Properties

Label 81.8.c.d.28.2
Level $81$
Weight $8$
Character 81.28
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 28.2
Root \(-1.76556 - 3.05805i\) of defining polynomial
Character \(\chi\) \(=\) 81.28
Dual form 81.8.c.d.55.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.79669 + 6.57607i) q^{2} +(35.1702 - 60.9166i) q^{4} +(-32.9066 + 56.9959i) q^{5} +(369.202 + 639.477i) q^{7} +1506.08 q^{8} -499.745 q^{10} +(-2480.63 - 4296.58i) q^{11} +(-2983.62 + 5167.78i) q^{13} +(-2803.50 + 4855.80i) q^{14} +(1216.32 + 2106.72i) q^{16} +36651.6 q^{17} +22378.9 q^{19} +(2314.67 + 4009.12i) q^{20} +(18836.4 - 32625.6i) q^{22} +(25736.8 - 44577.4i) q^{23} +(36896.8 + 63907.1i) q^{25} -45311.5 q^{26} +51939.7 q^{28} +(34247.9 + 59319.0i) q^{29} +(-75327.4 + 130471. i) q^{31} +(87152.9 - 150953. i) q^{32} +(139155. + 241024. i) q^{34} -48596.8 q^{35} +489027. q^{37} +(84966.0 + 147165. i) q^{38} +(-49559.9 + 85840.2i) q^{40} +(-295318. + 511505. i) q^{41} +(421321. + 729750. i) q^{43} -348978. q^{44} +390859. q^{46} +(-613184. - 1.06207e6i) q^{47} +(139151. - 241016. i) q^{49} +(-280172. + 485272. i) q^{50} +(209869. + 363504. i) q^{52} +958904. q^{53} +326517. q^{55} +(556047. + 963101. i) q^{56} +(-260057. + 450432. i) q^{58} +(158135. - 273897. i) q^{59} +(14861.5 + 25740.8i) q^{61} -1.14398e6 q^{62} +1.63495e6 q^{64} +(-196362. - 340108. i) q^{65} +(-146512. + 253767. i) q^{67} +(1.28905e6 - 2.23270e6i) q^{68} +(-184507. - 319576. i) q^{70} +714537. q^{71} -3.96273e6 q^{73} +(1.85669e6 + 3.21587e6i) q^{74} +(787073. - 1.36325e6i) q^{76} +(1.83171e6 - 3.17262e6i) q^{77} +(-1.26902e6 - 2.19801e6i) q^{79} -160100. q^{80} -4.48492e6 q^{82} +(-831556. - 1.44030e6i) q^{83} +(-1.20608e6 + 2.08899e6i) q^{85} +(-3.19926e6 + 5.54128e6i) q^{86} +(-3.73602e6 - 6.47098e6i) q^{88} +4.64819e6 q^{89} -4.40624e6 q^{91} +(-1.81034e6 - 3.13560e6i) q^{92} +(4.65614e6 - 8.06467e6i) q^{94} +(-736415. + 1.27551e6i) q^{95} +(-7.35048e6 - 1.27314e7i) q^{97} +2.11325e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 9 q^{2} - 77 q^{4} - 180 q^{5} - 700 q^{7} + 3654 q^{8} + 2790 q^{10} - 10890 q^{11} + 5480 q^{13} - 29475 q^{14} + 15967 q^{16} + 32832 q^{17} + 32048 q^{19} - 12195 q^{20} - 60705 q^{22} - 24372 q^{23}+ \cdots + 45559476 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.79669 + 6.57607i 0.335583 + 0.581248i 0.983597 0.180381i \(-0.0577332\pi\)
−0.648013 + 0.761629i \(0.724400\pi\)
\(3\) 0 0
\(4\) 35.1702 60.9166i 0.274767 0.475911i
\(5\) −32.9066 + 56.9959i −0.117730 + 0.203915i −0.918868 0.394565i \(-0.870895\pi\)
0.801138 + 0.598480i \(0.204228\pi\)
\(6\) 0 0
\(7\) 369.202 + 639.477i 0.406838 + 0.704664i 0.994533 0.104418i \(-0.0332981\pi\)
−0.587696 + 0.809082i \(0.699965\pi\)
\(8\) 1506.08 1.04000
\(9\) 0 0
\(10\) −499.745 −0.158033
\(11\) −2480.63 4296.58i −0.561937 0.973304i −0.997327 0.0730623i \(-0.976723\pi\)
0.435390 0.900242i \(-0.356611\pi\)
\(12\) 0 0
\(13\) −2983.62 + 5167.78i −0.376653 + 0.652382i −0.990573 0.136986i \(-0.956258\pi\)
0.613920 + 0.789368i \(0.289592\pi\)
\(14\) −2803.50 + 4855.80i −0.273056 + 0.472947i
\(15\) 0 0
\(16\) 1216.32 + 2106.72i 0.0742381 + 0.128584i
\(17\) 36651.6 1.80935 0.904674 0.426104i \(-0.140114\pi\)
0.904674 + 0.426104i \(0.140114\pi\)
\(18\) 0 0
\(19\) 22378.9 0.748518 0.374259 0.927324i \(-0.377897\pi\)
0.374259 + 0.927324i \(0.377897\pi\)
\(20\) 2314.67 + 4009.12i 0.0646969 + 0.112058i
\(21\) 0 0
\(22\) 18836.4 32625.6i 0.377154 0.653250i
\(23\) 25736.8 44577.4i 0.441069 0.763955i −0.556700 0.830714i \(-0.687933\pi\)
0.997769 + 0.0667591i \(0.0212659\pi\)
\(24\) 0 0
\(25\) 36896.8 + 63907.1i 0.472279 + 0.818012i
\(26\) −45311.5 −0.505594
\(27\) 0 0
\(28\) 51939.7 0.447143
\(29\) 34247.9 + 59319.0i 0.260760 + 0.451649i 0.966444 0.256877i \(-0.0826936\pi\)
−0.705684 + 0.708526i \(0.749360\pi\)
\(30\) 0 0
\(31\) −75327.4 + 130471.i −0.454137 + 0.786589i −0.998638 0.0521715i \(-0.983386\pi\)
0.544501 + 0.838760i \(0.316719\pi\)
\(32\) 87152.9 150953.i 0.470172 0.814362i
\(33\) 0 0
\(34\) 139155. + 241024.i 0.607187 + 1.05168i
\(35\) −48596.8 −0.191589
\(36\) 0 0
\(37\) 489027. 1.58718 0.793591 0.608451i \(-0.208209\pi\)
0.793591 + 0.608451i \(0.208209\pi\)
\(38\) 84966.0 + 147165.i 0.251190 + 0.435074i
\(39\) 0 0
