342i 0.997567 0.0697175i \(-0.0222098\pi\)
−0.559161 + 0.829059i \(0.688876\pi\)
\(500\) 3.51641e8 + 6.09060e8i 0.125807 + 0.217904i
\(501\) 0 0
\(502\) −6.50964e7 + 1.12750e8i −0.0229665 + 0.0397791i
\(503\) −2.00281e9 −0.701700 −0.350850 0.936432i \(-0.614107\pi\)
−0.350850 + 0.936432i \(0.614107\pi\)
\(504\) 0 0
\(505\) 6.10997e8 0.211115
\(506\) 9.69577e8 1.67936e9i 0.332702 0.576257i
\(507\) 0 0
\(508\) 3.40035e8 + 5.88958e8i 0.115080 + 0.199325i
\(509\) −2.64155e8 4.57529e8i −0.0887863 0.153782i 0.818212 0.574917i \(-0.194965\pi\)
−0.906998 + 0.421134i \(0.861632\pi\)
\(510\) 0 0
\(511\) −1.46305e9 + 2.53408e9i −0.485049 + 0.840130i
\(512\) −8.92980e8 −0.294034
\(513\) 0 0
\(514\) 7.43734e8 0.241572
\(515\) 1.35262e8 2.34281e8i 0.0436367 0.0755809i
\(516\) 0 0
\(517\) −3.04217e9 5.26919e9i −0.968202 1.67698i
\(518\) 1.37099e9 + 2.37462e9i 0.433390 + 0.750653i
\(519\) 0 0
\(520\) −2.95735e8 + 5.12229e8i −0.0922341 + 0.159754i
\(521\) 1.76283e9 0.546109 0.273055 0.961999i \(-0.411966\pi\)
0.273055 + 0.961999i \(0.411966\pi\)
\(522\) 0 0
\(523\) −3.39318e9 −1.03717 −0.518586 0.855026i \(-0.673541\pi\)
−0.518586 + 0.855026i \(0.673541\pi\)
\(524\) 1.48570e9 2.57331e9i 0.451098 0.781326i
\(525\) 0 0
\(526\) −3.38870e8 5.86940e8i −0.101527 0.175851i
\(527\) 2.76087e9 + 4.78197e9i 0.821693 + 1.42321i
\(528\) 0 0
\(529\) 3.77648e8 6.54105e8i 0.110915 0.192111i
\(530\) 4.79208e8 0.139816
\(531\) 0 0
\(532\) 1.16236e9 0.334695
\(533\) 1.76223e9 3.05227e9i 0.504101 0.873128i
\(534\) 0 0
\(535\) 5.85512e8 + 1.01414e9i 0.165309 + 0.286324i
\(536\) 2.20659e8 + 3.82192e8i 0.0618934 + 0.107202i
\(537\) 0 0
\(538\) −2.02991e9 + 3.51591e9i −0.562004 + 0.973420i
\(539\) 1.38073e9 0.379793
\(540\) 0 0
\(541\) −3.83907e9 −1.04240 −0.521202 0.853433i \(-0.674516\pi\)
−0.521202 + 0.853433i \(0.674516\pi\)
\(542\) −8.03004e8 + 1.39084e9i −0.216631 + 0.375216i
\(543\) 0 0
\(544\) 3.19430e9 + 5.53268e9i 0.850705 + 1.47346i
\(545\) −5.66796e8 9.81719e8i −0.149982 0.259776i
\(546\) 0 0
\(547\) −2.15617e9 + 3.73460e9i −0.563285 + 0.975638i 0.433922 + 0.900950i \(0.357129\pi\)
−0.997207 + 0.0746879i \(0.976204\pi\)
\(548\) −5.63744e8 −0.146336
\(549\) 0 0
\(550\) 2.78001e9 0.712488
\(551\) −7.66431e8 + 1.32750e9i −0.195183 + 0.338067i
\(552\) 0 0
\(553\) 9.37052e8 + 1.62302e9i 0.235627 + 0.408119i
\(554\) 1.23019e9 + 2.13076e9i 0.307390 + 0.532415i
\(555\) 0 0
\(556\) 5.13521e8 8.89444e8i 0.126706 0.219461i
\(557\) 1.84109e9 0.451421 0.225710 0.974194i \(-0.427530\pi\)
0.225710 + 0.974194i \(0.427530\pi\)
\(558\) 0 0
\(559\) −5.02825e9 −1.21752
\(560\) 5.91092e7 1.02380e8i 0.0142232 0.0246353i
\(561\) 0 0
\(562\) 1.86497e8 + 3.23023e8i 0.0443195 + 0.0767637i
\(563\) −5.80275e8 1.00507e9i −0.137042 0.237364i 0.789333 0.613965i \(-0.210426\pi\)
−0.926376 + 0.376600i \(0.877093\pi\)
\(564\) 0 0
