Properties

Label 81.8.c.h
Level $81$
Weight $8$
Character orbit 81.c
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 4 \beta_1) q^{2} + (9 \beta_{3} + 9 \beta_{2} + 34 \beta_1 - 43) q^{4} + ( - 2 \beta_{3} - 2 \beta_{2} + \cdots + 91) q^{5} + ( - 90 \beta_{2} - 305 \beta_1) q^{7} + ( - 49 \beta_{3} - 889) q^{8}+ \cdots + (767082 \beta_{3} - 11773410) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} - 77 q^{4} + 180 q^{5} - 700 q^{7} - 3654 q^{8} + 2790 q^{10} + 10890 q^{11} + 5480 q^{13} + 29475 q^{14} + 15967 q^{16} - 32832 q^{17} + 32048 q^{19} + 12195 q^{20} - 60705 q^{22} + 24372 q^{23}+ \cdots - 45559476 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 17\nu^{2} - 17\nu + 256 ) / 272 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 17\nu^{2} + 833\nu - 256 ) / 272 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} + 82 ) / 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 49\beta _1 - 50 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 17\beta_{3} - 82 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−1.76556 3.05805i
2.26556 + 3.92407i
−1.76556 + 3.05805i
2.26556 3.92407i
−3.79669 6.57607i 0 35.1702 60.9166i 32.9066 56.9959i 0 369.202 + 639.477i −1506.08 0 −499.745
28.2 8.29669 + 14.3703i 0 −73.6702 + 127.601i 57.0934 98.8886i 0 −719.202 1245.70i −320.924 0 1894.75
55.1 −3.79669 + 6.57607i 0 35.1702 + 60.9166i 32.9066 + 56.9959i 0 369.202 639.477i −1506.08 0 −499.745
55.2 8.29669 14.3703i 0 −73.6702 127.601i 57.0934 + 98.8886i 0 −719.202 + 1245.70i −320.924 0 1894.75
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.c.h 4
3.b odd 2 1 81.8.c.d 4
9.c even 3 1 27.8.a.b 2
9.c even 3 1 inner 81.8.c.h 4
9.d odd 6 1 27.8.a.e yes 2
9.d odd 6 1 81.8.c.d 4
36.f odd 6 1 432.8.a.j 2
36.h even 6 1 432.8.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.8.a.b 2 9.c even 3 1
27.8.a.e yes 2 9.d odd 6 1
81.8.c.d 4 3.b odd 2 1
81.8.c.d 4 9.d odd 6 1
81.8.c.h 4 1.a even 1 1 trivial
81.8.c.h 4 9.c even 3 1 inner
432.8.a.j 2 36.f odd 6 1
432.8.a.q 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 9T_{2}^{3} + 207T_{2}^{2} + 1134T_{2} + 15876 \) acting on \(S_{8}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 9 T^{3} + \cdots + 15876 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 180 T^{3} + \cdots + 56475225 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 1128109515625 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 865184866700625 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( (T^{2} + 16416 T - 741669696)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 16024 T - 142216916)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
$37$ \( (T^{2} - 455620 T - 16337003900)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 1583691044571)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 30\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 3541802241600)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 3239699519975)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 36\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 28\!\cdots\!81 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 6381093451500)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 24\!\cdots\!25 \) Copy content Toggle raw display
show more
show less