\(40\) −49559.9 + 85840.2i −0.122439 + 0.212071i
\(41\) −295318. + 511505.i −0.669184 + 1.15906i 0.308948 + 0.951079i \(0.400023\pi\)
−0.978133 + 0.207982i \(0.933310\pi\)
\(42\) 0 0
\(43\) 421321. + 729750.i 0.808117 + 1.39970i 0.914167 + 0.405338i \(0.132846\pi\)
−0.106050 + 0.994361i \(0.533820\pi\)
\(44\) −348978. −0.617609
\(45\) 0 0
\(46\) 390859. 0.592062
\(47\) −613184. 1.06207e6i −0.861486 1.49214i −0.870495 0.492177i \(-0.836201\pi\)
0.00900942 0.999959i \(-0.497132\pi\)
\(48\) 0 0
\(49\) 139151. 241016.i 0.168966 0.292658i
\(50\) −280172. + 485272.i −0.316978 + 0.549022i
\(51\) 0 0
\(52\) 209869. + 363504.i 0.206984 + 0.358507i
\(53\) 958904. 0.884727 0.442364 0.896836i \(-0.354140\pi\)
0.442364 + 0.896836i \(0.354140\pi\)
\(54\) 0 0
\(55\) 326517. 0.264628
\(56\) 556047. + 963101.i 0.423110 + 0.732848i
\(57\) 0 0
\(58\) −260057. + 450432.i −0.175013 + 0.303132i
\(59\) 158135. 273897.i 0.100241 0.173622i −0.811543 0.584293i \(-0.801372\pi\)
0.911784 + 0.410670i \(0.134705\pi\)
\(60\) 0 0
\(61\) 14861.5 + 25740.8i 0.00838315 + 0.0145200i 0.870187 0.492722i \(-0.163998\pi\)
−0.861803 + 0.507242i \(0.830665\pi\)
\(62\) −1.14398e6 −0.609604
\(63\) 0 0
\(64\) 1.63495e6 0.779604
\(65\) −196362. 340108.i −0.0886870 0.153610i
\(66\) 0 0
\(67\) −146512. + 253767.i −0.0595130 + 0.103080i −0.894247 0.447574i \(-0.852288\pi\)
0.834734 + 0.550654i \(0.185621\pi\)
\(68\) 1.28905e6 2.23270e6i 0.497150 0.861089i
\(69\) 0 0
\(70\) −184507. 319576.i −0.0642939 0.111360i
\(71\) 714537. 0.236930 0.118465 0.992958i \(-0.462203\pi\)
0.118465 + 0.992958i \(0.462203\pi\)
\(72\) 0 0
\(73\) −3.96273e6 −1.19224 −0.596121 0.802894i \(-0.703292\pi\)
−0.596121 + 0.802894i \(0.703292\pi\)
\(74\) 1.85669e6 + 3.21587e6i 0.532632 + 0.922546i
\(75\) 0 0
\(76\) 787073. 1.36325e6i 0.205668 0.356228i
\(77\) 1.83171e6 3.17262e6i 0.457235 0.791954i
\(78\) 0 0
\(79\) −1.26902e6 2.19801e6i −0.289584 0.501574i 0.684126 0.729363i \(-0.260184\pi\)
−0.973710 + 0.227789i \(0.926850\pi\)
\(80\) −160100. −0.0349603
\(81\) 0 0
\(82\) −4.48492e6 −0.898269
\(83\) −831556. 1.44030e6i −0.159631 0.276490i 0.775104 0.631833i \(-0.217697\pi\)
−0.934736 + 0.355344i \(0.884364\pi\)
\(84\) 0 0
\(85\) −1.20608e6 + 2.08899e6i −0.213015 + 0.368953i
\(86\) −3.19926e6 + 5.54128e6i −0.542381 + 0.939432i
\(87\) 0 0
\(88\) −3.73602e6 6.47098e6i −0.584413 1.01223i
\(89\) 4.64819e6 0.698906 0.349453 0.936954i \(-0.386368\pi\)
0.349453 + 0.936954i \(0.386368\pi\)
\(90\) 0 0
\(91\) −4.40624e6 −0.612947
\(92\) −1.81034e6 3.13560e6i −0.242383 0.419820i
\(93\) 0 0
\(94\) 4.65614e6 8.06467e6i 0.578201 1.00147i
\(95\) −736415. + 1.27551e6i −0.0881232 + 0.152634i
\(96\) 0 0
\(97\) −7.35048e6 1.27314e7i −0.817738 1.41636i −0.907345 0.420387i \(-0.861894\pi\)
0.0896064 0.995977i \(-0.471439\pi\)
\(98\) 2.11325e6 0.226809
\(99\) 0 0
\(100\) 5.19068e6 0.519068
\(101\) −4.64190e6 8.04000e6i −0.448302 0.776482i 0.549973 0.835182i \(-0.314638\pi\)
−0.998276 + 0.0587000i \(0.981304\pi\)
\(102\) 0 0
\(103\) −2.05525e6 + 3.55979e6i −0.185325 + 0.320992i −0.943686 0.330843i \(-0.892667\pi\)
0.758361 + 0.651835i \(0.226000\pi\)
\(104\) −4.49356e6 + 7.78307e6i −0.391718 + 0.678476i
\(105\) 0 0
\(106\) 3.64066e6 + 6.30581e6i 0.296900 + 0.514246i
\(107\) −1.77931e7 −1.40414 −0.702068 0.712110i \(-0.747740\pi\)
−0.702068 + 0.712110i \(0.747740\pi\)
\(108\) 0 0
\(109\) −1.72244e7 −1.27394 −0.636972 0.770887i \(-0.719813\pi\)
−0.636972 + 0.770887i \(0.719813\pi\)
\(110\) 1.23968e6 + 2.14720e6i 0.0888049 + 0.153815i
\(111\) 0 0
\(112\) −898135. + 1.55562e6i −0.0604058 + 0.104626i
\(113\) 1.08376e6 1.87712e6i 0.0706573 0.122382i −0.828532 0.559941i \(-0.810824\pi\)
0.899190 + 0.437559i \(0.144157\pi\)
\(114\) 0 0
\(115\) 1.69382e6 + 2.93378e6i 0.103854 + 0.179881i
\(116\) 4.81802e6 0.286593
\(117\) 0 0
\(118\) 2.40156e6 0.134557
\(119\) 1.35319e7 + 2.34379e7i 0.736112 + 1.27498i
\(120\) 0 0
\(121\) −2.56349e6 + 4.44009e6i −0.131547 + 0.227847i
\(122\) −112849. + 195460.i −0.00562649 + 0.00974537i
\(123\) 0 0
\(124\) 5.29857e6 + 9.17739e6i 0.249564 + 0.432258i
\(125\) −9.99825e6 −0.457867
\(126\) 0 0
\(127\) 9.66827e6 0.418828 0.209414 0.977827i \(-0.432844\pi\)
0.209414 + 0.977827i \(0.432844\pi\)
\(128\) −4.94817e6 8.57048e6i −0.208550 0.361219i