\(565\) 7.13255e7 1.23539e8i 0.0166370 0.0288161i
\(566\) −3.06027e9 −0.709417
\(567\) 0 0
\(568\) 1.07615e9 0.246407
\(569\) 3.51460e8 6.08746e8i 0.0799802 0.138530i −0.823261 0.567663i \(-0.807848\pi\)
0.903241 + 0.429133i \(0.141181\pi\)
\(570\) 0 0
\(571\) 3.97964e8 + 6.89295e8i 0.0894577 + 0.154945i 0.907282 0.420523i \(-0.138153\pi\)
−0.817824 + 0.575468i \(0.804820\pi\)
\(572\) −1.04122e9 1.80344e9i −0.232624 0.402917i
\(573\) 0 0
\(574\) −1.65584e9 + 2.86801e9i −0.365450 + 0.632978i
\(575\) −3.79842e9 −0.833232
\(576\) 0 0
\(577\) −4.44712e9 −0.963749 −0.481874 0.876240i \(-0.660044\pi\)
−0.481874 + 0.876240i \(0.660044\pi\)
\(578\) −3.54233e9 + 6.13550e9i −0.763030 + 1.32161i
\(579\) 0 0
\(580\) −1.58545e8 2.74608e8i −0.0337407 0.0584406i
\(581\) −6.14025e8 1.06352e9i −0.129888 0.224973i
\(582\) 0 0
\(583\) −2.37869e9 + 4.12001e9i −0.497161 + 0.861109i
\(584\) 5.96818e9 1.23993
\(585\) 0 0
\(586\) −3.68967e9 −0.757436
\(587\) 2.75423e9 4.77046e9i 0.562039 0.973480i −0.435279 0.900295i \(-0.643350\pi\)
0.997318 0.0731848i \(-0.0233163\pi\)
\(588\) 0 0
\(589\) −1.68575e9 2.91980e9i −0.339930 0.588776i
\(590\) 7.90271e7 + 1.36879e8i 0.0158414 + 0.0274381i
\(591\) 0 0
\(592\) 5.94812e8 1.03025e9i 0.117830 0.204087i
\(593\) 8.05850e9 1.58695 0.793475 0.608603i \(-0.208270\pi\)
0.793475 + 0.608603i \(0.208270\pi\)
\(594\) 0 0
\(595\) −1.78115e9 −0.346650
\(596\) −1.43173e9 + 2.47984e9i −0.277013 + 0.479801i
\(597\) 0 0
\(598\) −1.16617e9 2.01987e9i −0.223002 0.386251i
\(599\) −1.69783e9 2.94073e9i −0.322775 0.559063i 0.658284 0.752770i \(-0.271283\pi\)
−0.981060 + 0.193706i \(0.937949\pi\)
\(600\) 0 0
\(601\) −6.75884e8 + 1.17067e9i −0.127002 + 0.219974i −0.922514 0.385964i \(-0.873869\pi\)
0.795512 + 0.605938i \(0.207202\pi\)
\(602\) 4.72469e9 0.882645
\(603\) 0 0
\(604\) 3.72762e9 0.688339
\(605\) 1.68711e8 2.92217e8i 0.0309742 0.0536489i
\(606\) 0 0
\(607\) −2.45648e9 4.25475e9i −0.445814 0.772172i 0.552295 0.833649i \(-0.313752\pi\)
−0.998109 + 0.0614769i \(0.980419\pi\)
\(608\) −1.95039e9 3.37817e9i −0.351932 0.609564i
\(609\) 0 0
\(610\) −7.42695e6 + 1.28638e7i −0.00132482 + 0.00229465i
\(611\) −7.31802e9 −1.29793
\(612\) 0 0
\(613\) −2.06110e9 −0.361399 −0.180700 0.983538i \(-0.557836\pi\)
−0.180700 + 0.983538i \(0.557836\pi\)
\(614\) −1.07149e9 + 1.85587e9i −0.186809 + 0.323562i
\(615\) 0 0
\(616\) 2.75870e9 + 4.77820e9i 0.475523 + 0.823630i
\(617\) −1.86139e9 3.22402e9i −0.319035 0.552585i 0.661252 0.750164i \(-0.270026\pi\)
−0.980287 + 0.197579i \(0.936692\pi\)
\(618\) 0 0
\(619\) −1.65033e9 + 2.85845e9i −0.279675 + 0.484410i −0.971304 0.237842i \(-0.923560\pi\)
0.691629 + 0.722253i \(0.256893\pi\)
\(620\) 6.97432e8 0.117525
\(621\) 0 0
\(622\) −5.34909e8 −0.0891278
\(623\) −1.71612e9 + 2.97241e9i −0.284341 + 0.492494i
\(624\) 0 0
\(625\) −2.55355e9 4.42289e9i −0.418374 0.724646i
