Properties

Label 81.8.c.g
Level $81$
Weight $8$
Character orbit 81.c
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - 20 \beta_1 + 20) q^{4} + (34 \beta_{3} - 34 \beta_{2}) q^{5} + 559 \beta_1 q^{7} - 148 \beta_{3} q^{8} - 3672 q^{10} - 454 \beta_{2} q^{11} + ( - 8671 \beta_1 + 8671) q^{13} + (559 \beta_{3} - 559 \beta_{2}) q^{14}+ \cdots - 511062 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 40 q^{4} + 1118 q^{7} - 14688 q^{10} + 17342 q^{13} + 26848 q^{16} - 129844 q^{19} - 98064 q^{22} - 93446 q^{25} + 44720 q^{28} - 459784 q^{31} - 522288 q^{34} - 2164708 q^{37} - 1086912 q^{40} + 930224 q^{43}+ \cdots + 5958758 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 6\zeta_{12}^{3} + 6\zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -6\zeta_{12}^{3} + 12\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 18 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 18 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−5.19615 9.00000i 0 10.0000 17.3205i 176.669 306.000i 0 279.500 + 484.108i −1538.06 0 −3672.00
28.2 5.19615 + 9.00000i 0 10.0000 17.3205i −176.669 + 306.000i 0 279.500 + 484.108i 1538.06 0 −3672.00
55.1 −5.19615 + 9.00000i 0 10.0000 + 17.3205i 176.669 + 306.000i 0 279.500 484.108i −1538.06 0 −3672.00
55.2 5.19615 9.00000i 0 10.0000 + 17.3205i −176.669 306.000i 0 279.500 484.108i 1538.06 0 −3672.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.c.g 4
3.b odd 2 1 inner 81.8.c.g 4
9.c even 3 1 27.8.a.c 2
9.c even 3 1 inner 81.8.c.g 4
9.d odd 6 1 27.8.a.c 2
9.d odd 6 1 inner 81.8.c.g 4
36.f odd 6 1 432.8.a.n 2
36.h even 6 1 432.8.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.8.a.c 2 9.c even 3 1
27.8.a.c 2 9.d odd 6 1
81.8.c.g 4 1.a even 1 1 trivial
81.8.c.g 4 3.b odd 2 1 inner
81.8.c.g 4 9.c even 3 1 inner
81.8.c.g 4 9.d odd 6 1 inner
432.8.a.n 2 36.f odd 6 1
432.8.a.n 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 108T_{2}^{2} + 11664 \) acting on \(S_{8}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 108 T^{2} + 11664 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 15587023104 \) Copy content Toggle raw display
$7$ \( (T^{2} - 559 T + 312481)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 495531106838784 \) Copy content Toggle raw display
$13$ \( (T^{2} - 8671 T + 75186241)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 631446192)^{2} \) Copy content Toggle raw display
$19$ \( (T + 32461)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 62\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( (T^{2} + 229892 T + 52850331664)^{2} \) Copy content Toggle raw display
$37$ \( (T + 541177)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( (T^{2} - 465112 T + 216329172544)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 47\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( (T^{2} - 1053126090432)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 38\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( (T^{2} - 137773 T + 18981399529)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 314041 T + 98621749681)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 7894909985472)^{2} \) Copy content Toggle raw display
$73$ \( (T - 2669537)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 1213996294225)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{2} - 10800152593200)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 8876699225641)^{2} \) Copy content Toggle raw display
show more
show less