\(129\) 0 0
\(130\) 1.49105e6 2.58257e6i 0.0595238 0.103098i
\(131\) 2.11215e7 3.65836e7i 0.820873 1.42179i −0.0841598 0.996452i \(-0.526821\pi\)
0.905033 0.425342i \(-0.139846\pi\)
\(132\) 0 0
\(133\) 8.26236e6 + 1.43108e7i 0.304525 + 0.527453i
\(134\) −2.22505e6 −0.0798864
\(135\) 0 0
\(136\) 5.52002e7 1.88172
\(137\) 4.00725e6 + 6.94077e6i 0.133145 + 0.230614i 0.924887 0.380241i \(-0.124159\pi\)
−0.791742 + 0.610855i \(0.790826\pi\)
\(138\) 0 0
\(139\) −7.30050e6 + 1.26448e7i −0.230569 + 0.399357i −0.957976 0.286849i \(-0.907392\pi\)
0.727407 + 0.686207i \(0.240725\pi\)
\(140\) −1.70916e6 + 2.96035e6i −0.0526423 + 0.0911791i
\(141\) 0 0
\(142\) 2.71288e6 + 4.69884e6i 0.0795099 + 0.137715i
\(143\) 2.96050e7 0.846622
\(144\) 0 0
\(145\) −4.50792e6 −0.122797
\(146\) −1.50453e7 2.60592e7i −0.400097 0.692988i
\(147\) 0 0
\(148\) 1.71992e7 2.97899e7i 0.436106 0.755358i
\(149\) −2.03543e7 + 3.52547e7i −0.504086 + 0.873103i 0.495902 + 0.868378i \(0.334837\pi\)
−0.999989 + 0.00472499i \(0.998496\pi\)
\(150\) 0 0
\(151\) 2.64970e7 + 4.58941e7i 0.626293 + 1.08477i 0.988289 + 0.152591i \(0.0487618\pi\)
−0.361997 + 0.932179i \(0.617905\pi\)
\(152\) 3.37044e7 0.778456
\(153\) 0 0
\(154\) 2.78178e7 0.613762
\(155\) −4.95754e6 8.58671e6i −0.106931 0.185211i
\(156\) 0 0
\(157\) −2.05335e7 + 3.55650e7i −0.423461 + 0.733456i −0.996275 0.0862290i \(-0.972518\pi\)
0.572814 + 0.819685i \(0.305852\pi\)
\(158\) 9.63618e6 1.66904e7i 0.194359 0.336640i
\(159\) 0 0
\(160\) 5.73581e6 + 9.93472e6i 0.110707 + 0.191750i
\(161\) 3.80083e7 0.717775
\(162\) 0 0
\(163\) −4.33772e7 −0.784522 −0.392261 0.919854i \(-0.628307\pi\)
−0.392261 + 0.919854i \(0.628307\pi\)
\(164\) 2.07728e7 + 3.59795e7i 0.367740 + 0.636945i
\(165\) 0 0
\(166\) 6.31433e6 1.09367e7i 0.107139 0.185571i
\(167\) −1.93422e7 + 3.35017e7i −0.321365 + 0.556621i −0.980770 0.195167i \(-0.937475\pi\)
0.659405 + 0.751788i \(0.270808\pi\)
\(168\) 0 0
\(169\) 1.35703e7 + 2.35044e7i 0.216265 + 0.374582i
\(170\) −1.83165e7 −0.285937
\(171\) 0 0
\(172\) 5.92719e7 0.888177
\(173\) −2.65274e7 4.59467e7i −0.389523 0.674673i 0.602863 0.797845i \(-0.294027\pi\)
−0.992385 + 0.123172i \(0.960693\pi\)
\(174\) 0 0
\(175\) −2.72448e7 + 4.71893e7i −0.384282 + 0.665596i
\(176\) 6.03447e6 1.04520e7i 0.0834344 0.144513i
\(177\) 0 0
\(178\) 1.76477e7 + 3.05668e7i 0.234541 + 0.406237i
\(179\) −1.34132e8 −1.74802 −0.874012 0.485904i \(-0.838491\pi\)
−0.874012 + 0.485904i \(0.838491\pi\)
\(180\) 0 0
\(181\) 6.35105e6 0.0796105 0.0398053 0.999207i \(-0.487326\pi\)
0.0398053 + 0.999207i \(0.487326\pi\)
\(182\) −1.67291e7 2.89757e7i −0.205695 0.356274i
\(183\) 0 0
\(184\) 3.87616e7 6.71370e7i 0.458711 0.794510i
\(185\) −1.60922e7 + 2.78726e7i −0.186859 + 0.323650i
\(186\) 0 0
\(187\) −9.09193e7 1.57477e8i −1.01674 1.76105i
\(188\) −8.62633e7 −0.946833
\(189\) 0 0
\(190\) −1.11838e7 −0.118291
\(191\) 5.79216e7 + 1.00323e8i 0.601483 + 1.04180i 0.992597 + 0.121457i \(0.0387568\pi\)
−0.391113 + 0.920343i \(0.627910\pi\)
\(192\) 0 0
\(193\) −2.86928e7 + 4.96974e7i −0.287291 + 0.497603i −0.973162 0.230120i \(-0.926088\pi\)
0.685871 + 0.727723i \(0.259421\pi\)
\(194\) 5.58150e7 9.66744e7i 0.548839 0.950617i
\(195\) 0 0
\(196\) −9.78793e6 1.69532e7i −0.0928527 0.160826i
\(197\) 1.04846e8 0.977059 0.488530 0.872547i \(-0.337533\pi\)
0.488530 + 0.872547i \(0.337533\pi\)
\(198\) 0 0
\(199\) −2.10623e8 −1.89461 −0.947304 0.320335i \(-0.896205\pi\)
−0.947304 + 0.320335i \(0.896205\pi\)
\(200\) 5.55694e7 + 9.62490e7i 0.491169 + 0.850729i
\(201\) 0 0
\(202\) 3.52477e7 6.10509e7i 0.300886 0.521149i
\(203\) −2.52888e7 + 4.38015e7i −0.212174 + 0.367496i
\(204\) 0 0
\(205\) −1.94358e7 3.36638e7i −0.157567 0.272913i
\(206\) −3.12125e7 −0.248768
\(207\) 0 0
\(208\) −1.45161e7 −0.111848
\(209\) −5.55139e7 9.61529e7i −0.420620 0.728535i
\(210\) 0 0
\(211\) 3.24596e7 5.62218e7i 0.237878 0.412018i −0.722227 0.691656i \(-0.756881\pi\)
0.960105 + 0.279639i \(0.0902147\pi\)
\(212\) 3.37249e7 5.84132e7i 0.243094 0.421052i
\(213\) 0 0
\(214\) −6.75551e7 1.17009e8i −0.471205 0.816151i
\(215\) −5.54570e7 −0.380559
\(216\) 0 0
\(217\) −1.11244e8 −0.739041
\(218\) −6.53956e7 1.13269e8i −0.427515 0.740477i
\(219\) 0 0
\(220\) 1.14837e7 1.98903e7i 0.0727112 0.125940i
\(221\) −1.09355e8 + 1.89408e8i −0.681497 + 1.18039i