\(626\) 1.81519e9 + 3.14399e9i 0.295741 + 0.512238i
\(627\) 0 0
\(628\) 1.44433e9 2.50166e9i 0.232707 0.403060i
\(629\) −1.79236e10 −2.87177
\(630\) 0 0
\(631\) 5.12709e9 0.812397 0.406199 0.913785i \(-0.366854\pi\)
0.406199 + 0.913785i \(0.366854\pi\)
\(632\) 1.91124e9 3.31037e9i 0.301166 0.521635i
\(633\) 0 0
\(634\) 2.61771e9 + 4.53400e9i 0.407952 + 0.706593i
\(635\) 3.18150e8 + 5.51052e8i 0.0493087 + 0.0854052i
\(636\) 0 0
\(637\) 8.30345e8 1.43820e9i 0.127283 0.220461i
\(638\) −2.58043e9 −0.393386
\(639\) 0 0
\(640\) 6.51310e8 0.0982105
\(641\) −2.25921e9 + 3.91306e9i −0.338808 + 0.586832i −0.984209 0.177012i \(-0.943357\pi\)
0.645401 + 0.763844i \(0.276690\pi\)
\(642\) 0 0
\(643\) 4.85300e9 + 8.40564e9i 0.719900 + 1.24690i 0.961039 + 0.276412i \(0.0891455\pi\)
−0.241140 + 0.970490i \(0.577521\pi\)
\(644\) −1.33676e9 2.31534e9i −0.197221 0.341597i
\(645\) 0 0
\(646\) 3.11414e9 5.39385e9i 0.454490 0.787201i
\(647\) 6.12536e9 0.889132 0.444566 0.895746i \(-0.353358\pi\)
0.444566 + 0.895746i \(0.353358\pi\)
\(648\) 0 0
\(649\) −1.56910e9 −0.225317
\(650\) 1.67185e9 2.89573e9i 0.238782 0.413582i
\(651\) 0 0
\(652\) −1.52559e9 2.64239e9i −0.215561 0.373363i
\(653\) 6.50516e9 + 1.12673e10i 0.914243 + 1.58352i 0.808006 + 0.589175i \(0.200547\pi\)
0.106237 + 0.994341i \(0.466120\pi\)
\(654\) 0 0
\(655\) 1.39008e9 2.40768e9i 0.193283 0.334776i
\(656\) 1.43680e9 0.198716
\(657\) 0 0
\(658\) 6.87623e9 0.940936
\(659\) 6.15687e9 1.06640e10i 0.838032 1.45151i −0.0535054 0.998568i \(-0.517039\pi\)
0.891538 0.452947i \(-0.149627\pi\)
\(660\) 0 0
\(661\) −3.48888e9 6.04291e9i −0.469873 0.813844i 0.529533 0.848289i \(-0.322367\pi\)
−0.999407 + 0.0344448i \(0.989034\pi\)
\(662\) −2.03819e9 3.53025e9i −0.273050 0.472936i
\(663\) 0 0
\(664\) −1.25239e9 + 2.16920e9i −0.166016 + 0.287548i
\(665\) 1.08755e9 0.143407
\(666\) 0 0
\(667\) 3.52572e9 0.460053
\(668\) −1.36054e9 + 2.35653e9i −0.176601 + 0.305883i
\(669\) 0 0
\(670\) 7.32188e7 + 1.26819e8i 0.00940504 + 0.0162900i
\(671\) −7.37316e7 1.27707e8i −0.00942161 0.0163187i
\(672\) 0 0
\(673\) 5.32311e9 9.21990e9i 0.673152 1.16593i −0.303854 0.952719i \(-0.598273\pi\)
0.977005 0.213214i \(-0.0683933\pi\)
\(674\) −9.41665e9 −1.18464
\(675\) 0 0
\(676\) 1.90908e9 0.237690
\(677\) 2.16674e9 3.75291e9i 0.268378 0.464844i −0.700065 0.714079i \(-0.746846\pi\)
0.968443 + 0.249235i \(0.0801790\pi\)
\(678\) 0 0
\(679\) 5.42763e9 + 9.40093e9i 0.665374 + 1.15246i
\(680\) 1.81645e9 + 3.14618e9i 0.221535 + 0.383710i
\(681\) 0 0
\(682\) 2.83779e9 4.91520e9i 0.342559 0.593330i
\(683\) 6.16980e9 0.740966 0.370483 0.928839i \(-0.379192\pi\)
0.370483 + 0.928839i \(0.379192\pi\)
\(684\) 0 0
\(685\) −5.27461e8 −0.0627008
\(686\) −3.08902e9 + 5.35033e9i −0.365330 + 0.632771i
\(687\) 0 0
\(688\) −1.02492e9 1.77522e9i −0.119986 0.207822i
\(689\) 2.86100e9 + 4.95540e9i 0.333235 + 0.577181i
\(690\) 0 0
\(691\) −3.78637e9 + 6.55818e9i −0.436565 + 0.756154i −0.997422 0.0717594i \(-0.977139\pi\)
0.560856 + 0.827913i \(0.310472\pi\)
\(692\) 3.73190e9 0.428113
\(693\) 0 0
\(694\) −3.69620e8 −0.0419756
\(695\) 4.80470e8 8.32198e8i 0.0542899 0.0940329i
\(696\) 0 0
\(697\) −1.08239e10 1.87475e10i −1.21079 2.09715i
\(698\) −4.69519e9 8.13231e9i −0.522588 0.905149i
\(699\) 0 0
\(700\) 1.91641e9 3.31932e9i 0.211176 0.365768i
\(701\) 4.42696e9 0.485391 0.242696 0.970102i \(-0.421968\pi\)
0.242696 + 0.970102i \(0.421968\pi\)
\(702\) 0 0
\(703\) 1.09439e10 1.18803
\(704\) 4.05571e9 7.02469e9i 0.438089 0.758792i
\(705\) 0 0
\(706\) 2.30406e8 + 3.99074e8i 0.0246420 + 0.0426812i
\(707\) −3.42760e9 5.93678e9i −0.364773 0.631805i
\(708\) 0 0
\(709\) 5.66162e9 9.80621e9i 0.596594 1.03333i −0.396726 0.917937i \(-0.629854\pi\)
0.993320 0.115393i \(-0.0368129\pi\)
\(710\) 3.57087e8 0.0374429
\(711\) 0 0
\(712\) 7.00052e9 0.726859
\(713\) −3.87737e9 + 6.71581e9i −0.400612 + 0.693881i
\(714\) 0 0
\(715\) −9.74202e8 1.68737e9i −0.0996731 0.172639i
\(716\) 4.71746e9 + 8.17088e9i 0.480300 + 0.831905i
\(717\) 0 0
\(718\) −2.03526e9 + 3.52518e9i −0.205203 + 0.355423i
\(719\) 1.02156e10 1.02497 0.512487 0.858695i \(-0.328724\pi\)
0.512487 + 0.858695i \(0.328724\pi\)
\(720\) 0 0
\(721\) −3.03521e9 −0.301589
\(722\) 1.49231e9 2.58475e9i 0.147563 0.255587i
\(723\) 0 0
\(724\) 2.23368e8 + 3.86885e8i 0.0218744 + 0.0378876i
\(725\) 2.52727e9 + 4.37737e9i 0.246303 + 0.426609i
\(726\) 0 0
\(727\) 9.76776e9 1.69183e10i 0.942811 1.63300i 0.182734 0.983162i \(-0.441505\pi\)
0.760076 0.649834i \(-0.225161\pi\)
\(728\) 6.63613e9 0.637463
\(729\) 0 0
\(730\) 1.98036e9 0.188414
\(731\) −1.54421e10 + 2.67465e10i −1.46216 + 2.53254i
\(732\) 0 0
\(733\) 6.63725e9 + 1.14960e10i 0.622478 + 1.07816i 0.989023 + 0.147763i \(0.0472073\pi\)
−0.366545 + 0.930400i \(0.619459\pi\)
\(734\) 1.63762e9 + 2.83644e9i 0.152854 + 0.264751i
\(735\) 0 0
\(736\) −4.48607e9 + 7.77010e9i −0.414757 + 0.718380i
\(737\) −1.45377e9 −0.133770
\(738\) 0 0
\(739\) 1.69495e9 0.154490 0.0772452 0.997012i \(-0.475388\pi\)
0.0772452 + 0.997012i \(0.475388\pi\)
\(740\) −1.13193e9 + 1.96057e9i −0.102686 + 0.177857i
\(741\) 0 0
\(742\) −2.68828e9 4.65624e9i −0.241580 0.418429i
\(743\) −4.67246e9 8.09294e9i −0.417912 0.723845i 0.577817 0.816166i \(-0.303905\pi\)
−0.995729 + 0.0923211i \(0.970571\pi\)
\(744\) 0 0
\(745\) −1.33958e9 + 2.32023e9i −0.118692 + 0.205581i
\(746\) 2.04785e9 0.180598
\(747\) 0 0
\(748\) −1.27906e10 −1.11747
\(749\) 6.56927e9 1.13783e10i 0.571256 0.989444i
\(750\) 0 0
\(751\) 6.55969e9 + 1.13617e10i 0.565124 + 0.978824i 0.997038 + 0.0769088i \(0.0245050\pi\)
−0.431914 + 0.901915i \(0.642162\pi\)
\(752\) −1.49165e9 2.58362e9i −0.127910 0.221547i
\(753\) 0 0