\(222\) 0 0
\(223\) −7.04395e7 1.22005e8i −0.425352 0.736732i 0.571101 0.820880i \(-0.306517\pi\)
−0.996453 + 0.0841479i \(0.973183\pi\)
\(224\) 1.28708e8 0.765135
\(225\) 0 0
\(226\) 1.64588e7 0.0948457
\(227\) 1.70081e6 + 2.94589e6i 0.00965086 + 0.0167158i 0.870811 0.491619i \(-0.163595\pi\)
−0.861160 + 0.508335i \(0.830261\pi\)
\(228\) 0 0
\(229\) 1.38084e7 2.39169e7i 0.0759836 0.131608i −0.825530 0.564358i \(-0.809124\pi\)
0.901514 + 0.432751i \(0.142457\pi\)
\(230\) −1.28618e7 + 2.22774e7i −0.0697037 + 0.120730i
\(231\) 0 0
\(232\) 5.15799e7 + 8.93390e7i 0.271189 + 0.469713i
\(233\) 3.51458e8 1.82023 0.910117 0.414351i \(-0.135992\pi\)
0.910117 + 0.414351i \(0.135992\pi\)
\(234\) 0 0
\(235\) 8.07112e7 0.405692
\(236\) −1.11233e7 1.92661e7i −0.0550859 0.0954116i
\(237\) 0 0
\(238\) −1.02753e8 + 1.77973e8i −0.494054 + 0.855726i
\(239\) 1.89598e8 3.28393e8i 0.898339 1.55597i 0.0687228 0.997636i \(-0.478108\pi\)
0.829617 0.558334i \(-0.188559\pi\)
\(240\) 0 0
\(241\) −1.49638e7 2.59180e7i −0.0688624 0.119273i 0.829538 0.558450i \(-0.188604\pi\)
−0.898401 + 0.439177i \(0.855270\pi\)
\(242\) −3.89311e7 −0.176581
\(243\) 0 0
\(244\) 2.09072e6 0.00921367
\(245\) 9.15796e6 + 1.58620e7i 0.0397848 + 0.0689093i
\(246\) 0 0
\(247\) −6.67702e7 + 1.15649e8i −0.281932 + 0.488320i
\(248\) −1.13449e8 + 1.96499e8i −0.472301 + 0.818050i
\(249\) 0 0
\(250\) −3.79603e7 6.57492e7i −0.153653 0.266134i
\(251\) −1.71456e7 −0.0684374 −0.0342187 0.999414i \(-0.510894\pi\)
−0.0342187 + 0.999414i \(0.510894\pi\)
\(252\) 0 0
\(253\) −2.55374e8 −0.991414
\(254\) 3.67074e7 + 6.35792e7i 0.140552 + 0.243443i
\(255\) 0 0
\(256\) 1.42210e8 2.46315e8i 0.529774 0.917595i
\(257\) 4.89725e7 8.48228e7i 0.179964 0.311707i −0.761904 0.647690i \(-0.775735\pi\)
0.941868 + 0.335983i \(0.109068\pi\)
\(258\) 0 0
\(259\) 1.80550e8 + 3.12722e8i 0.645726 + 1.11843i
\(260\) −2.76243e7 −0.0974732
\(261\) 0 0
\(262\) 3.20768e8 1.10189
\(263\) 4.46270e7 + 7.72962e7i 0.151270 + 0.262007i 0.931695 0.363243i \(-0.118330\pi\)
−0.780425 + 0.625250i \(0.784997\pi\)
\(264\) 0 0
\(265\) −3.15543e7 + 5.46536e7i −0.104159 + 0.180409i
\(266\) −6.27393e7 + 1.08668e8i −0.204387 + 0.354009i
\(267\) 0 0
\(268\) 1.03057e7 + 1.78501e7i 0.0327045 + 0.0566459i
\(269\) −5.34653e8 −1.67471 −0.837354 0.546662i \(-0.815898\pi\)
−0.837354 + 0.546662i \(0.815898\pi\)
\(270\) 0 0
\(271\) 2.11501e8 0.645535 0.322768 0.946478i \(-0.395387\pi\)
0.322768 + 0.946478i \(0.395387\pi\)
\(272\) 4.45800e7 + 7.72149e7i 0.134323 + 0.232654i
\(273\) 0 0
\(274\) −3.04286e7 + 5.27039e7i −0.0893625 + 0.154780i
\(275\) 1.83055e8 3.17060e8i 0.530783 0.919343i
\(276\) 0 0
\(277\) 1.62009e8 + 2.80607e8i 0.457993 + 0.793267i 0.998855 0.0478444i \(-0.0152352\pi\)
−0.540862 + 0.841111i \(0.681902\pi\)
\(278\) −1.10871e8 −0.309501
\(279\) 0 0
\(280\) −7.31905e7 −0.199251
\(281\) −2.45605e7 4.25400e7i −0.0660336 0.114373i 0.831118 0.556095i \(-0.187701\pi\)
−0.897152 + 0.441722i \(0.854368\pi\)
\(282\) 0 0
\(283\) 2.01509e8 3.49023e8i 0.528495 0.915381i −0.470952 0.882159i \(-0.656090\pi\)
0.999448 0.0332225i \(-0.0105770\pi\)
\(284\) 2.51304e7 4.35272e7i 0.0651008 0.112758i
\(285\) 0 0
\(286\) 1.12401e8 + 1.94685e8i 0.284112 + 0.492097i
\(287\) −4.36128e8 −1.08900
\(288\) 0 0
\(289\) 9.33004e8 2.27374
\(290\) −1.71152e7 2.96444e7i −0.0412087 0.0713756i
\(291\) 0 0
\(292\) −1.39370e8 + 2.41396e8i −0.327590 + 0.567402i
\(293\) −2.42953e8 + 4.20807e8i −0.564268 + 0.977340i 0.432850 + 0.901466i \(0.357508\pi\)
−0.997117 + 0.0758743i \(0.975825\pi\)
\(294\) 0 0
\(295\) 1.04074e7 + 1.80261e7i 0.0236028 + 0.0408812i
\(296\) 7.36512e8 1.65066
\(297\) 0 0
\(298\) −3.09117e8 −0.676652
\(299\) 1.53578e8 + 2.66004e8i 0.332260 + 0.575492i
\(300\) 0 0
\(301\) −3.11106e8 + 5.38851e8i −0.657545 + 1.13890i
\(302\) −2.01202e8 + 3.48492e8i −0.420347 + 0.728062i
\(303\) 0 0
\(304\) 2.72199e7 + 4.71463e7i 0.0555686 + 0.0962476i
\(305\) −1.95616e6 −0.00394780
\(306\) 0 0
\(307\) 2.82215e8 0.556668 0.278334 0.960484i \(-0.410218\pi\)
0.278334 + 0.960484i \(0.410218\pi\)
\(308\) −1.28843e8 2.23163e8i −0.251267 0.435206i
\(309\) 0 0
\(310\) 3.76445e7 6.52022e7i 0.0717688 0.124307i
\(311\) −3.52220e7 + 6.10063e7i −0.0663977 + 0.115004i −0.897313 0.441395i \(-0.854484\pi\)