\(754\) −1.55182e9 + 2.68784e9i −0.131839 + 0.228351i
\(755\) 3.48770e9 0.294934
\(756\) 0 0
\(757\) 5.72593e9 0.479745 0.239873 0.970804i \(-0.422894\pi\)
0.239873 + 0.970804i \(0.422894\pi\)
\(758\) 3.05181e9 5.28589e9i 0.254516 0.440835i
\(759\) 0 0
\(760\) −1.10910e9 1.92101e9i −0.0916478 0.158739i
\(761\) −7.38104e9 1.27843e10i −0.607115 1.05155i −0.991713 0.128470i \(-0.958993\pi\)
0.384598 0.923084i \(-0.374340\pi\)
\(762\) 0 0
\(763\) −6.35928e9 + 1.10146e10i −0.518289 + 0.897703i
\(764\) −8.14847e9 −0.661072
\(765\) 0 0
\(766\) −7.47131e9 −0.600615
\(767\) −9.43628e8 + 1.63441e9i −0.0755122 + 0.130791i
\(768\) 0 0
\(769\) −2.81775e9 4.88049e9i −0.223440 0.387010i 0.732410 0.680864i \(-0.238395\pi\)
−0.955850 + 0.293854i \(0.905062\pi\)
\(770\) 9.15389e8 + 1.58550e9i 0.0722584 + 0.125155i
\(771\) 0 0
\(772\) 2.01826e9 3.49574e9i 0.157877 0.273450i
\(773\) −4.65338e9 −0.362360 −0.181180 0.983450i \(-0.557992\pi\)
−0.181180 + 0.983450i \(0.557992\pi\)
\(774\) 0 0
\(775\) −1.11174e10 −0.857918
\(776\) 1.10704e10 1.91745e10i 0.850445 1.47301i
\(777\) 0 0
\(778\) −8.21033e8 1.42207e9i −0.0625075 0.108266i
\(779\) 6.60889e9 + 1.14469e10i 0.500896 + 0.867578i
\(780\) 0 0
\(781\) −1.77250e9 + 3.07007e9i −0.133140 + 0.230605i
\(782\) −1.43256e10 −1.07125
\(783\) 0 0
\(784\) 6.77006e8 0.0501749
\(785\) 1.35137e9 2.34065e9i 0.0997084 0.172700i
\(786\) 0 0
\(787\) 6.17937e9 + 1.07030e10i 0.451890 + 0.782696i 0.998503 0.0546889i \(-0.0174167\pi\)
−0.546614 + 0.837385i \(0.684083\pi\)
\(788\) −3.68747e9 6.38688e9i −0.268464 0.464993i
\(789\) 0 0
\(790\) 6.34188e8 1.09845e9i 0.0457639 0.0792654i
\(791\) −1.60050e9 −0.114984
\(792\) 0 0
\(793\) −1.77364e8 −0.0126302
\(794\) −1.64599e9 + 2.85094e9i −0.116696 + 0.202123i
\(795\) 0 0
\(796\) −7.40765e9 1.28304e10i −0.520577 0.901666i
\(797\) 8.52222e9 + 1.47609e10i 0.596278 + 1.03278i 0.993365 + 0.115003i \(0.0366877\pi\)
−0.397087 + 0.917781i \(0.629979\pi\)
\(798\) 0 0
\(799\) −2.24742e10 + 3.89264e10i −1.55873 + 2.69980i
\(800\) −1.28627e10 −0.888210
\(801\) 0 0
\(802\) −1.84301e10 −1.26159
\(803\) −9.83008e9 + 1.70262e10i −0.669966 + 1.16041i
\(804\) 0 0
\(805\) −1.25073e9 2.16632e9i −0.0845039 0.146365i
\(806\) −3.41320e9 5.91184e9i −0.229609 0.397695i
\(807\) 0 0
\(808\) −6.99105e9 + 1.21089e10i −0.466233 + 0.807539i
\(809\) −1.00497e10 −0.667315 −0.333658 0.942694i \(-0.608283\pi\)
−0.333658 + 0.942694i \(0.608283\pi\)
\(810\) 0 0
\(811\) 5.26821e9 0.346809 0.173404 0.984851i \(-0.444523\pi\)
0.173404 + 0.984851i \(0.444523\pi\)
\(812\) −1.77883e9 + 3.08102e9i −0.116597 + 0.201952i
\(813\) 0 0
\(814\) 9.21151e9 + 1.59548e10i 0.598612 + 1.03683i
\(815\) −1.42740e9 2.47233e9i −0.0923620 0.159976i
\(816\) 0 0
\(817\) 9.42873e9 1.63310e10i 0.604889 1.04770i
\(818\) 6.97814e9 0.445762
\(819\) 0 0
\(820\) −2.73425e9 −0.173177
\(821\) 9.11011e9 1.57792e10i 0.574543 0.995138i −0.421548 0.906806i \(-0.638513\pi\)
0.996091 0.0883319i \(-0.0281536\pi\)
\(822\) 0 0
\(823\) 6.79338e8 + 1.17665e9i 0.0424802 + 0.0735778i 0.886484 0.462760i \(-0.153141\pi\)
−0.844004 + 0.536338i \(0.819807\pi\)
\(824\) 3.09536e9 + 5.36131e9i 0.192737 + 0.333830i
\(825\) 0 0
\(826\) 8.86660e8 1.53574e9i 0.0547428 0.0948173i
\(827\) −8.90171e9 −0.547273 −0.273637 0.961833i \(-0.588227\pi\)
−0.273637 + 0.961833i \(0.588227\pi\)
\(828\) 0 0
\(829\) 6.14205e9 0.374432 0.187216 0.982319i \(-0.440054\pi\)
0.187216 + 0.982319i \(0.440054\pi\)
\(830\) −4.15566e8 + 7.19782e8i −0.0252271 + 0.0436946i
\(831\) 0 0
\(832\) −4.87806e9 8.44905e9i −0.293640 0.508600i
\(833\) −5.10010e9 8.83363e9i −0.305718 0.529519i
\(834\) 0 0
\(835\) −1.27297e9 + 2.20486e9i −0.0756689 + 0.131062i
\(836\) 7.80975e9 0.462291
\(837\) 0 0
\(838\) −8.35455e9 −0.490421
\(839\) 5.27318e9 9.13341e9i 0.308252 0.533908i −0.669728 0.742606i \(-0.733589\pi\)
0.977980 + 0.208698i \(0.0669227\pi\)
\(840\) 0 0
\(841\) 6.27911e9 + 1.08757e10i 0.364009 + 0.630482i
\(842\) 8.15942e9 + 1.41325e10i 0.471050 + 0.815882i
\(843\) 0 0
\(844\) −2.28323e9 + 3.95466e9i −0.130723 + 0.226418i
\(845\) 1.78621e9 0.101844
\(846\) 0 0
\(847\) −3.78578e9 −0.214074
\(848\) −1.16633e9 + 2.02015e9i −0.0656805 + 0.113762i
\(849\) 0 0
\(850\) −1.02688e10 1.77860e10i −0.573524 0.993373i
\(851\) −1.25860e10 2.17996e10i −0.700058 1.21254i
\(852\) 0 0
\(853\) −1.70939e9 + 2.96075e9i −0.0943018 + 0.163336i −0.909317 0.416104i \(-0.863395\pi\)
0.815015 + 0.579440i \(0.196729\pi\)
\(854\) 1.66656e8 0.00915628
\(855\) 0 0
\(856\) −2.67978e10 −1.46030
\(857\) −1.08519e10 + 1.87960e10i −0.588941 + 1.02007i 0.405431 + 0.914126i \(0.367121\pi\)
−0.994372 + 0.105949i \(0.966212\pi\)
\(858\) 0 0
\(859\) 1.09605e10 + 1.89842e10i 0.590005 + 1.02192i 0.994231 + 0.107260i \(0.0342076\pi\)
−0.404226 + 0.914659i \(0.632459\pi\)
\(860\) 1.95044e9 + 3.37826e9i 0.104565 + 0.181112i
\(861\) 0 0
\(862\) 6.14494e9 1.06434e10i 0.326770 0.565982i
\(863\) 1.35347e10 0.716822 0.358411 0.933564i \(-0.383319\pi\)
0.358411 + 0.933564i \(0.383319\pi\)
\(864\) 0 0
\(865\) 3.49170e9 0.183434
\(866\) −4.42418e9 + 7.66290e9i −0.231484 + 0.400941i
\(867\) 0 0
\(868\) −3.91249e9 6.77663e9i −0.203064 0.351718i
\(869\) 6.29596e9 + 1.09049e10i 0.325456 + 0.563707i
\(870\) 0 0
\(871\) −8.74274e8 + 1.51429e9i −0.0448316 + 0.0776505i
\(872\) 2.59412e10 1.32490
\(873\) 0 0
\(874\) 8.74701e9 0.443169
\(875\) 3.69138e9 6.39366e9i 0.186278 0.322642i
\(876\) 0 0
\(877\) −1.22598e10 2.12347e10i −0.613743 1.06303i −0.990604 0.136764i \(-0.956330\pi\)
0.376861 0.926270i \(-0.377004\pi\)
\(878\) −7.90076e9 1.36845e10i −0.393947 0.682336i
\(879\) 0 0
\(880\) 3.97148e8 6.87881e8i 0.0196455 0.0340270i
\(881\) 2.13536e10 1.05210 0.526048 0.850455i \(-0.323673\pi\)