0.830915 + 0.556399i \(0.187817\pi\)
\(312\) 0 0
\(313\) 2.39048e8 + 4.14044e8i 0.440636 + 0.763205i 0.997737 0.0672406i \(-0.0214195\pi\)
−0.557100 + 0.830445i \(0.688086\pi\)
\(314\) −3.11837e8 −0.568426
\(315\) 0 0
\(316\) −1.78527e8 −0.318273
\(317\) −3.44735e8 5.97099e8i −0.607824 1.05278i −0.991598 0.129355i \(-0.958709\pi\)
0.383774 0.923427i \(-0.374624\pi\)
\(318\) 0 0
\(319\) 1.69913e8 2.94297e8i 0.293061 0.507597i
\(320\) −5.38006e7 + 9.31854e7i −0.0917830 + 0.158973i
\(321\) 0 0
\(322\) 1.44306e8 + 2.49945e8i 0.240873 + 0.417205i
\(323\) 8.20225e8 1.35433
\(324\) 0 0
\(325\) −4.40344e8 −0.711542
\(326\) −1.64690e8 2.85251e8i −0.263273 0.456002i
\(327\) 0 0
\(328\) −4.44771e8 + 7.70365e8i −0.695949 + 1.20542i
\(329\) 4.52778e8 7.84234e8i 0.700970 1.21412i
\(330\) 0 0
\(331\) −2.68417e8 4.64911e8i −0.406829 0.704648i 0.587704 0.809076i \(-0.300032\pi\)
−0.994532 + 0.104428i \(0.966699\pi\)
\(332\) −1.16984e8 −0.175446
\(333\) 0 0
\(334\) −2.93746e8 −0.431379
\(335\) −9.64244e6 1.67012e7i −0.0140130 0.0242712i
\(336\) 0 0
\(337\) 6.20056e8 1.07397e9i 0.882524 1.52858i 0.0339983 0.999422i \(-0.489176\pi\)
0.848526 0.529154i \(-0.177491\pi\)
\(338\) −1.03044e8 + 1.78478e8i −0.145150 + 0.251407i
\(339\) 0 0
\(340\) 8.48364e7 + 1.46941e8i 0.117059 + 0.202753i
\(341\) 7.47438e8 1.02079
\(342\) 0 0
\(343\) 8.13607e8 1.08864
\(344\) 6.34542e8 + 1.09906e9i 0.840438 + 1.45568i
\(345\) 0 0
\(346\) 2.01433e8 3.48891e8i 0.261435 0.452818i
\(347\) −2.43383e7 + 4.21552e7i −0.0312706 + 0.0541623i −0.881237 0.472674i \(-0.843289\pi\)
0.849967 + 0.526837i \(0.176622\pi\)
\(348\) 0 0
\(349\) −6.18327e8 1.07097e9i −0.778626 1.34862i −0.932734 0.360566i \(-0.882584\pi\)
0.154107 0.988054i \(-0.450750\pi\)
\(350\) −4.13760e8 −0.515835
\(351\) 0 0
\(352\) −8.64777e8 −1.05683
\(353\) −3.03429e7 5.25555e7i −0.0367152 0.0635926i 0.847084 0.531459i \(-0.178356\pi\)
−0.883799 + 0.467867i \(0.845023\pi\)
\(354\) 0 0
\(355\) −2.35130e7 + 4.07257e7i −0.0278939 + 0.0483136i
\(356\) 1.63478e8 2.83152e8i 0.192037 0.332617i
\(357\) 0 0
\(358\) −5.09259e8 8.82062e8i −0.586608 1.01604i
\(359\) −5.36061e8 −0.611482 −0.305741 0.952115i \(-0.598904\pi\)
−0.305741 + 0.952115i \(0.598904\pi\)
\(360\) 0 0
\(361\) −3.93055e8 −0.439722
\(362\) 2.41130e7 + 4.17649e7i 0.0267160 + 0.0462734i
\(363\) 0 0
\(364\) −1.54968e8 + 2.68413e8i −0.168418 + 0.291708i
\(365\) 1.30400e8 2.25860e8i 0.140363 0.243116i
\(366\) 0 0
\(367\) 2.15664e8 + 3.73540e8i 0.227743 + 0.394463i 0.957139 0.289629i \(-0.0935319\pi\)
−0.729396 + 0.684092i \(0.760199\pi\)
\(368\) 1.25216e8 0.130977
\(369\) 0 0
\(370\) −2.44389e8 −0.250828
\(371\) 3.54030e8 + 6.13197e8i 0.359941 + 0.623435i
\(372\) 0 0
\(373\) −1.34844e8 + 2.33557e8i −0.134540 + 0.233030i −0.925422 0.378939i \(-0.876289\pi\)
0.790882 + 0.611969i \(0.209622\pi\)
\(374\) 6.90385e8 1.19578e9i 0.682403 1.18196i
\(375\) 0 0
\(376\) −9.23501e8 1.59955e9i −0.895942 1.55182i
\(377\) −4.08730e8 −0.392864
\(378\) 0 0
\(379\) −8.03807e8 −0.758429 −0.379214 0.925309i \(-0.623806\pi\)
−0.379214 + 0.925309i \(0.623806\pi\)
\(380\) 5.17998e7 + 8.97199e7i 0.0484268 + 0.0838776i
\(381\) 0 0
\(382\) −4.39821e8 + 7.61792e8i −0.403696 + 0.699222i
\(383\) −4.91962e8 + 8.52103e8i −0.447441 + 0.774990i −0.998219 0.0596617i \(-0.980998\pi\)
0.550778 + 0.834652i \(0.314331\pi\)
\(384\) 0 0
\(385\) 1.20551e8 + 2.08800e8i 0.107661 + 0.186474i
\(386\) −4.35751e8 −0.385641
\(387\) 0 0
\(388\) −1.03407e9 −0.898752
\(389\) 1.08125e8 + 1.87278e8i 0.0931326 + 0.161310i 0.908828 0.417172i \(-0.136979\pi\)
−0.815695 + 0.578482i \(0.803645\pi\)
\(390\) 0 0
\(391\) 9.43296e8 1.63384e9i 0.798048 1.38226i
\(392\) 2.09571e8 3.62988e8i 0.175724 0.304363i
\(393\) 0 0
\(394\) 3.98069e8 + 6.89475e8i 0.327885 + 0.567913i
\(395\) 1.67037e8 0.136371
\(396\) 0 0
\(397\) 4.33533e8 0.347741 0.173870 0.984769i \(-0.444373\pi\)
0.173870 + 0.984769i \(0.444373\pi\)
\(398\) −7.99670e8 1.38507e9i −0.635799 1.10124i
\(399\) 0 0
\(400\) −8.97565e7 + 1.55463e8i −0.0701223 + 0.121455i
\(401\) −1.21357e9 + 2.10196e9i −0.939849 + 1.62787i −0.174098 + 0.984728i \(0.555701\pi\)
−0.765751 + 0.643137i \(0.777632\pi\)
\(402\) 0 0
\(403\) −4.49497e8 7.78551e8i −0.342104 0.592542i
\(404\) −6.53027e8 −0.492715
\(405\) 0 0