0.526048 + 0.850455i \(0.323673\pi\)
\(882\) 0 0
\(883\) −1.64504e9 −0.0804109 −0.0402054 0.999191i \(-0.512801\pi\)
−0.0402054 + 0.999191i \(0.512801\pi\)
\(884\) −7.69205e9 + 1.33230e10i −0.374506 + 0.648664i
\(885\) 0 0
\(886\) 8.47042e9 + 1.46712e10i 0.409154 + 0.708676i
\(887\) 4.82651e9 + 8.35976e9i 0.232220 + 0.402217i 0.958461 0.285223i \(-0.0920676\pi\)
−0.726241 + 0.687440i \(0.758734\pi\)
\(888\) 0 0
\(889\) 3.56955e9 6.18264e9i 0.170395 0.295133i
\(890\) 2.32291e9 0.110450
\(891\) 0 0
\(892\) −9.90949e9 −0.467492
\(893\) 1.37224e10 2.37679e10i 0.644837 1.11689i
\(894\) 0 0
\(895\) 4.41384e9 + 7.64499e9i 0.205795 + 0.356448i
\(896\) −3.65375e9 6.32849e9i −0.169692 0.293915i
\(897\) 0 0
\(898\) −9.59163e9 + 1.66132e10i −0.442003 + 0.765571i
\(899\) 1.03192e10 0.473683
\(900\) 0 0
\(901\) 3.51454e10 1.60078
\(902\) −1.11254e10 + 1.92698e10i −0.504771 + 0.874289i
\(903\) 0 0
\(904\) 1.63222e9 + 2.82709e9i 0.0734833 + 0.127277i
\(905\) 2.08992e8 + 3.61984e8i 0.00937257 + 0.0162338i
\(906\) 0 0
\(907\) 4.02709e9 6.97512e9i 0.179211 0.310403i −0.762399 0.647107i \(-0.775979\pi\)
0.941611 + 0.336704i \(0.109312\pi\)
\(908\) −2.39272e8 −0.0106070
\(909\) 0 0
\(910\) 2.20200e9 0.0968661
\(911\) 2.86899e9 4.96924e9i 0.125723 0.217759i −0.796292 0.604912i \(-0.793208\pi\)
0.922015 + 0.387153i \(0.126542\pi\)
\(912\) 0 0
\(913\) −4.12557e9 7.14570e9i −0.179406 0.310740i
\(914\) 7.12363e9 + 1.23385e10i 0.308596 + 0.534503i
\(915\) 0 0
\(916\) −9.71291e8 + 1.68233e9i −0.0417557 + 0.0723229i
\(917\) −3.11925e10 −1.33585
\(918\) 0 0
\(919\) 3.67326e10 1.56116 0.780579 0.625057i \(-0.214924\pi\)
0.780579 + 0.625057i \(0.214924\pi\)
\(920\) −2.55102e9 + 4.41850e9i −0.108008 + 0.187076i
\(921\) 0 0
\(922\) −7.49167e9 1.29759e10i −0.314789 0.545231i
\(923\) 2.13191e9 + 3.69257e9i 0.0892406 + 0.154569i
\(924\) 0 0
\(925\) 1.80435e10 3.12523e10i 0.749593 1.29833i
\(926\) −1.21755e10 −0.503906
\(927\) 0 0
\(928\) 1.19392e10 0.490408
\(929\) −1.75384e9 + 3.03774e9i −0.0717687 + 0.124307i −0.899677 0.436557i \(-0.856198\pi\)
0.827908 + 0.560864i \(0.189531\pi\)
\(930\) 0 0
\(931\) 3.11405e9 + 5.39368e9i 0.126474 + 0.219059i
\(932\) −1.23608e10 2.14096e10i −0.500141 0.866270i
\(933\) 0 0
\(934\) −5.02644e9 + 8.70605e9i −0.201858 + 0.349629i
\(935\) −1.19674e10 −0.478805
\(936\) 0 0
\(937\) −1.68124e10 −0.667638 −0.333819 0.942637i \(-0.608337\pi\)
−0.333819 + 0.942637i \(0.608337\pi\)
\(938\) 8.21493e8 1.42287e9i 0.0325008 0.0562930i
\(939\) 0 0
\(940\) 2.83863e9 + 4.91665e9i 0.111471 + 0.193073i
\(941\) 1.75727e10 + 3.04368e10i 0.687503 + 1.19079i 0.972643 + 0.232304i \(0.0746263\pi\)
−0.285141 + 0.958486i \(0.592040\pi\)
\(942\) 0 0
\(943\) 1.52011e10 2.63290e10i 0.590314 1.02245i
\(944\) −7.69368e8 −0.0297668
\(945\) 0 0
\(946\) 3.17447e10 1.21914
\(947\) 1.65295e10 2.86300e10i 0.632463 1.09546i −0.354584 0.935024i \(-0.615377\pi\)