\(406\) −3.84055e8 −0.284808
\(407\) −1.21310e9 2.10114e9i −0.891897 1.54481i
\(408\) 0 0
\(409\) −4.59488e8 + 7.95857e8i −0.332080 + 0.575179i −0.982920 0.184036i \(-0.941084\pi\)
0.650839 + 0.759215i \(0.274417\pi\)
\(410\) 1.47584e8 2.55622e8i 0.105753 0.183170i
\(411\) 0 0
\(412\) 1.44567e8 + 2.50397e8i 0.101842 + 0.176396i
\(413\) 2.33535e8 0.163127
\(414\) 0 0
\(415\) 1.09455e8 0.0751738
\(416\) 5.20062e8 + 9.00774e8i 0.354184 + 0.613464i
\(417\) 0 0
\(418\) 4.21539e8 7.30126e8i 0.282306 0.488969i
\(419\) −5.50120e8 + 9.52836e8i −0.365349 + 0.632804i −0.988832 0.149033i \(-0.952384\pi\)
0.623483 + 0.781837i \(0.285717\pi\)
\(420\) 0 0
\(421\) 1.07454e9 + 1.86116e9i 0.701837 + 1.21562i 0.967821 + 0.251640i \(0.0809699\pi\)
−0.265984 + 0.963978i \(0.585697\pi\)
\(422\) 4.92957e8 0.319312
\(423\) 0 0
\(424\) 1.44418e9 0.920113
\(425\) 1.35233e9 + 2.34230e9i 0.854518 + 1.48007i
\(426\) 0 0
\(427\) −1.09738e7 + 1.90071e7i −0.00682116 + 0.0118146i
\(428\) −6.25789e8 + 1.08390e9i −0.385811 + 0.668244i
\(429\) 0 0
\(430\) −2.10553e8 3.64689e8i −0.127709 0.221199i
\(431\) 1.61850e9 0.973737 0.486869 0.873475i \(-0.338139\pi\)
0.486869 + 0.873475i \(0.338139\pi\)
\(432\) 0 0
\(433\) 1.16527e9 0.689794 0.344897 0.938641i \(-0.387914\pi\)
0.344897 + 0.938641i \(0.387914\pi\)
\(434\) −4.22360e8 7.31549e8i −0.248010 0.429566i
\(435\) 0 0
\(436\) −6.05785e8 + 1.04925e9i −0.350039 + 0.606285i
\(437\) 5.75962e8 9.97596e8i 0.330148 0.571834i
\(438\) 0 0
\(439\) −1.04048e9 1.80216e9i −0.586958 1.01664i −0.994628 0.103512i \(-0.966992\pi\)
0.407670 0.913129i \(-0.366341\pi\)
\(440\) 4.91759e8 0.275212
\(441\) 0 0
\(442\) −1.66074e9 −0.914796
\(443\) −1.11550e9 1.93210e9i −0.609616 1.05589i −0.991304 0.131595i \(-0.957990\pi\)
0.381687 0.924292i \(-0.375343\pi\)
\(444\) 0 0
\(445\) −1.52956e8 + 2.64928e8i −0.0822824 + 0.142517i
\(446\) 5.34874e8 9.26429e8i 0.285482 0.494470i
\(447\) 0 0
\(448\) 6.03627e8 + 1.04551e9i 0.317173 + 0.549359i
\(449\) −2.52631e9 −1.31712 −0.658559 0.752529i \(-0.728834\pi\)
−0.658559 + 0.752529i \(0.728834\pi\)
\(450\) 0 0
\(451\) 2.93030e9 1.50416
\(452\) −7.62319e7 1.32038e8i −0.0388287 0.0672532i
\(453\) 0 0
\(454\) −1.29149e7 + 2.23693e7i −0.00647734 + 0.0112191i
\(455\) 1.44994e8 2.51138e8i 0.0721624 0.124989i
\(456\) 0 0
\(457\) 9.38136e8 + 1.62490e9i 0.459790 + 0.796379i 0.998950 0.0458245i \(-0.0145915\pi\)
−0.539160 + 0.842203i \(0.681258\pi\)
\(458\) 2.09705e8 0.101995
\(459\) 0 0
\(460\) 2.38288e8 0.114143
\(461\) 9.86604e8 + 1.70885e9i 0.469018 + 0.812363i 0.999373 0.0354126i \(-0.0112745\pi\)
−0.530355 + 0.847776i \(0.677941\pi\)
\(462\) 0 0
\(463\) 8.01719e8 1.38862e9i 0.375395 0.650203i −0.614991 0.788534i \(-0.710840\pi\)
0.990386 + 0.138331i \(0.0441737\pi\)
\(464\) −8.33126e7 + 1.44302e8i −0.0387166 + 0.0670592i
\(465\) 0 0
\(466\) 1.33438e9 + 2.31121e9i 0.610840 + 1.05801i
\(467\) −1.32390e9 −0.601515 −0.300757 0.953701i \(-0.597239\pi\)
−0.300757 + 0.953701i \(0.597239\pi\)
\(468\) 0 0
\(469\) −2.16371e8 −0.0968486
\(470\) 3.06436e8 + 5.30762e8i 0.136143 + 0.235807i
\(471\) 0 0
\(472\) 2.38163e8 4.12510e8i 0.104250 0.180567i
\(473\) 2.09029e9 3.62048e9i 0.908222 1.57309i
\(474\) 0 0
\(475\) 8.25712e8 + 1.43017e9i 0.353509 + 0.612296i
\(476\) 1.90368e9 0.809038
\(477\) 0 0
\(478\) 2.87938e9 1.20587
\(479\) 1.22113e9 + 2.11505e9i 0.507675 + 0.879319i 0.999961 + 0.00888546i \(0.00282837\pi\)
−0.492285 + 0.870434i \(0.663838\pi\)
\(480\) 0 0
\(481\) −1.45907e9 + 2.52718e9i −0.597817 + 1.03545i
\(482\) 1.13626e8 1.96806e8i 0.0462181 0.0800522i
\(483\) 0 0
\(484\) 1.80317e8 + 3.12318e8i 0.0722899 + 0.125210i
\(485\) 9.67517e8 0.385090
\(486\) 0 0
\(487\) −1.37309e7 −0.00538701 −0.00269350 0.999996i \(-0.500857\pi\)
−0.00269350 + 0.999996i \(0.500857\pi\)
\(488\) 2.23825e7 + 3.87676e7i 0.00871845 + 0.0151008i
\(489\) 0 0
\(490\) −6.95399e7 + 1.20447e8i −0.0267022 + 0.0462496i
\(491\) 3.16121e8 5.47538e8i 0.120522 0.208751i −0.799451 0.600731i \(-0.794876\pi\)
0.919974 + 0.391980i \(0.128210\pi\)
\(492\) 0 0
\(493\) 1.25524e9 + 2.17414e9i 0.471805 + 0.817191i
\(494\) −1.01402e9 −0.378446
\(495\) 0 0
\(496\) −3.66488e8 −0.134857
\(497\) 2.63809e8 + 4.56930e8i 0.0963922 + 0.166956i
\(498\) 0 0
\(499\) 1.21683e9 2.10761e9i 0.438406 0.759342i −0.559161 0.829059i \(-0.688876\pi\)
0.997567 + 0.0697175i \(0.0222098\pi\)
\(500\) −3.51641e8 + 6.09060e8i −0.125807 + 0.217904i
\(501\) 0 0
\(502\) −6.50964e7 1.12750e8i −0.0229665 0.0397791i
\(503\) 2.00281e9 0.701700 0.350850 0.936432i \(-0.385893\pi\)
0.350850 + 0.936432i \(0.385893\pi\)
\(504\) 0 0
\(505\) 6.10997e8 0.211115
\(506\) −9.69577e8 1.67936e9i −0.332702 0.576257i
\(507\) 0 0
\(508\) 3.40035e8 5.88958e8i 0.115080 0.199325i
\(509\) 2.64155e8 4.57529e8i 0.0887863 0.153782i −0.818212 0.574917i \(-0.805035\pi\)
0.906998 + 0.421134i \(0.138368\pi\)
\(510\) 0 0
\(511\) −1.46305e9 2.53408e9i −0.485049 0.840130i
\(512\) 8.92980e8 0.294034
\(513\) 0 0
\(514\) 7.43734e8 0.241572
\(515\) −1.35262e8 2.34281e8i −0.0436367 0.0755809i
\(516\) 0 0
\(517\) −3.04217e9 + 5.26919e9i −0.968202 + 1.67698i
\(518\) −1.37099e9 + 2.37462e9i −0.433390 + 0.750653i
\(519\) 0 0
\(520\) −2.95735e8 5.12229e8i −0.0922341 0.159754i
\(521\) −1.76283e9 −0.546109 −0.273055 0.961999i \(-0.588034\pi\)
−0.273055 + 0.961999i \(0.588034\pi\)
\(522\) 0 0
\(523\) −3.39318e9 −1.03717 −0.518586 0.855026i \(-0.673541\pi\)
−0.518586 + 0.855026i \(0.673541\pi\)
\(524\) −1.48570e9 2.57331e9i −0.451098 0.781326i
\(525\) 0 0
\(526\) −3.38870e8 + 5.86940e8i −0.101527 + 0.175851i
\(527\) −2.76087e9 + 4.78197e9i −0.821693 + 1.42321i
\(528\) 0 0
\(529\) 3.77648e8 + 6.54105e8i 0.110915 + 0.192111i
\(530\) −4.79208e8 −0.139816
\(531\) 0 0
\(532\) 1.16236e9 0.334695
\(533\) −1.76223e9 3.05227e9i −0.504101 0.873128i
\(534\) 0 0
\(535\) 5.85512e8 1.01414e9i 0.165309 0.286324i
\(536\) −2.20659e8 + 3.82192e8i −0.0618934 + 0.107202i
\(537\) 0 0
\(538\) −2.02991e9 3.51591e9i −0.562004 0.973420i
\(539\) −1.38073e9 −0.379793
\(540\) 0 0
\(541\) −3.83907e9 −1.04240 −0.521202 0.853433i \(-0.674516\pi\)
−0.521202 + 0.853433i \(0.674516\pi\)
\(542\) 8.03004e8 + 1.39084e9i 0.216631 + 0.375216i
\(543\) 0 0
\(544\) 3.19430e9 5.53268e9i 0.850705 1.47346i
\(545\) 5.66796e8 9.81719e8i 0.149982 0.259776i
\(546\) 0 0
\(547\) −2.15617e9 3.73460e9i −0.563285 0.975638i −0.997207 0.0746879i \(-0.976204\pi\)
0.433922 0.900950i \(-0.357129\pi\)
\(548\) 5.63744e8 0.146336
\(549\) 0 0
\(550\) 2.78001e9 0.712488
\(551\) 7.66431e8 + 1.32750e9i 0.195183 + 0.338067i
\(552\) 0 0
\(553\) 9.37052e8 1.62302e9i 0.235627 0.408119i
\(554\) −1.23019e9 + 2.13076e9i −0.307390 + 0.532415i
\(555\) 0 0
\(556\) 5.13521e8 + 8.89444e8i 0.126706 + 0.219461i
\(557\) −1.84109e9 −0.451421 −0.225710 0.974194i \(-0.572470\pi\)
−0.225710 + 0.974194i \(0.572470\pi\)
\(558\) 0 0
\(559\) −5.02825e9 −1.21752
\(560\) −5.91092e7 1.02380e8i −0.0142232 0.0246353i
\(561\) 0 0
\(562\) 1.86497e8 3.23023e8i 0.0443195 0.0767637i
\(563\) 5.80275e8 1.00507e9i 0.137042 0.237364i −0.789333 0.613965i \(-0.789574\pi\)
0.926376 + 0.376600i \(0.122907\pi\)
\(564\) 0 0
\(565\) 7.13255e7 + 1.23539e8i 0.0166370 + 0.0288161i
\(566\) 3.06027e9 0.709417
\(567\) 0 0
\(568\) 1.07615e9 0.246407
\(569\) −3.51460e8 6.08746e8i −0.0799802 0.138530i 0.823261 0.567663i \(-0.192152\pi\)
−0.903241 + 0.429133i \(0.858819\pi\)
\(570\) 0 0
\(571\) 3.97964e8 6.89295e8i 0.0894577 0.154945i −0.817824 0.575468i \(-0.804820\pi\)
0.907282 + 0.420523i \(0.138153\pi\)
\(572\) 1.04122e9 1.80344e9i 0.232624 0.402917i
\(573\) 0 0
\(574\) −1.65584e9 2.86801e9i −0.365450 0.632978i
\(575\) 3.79842e9 0.833232
\(576\) 0 0
\(577\) −4.44712e9 −0.963749 −0.481874 0.876240i \(-0.660044\pi\)
−0.481874 + 0.876240i \(0.660044\pi\)
\(578\) 3.54233e9 + 6.13550e9i 0.763030 + 1.32161i
\(579\) 0 0
\(580\) −1.58545e8 + 2.74608e8i −0.0337407 + 0.0584406i
\(581\) 6.14025e8 1.06352e9i 0.129888 0.224973i
\(582\) 0 0
\(583\) −2.37869e9 4.12001e9i −0.497161 0.861109i
\(584\) −5.96818e9 −1.23993
\(585\) 0 0
\(586\) −3.68967e9 −0.757436
\(587\) −2.75423e9 4.77046e9i −0.562039 0.973480i −0.997318 0.0731848i \(-0.976684\pi\)
0.435279 0.900295i \(-0.356650\pi\)
\(588\) 0 0
\(589\) −1.68575e9 + 2.91980e9i −0.339930 + 0.588776i
\(590\) −7.90271e7 + 1.36879e8i −0.0158414 + 0.0274381i
\(591\) 0 0
\(592\) 5.94812e8 + 1.03025e9i 0.117830 + 0.204087i
\(593\) −8.05850e9 −1.58695 −0.793475 0.608603i \(-0.791730\pi\)
−0.793475 + 0.608603i \(0.791730\pi\)
\(594\) 0 0
\(595\) −1.78115e9 −0.346650
\(596\) 1.43173e9 + 2.47984e9i 0.277013 + 0.479801i
\(597\) 0 0