0.987047 0.160434i \(-0.0512893\pi\)
\(948\) 0 0
\(949\) 1.18233e10 + 2.04785e10i 0.449062 + 0.777798i
\(950\) 6.26995e9 + 1.08599e10i 0.237264 + 0.410953i
\(951\) 0 0
\(952\) 2.03800e10 3.52993e10i 0.765553 1.32598i
\(953\) −6.24805e9 −0.233840 −0.116920 0.993141i \(-0.537302\pi\)
−0.116920 + 0.993141i \(0.537302\pi\)
\(954\) 0 0
\(955\) −7.62401e9 −0.283251
\(956\) 1.33364e10 2.30993e10i 0.493669 0.855060i
\(957\) 0 0
\(958\) −9.27248e9 1.60604e10i −0.340735 0.590170i
\(959\) 2.95898e9 + 5.12510e9i 0.108337 + 0.187645i
\(960\) 0 0
\(961\) 2.40787e9 4.17055e9i 0.0875187 0.151587i
\(962\) 2.21586e10 0.802471
\(963\) 0 0
\(964\) −2.10512e9 −0.0756846
\(965\) 1.88837e9 3.27074e9i 0.0676457 0.117166i
\(966\) 0 0
\(967\) −1.10632e10 1.91621e10i −0.393449 0.681474i 0.599453 0.800410i \(-0.295385\pi\)
−0.992902 + 0.118936i \(0.962052\pi\)
\(968\) 3.86081e9 + 6.68711e9i 0.136809 + 0.236960i
\(969\) 0 0
\(970\) 3.67337e9 6.36246e9i 0.129230 0.223833i
\(971\) −5.45446e9 −0.191199 −0.0955993 0.995420i \(-0.530477\pi\)
−0.0955993 + 0.995420i \(0.530477\pi\)
\(972\) 0 0
\(973\) −1.07815e10 −0.375217
\(974\) 5.21320e7 9.02952e7i 0.00180779 0.00313118i
\(975\) 0 0
\(976\) −3.61525e7 6.26180e7i −0.00124470 0.00215588i
\(977\) −2.47687e10 4.29006e10i −0.849711 1.47174i −0.881466 0.472247i \(-0.843443\pi\)
0.0317547 0.999496i \(-0.489890\pi\)
\(978\) 0 0
\(979\) −1.15304e10 + 1.99713e10i −0.392741 + 0.680248i
\(980\) −1.28835e9 −0.0437263
\(981\) 0 0
\(982\) 4.80086e9 0.161781
\(983\) −4.36021e9 + 7.55211e9i −0.146410 + 0.253589i −0.929898 0.367817i \(-0.880105\pi\)
0.783488 + 0.621407i \(0.213438\pi\)
\(984\) 0 0
\(985\) −3.45013e9 5.97581e9i −0.115029 0.199237i
\(986\) 9.53153e9 + 1.65091e10i 0.316660 + 0.548471i
\(987\) 0 0
\(988\) 4.69665e9 8.13484e9i 0.154931 0.268349i
\(989\) −4.33739e10 −1.42574
\(990\) 0 0
\(991\) 1.64359e10 0.536458 0.268229 0.963355i \(-0.413562\pi\)
0.268229 + 0.963355i \(0.413562\pi\)
\(992\) −1.31300e10 + 2.27418e10i −0.427045 + 0.739664i
\(993\) 0 0
\(994\) −2.00320e9 3.46965e9i −0.0646953 0.112056i
\(995\) −6.93088e9 1.20046e10i −0.223053 0.386339i
\(996\) 0 0
\(997\) 1.59359e10 2.76017e10i 0.509264 0.882070i −0.490679 0.871341i \(-0.663251\pi\)
0.999942 0.0107299i \(-0.00341551\pi\)
\(998\) −1.84797e10 −0.588487
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.h.55.1 4
3.2 odd 2 81.8.c.d.55.2 4
9.2 odd 6 27.8.a.e.1.1 yes 2
9.4 even 3 inner 81.8.c.h.28.1 4
9.5 odd 6 81.8.c.d.28.2 4
9.7 even 3 27.8.a.b.1.2 2
36.7 odd 6 432.8.a.j.1.2 2
36.11 even 6 432.8.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.b.1.2 2 9.7 even 3
27.8.a.e.1.1 yes 2 9.2 odd 6
81.8.c.d.28.2 4 9.5 odd 6
81.8.c.d.55.2 4 3.2 odd 2
81.8.c.h.28.1 4 9.4 even 3 inner
81.8.c.h.55.1 4 1.1 even 1 trivial
432.8.a.j.1.2 2 36.7 odd 6
432.8.a.q.1.1 2 36.11 even 6