\(598\) −1.16617e9 + 2.01987e9i −0.223002 + 0.386251i
\(599\) 1.69783e9 2.94073e9i 0.322775 0.559063i −0.658284 0.752770i \(-0.728717\pi\)
0.981060 + 0.193706i \(0.0620508\pi\)
\(600\) 0 0
\(601\) −6.75884e8 1.17067e9i −0.127002 0.219974i 0.795512 0.605938i \(-0.207202\pi\)
−0.922514 + 0.385964i \(0.873869\pi\)
\(602\) −4.72469e9 −0.882645
\(603\) 0 0
\(604\) 3.72762e9 0.688339
\(605\) −1.68711e8 2.92217e8i −0.0309742 0.0536489i
\(606\) 0 0
\(607\) −2.45648e9 + 4.25475e9i −0.445814 + 0.772172i −0.998109 0.0614769i \(-0.980419\pi\)
0.552295 + 0.833649i \(0.313752\pi\)
\(608\) 1.95039e9 3.37817e9i 0.351932 0.609564i
\(609\) 0 0
\(610\) −7.42695e6 1.28638e7i −0.00132482 0.00229465i
\(611\) 7.31802e9 1.29793
\(612\) 0 0
\(613\) −2.06110e9 −0.361399 −0.180700 0.983538i \(-0.557836\pi\)
−0.180700 + 0.983538i \(0.557836\pi\)
\(614\) 1.07149e9 + 1.85587e9i 0.186809 + 0.323562i
\(615\) 0 0
\(616\) 2.75870e9 4.77820e9i 0.475523 0.823630i
\(617\) 1.86139e9 3.22402e9i 0.319035 0.552585i −0.661252 0.750164i \(-0.729974\pi\)
0.980287 + 0.197579i \(0.0633078\pi\)
\(618\) 0 0
\(619\) −1.65033e9 2.85845e9i −0.279675 0.484410i 0.691629 0.722253i \(-0.256893\pi\)
−0.971304 + 0.237842i \(0.923560\pi\)
\(620\) −6.97432e8 −0.117525
\(621\) 0 0
\(622\) −5.34909e8 −0.0891278
\(623\) 1.71612e9 + 2.97241e9i 0.284341 + 0.492494i
\(624\) 0 0
\(625\) −2.55355e9 + 4.42289e9i −0.418374 + 0.724646i
\(626\) −1.81519e9 + 3.14399e9i −0.295741 + 0.512238i
\(627\) 0 0
\(628\) 1.44433e9 + 2.50166e9i 0.232707 + 0.403060i
\(629\) 1.79236e10 2.87177
\(630\) 0 0
\(631\) 5.12709e9 0.812397 0.406199 0.913785i \(-0.366854\pi\)
0.406199 + 0.913785i \(0.366854\pi\)
\(632\) −1.91124e9 3.31037e9i −0.301166 0.521635i
\(633\) 0 0
\(634\) 2.61771e9 4.53400e9i 0.407952 0.706593i
\(635\) −3.18150e8 + 5.51052e8i −0.0493087 + 0.0854052i
\(636\) 0 0
\(637\) 8.30345e8 + 1.43820e9i 0.127283 + 0.220461i
\(638\) 2.58043e9 0.393386
\(639\) 0 0
\(640\) 6.51310e8 0.0982105
\(641\) 2.25921e9 + 3.91306e9i 0.338808 + 0.586832i 0.984209 0.177012i \(-0.0566431\pi\)
−0.645401 + 0.763844i \(0.723310\pi\)
\(642\) 0 0
\(643\) 4.85300e9 8.40564e9i 0.719900 1.24690i −0.241140 0.970490i \(-0.577521\pi\)
0.961039 0.276412i \(-0.0891455\pi\)
\(644\) 1.33676e9 2.31534e9i 0.197221 0.341597i
\(645\) 0 0
\(646\) 3.11414e9 + 5.39385e9i 0.454490 + 0.787201i
\(647\) −6.12536e9 −0.889132 −0.444566 0.895746i \(-0.646642\pi\)
−0.444566 + 0.895746i \(0.646642\pi\)
\(648\) 0 0
\(649\) −1.56910e9 −0.225317
\(650\) −1.67185e9 2.89573e9i −0.238782 0.413582i
\(651\) 0 0
\(652\) −1.52559e9 + 2.64239e9i −0.215561 + 0.373363i
\(653\) −6.50516e9 + 1.12673e10i −0.914243 + 1.58352i −0.106237 + 0.994341i \(0.533880\pi\)
−0.808006 + 0.589175i \(0.799453\pi\)
\(654\) 0 0
\(655\) 1.39008e9 + 2.40768e9i 0.193283 + 0.334776i
\(656\) −1.43680e9 −0.198716
\(657\) 0 0
\(658\) 6.87623e9 0.940936
\(659\) −6.15687e9 1.06640e10i −0.838032 1.45151i −0.891538 0.452947i \(-0.850373\pi\)
0.0535054 0.998568i \(-0.482961\pi\)
\(660\) 0 0
\(661\) −3.48888e9 + 6.04291e9i −0.469873 + 0.813844i −0.999407 0.0344448i \(-0.989034\pi\)
0.529533 + 0.848289i \(0.322367\pi\)
\(662\) 2.03819e9 3.53025e9i 0.273050 0.472936i
\(663\) 0 0
\(664\) −1.25239e9 2.16920e9i −0.166016 0.287548i
\(665\) −1.08755e9 −0.143407
\(666\) 0 0
\(667\) 3.52572e9 0.460053
\(668\) 1.36054e9 + 2.35653e9i 0.176601 + 0.305883i
\(669\) 0 0
\(670\) 7.32188e7 1.26819e8i 0.00940504 0.0162900i
\(671\) 7.37316e7 1.27707e8i 0.00942161 0.0163187i
\(672\) 0 0
\(673\) 5.32311e9 + 9.21990e9i 0.673152 + 1.16593i 0.977005 + 0.213214i \(0.0683933\pi\)
−0.303854 + 0.952719i \(0.598273\pi\)
\(674\) 9.41665e9 1.18464
\(675\) 0 0
\(676\) 1.90908e9 0.237690
\(677\) −2.16674e9 3.75291e9i −0.268378 0.464844i 0.700065 0.714079i \(-0.253154\pi\)
−0.968443 + 0.249235i \(0.919821\pi\)
\(678\) 0 0
\(679\) 5.42763e9 9.40093e9i 0.665374 1.15246i
\(680\) −1.81645e9 + 3.14618e9i −0.221535 + 0.383710i
\(681\) 0 0
\(682\) 2.83779e9 + 4.91520e9i 0.342559 + 0.593330i
\(683\) −6.16980e9 −0.740966 −0.370483 0.928839i \(-0.620808\pi\)
−0.370483 + 0.928839i \(0.620808\pi\)
\(684\) 0 0
\(685\) −5.27461e8 −0.0627008
\(686\) 3.08902e9 + 5.35033e9i 0.365330 + 0.632771i
\(687\) 0 0
\(688\) −1.02492e9 + 1.77522e9i −0.119986 + 0.207822i
\(689\) −2.86100e9 + 4.95540e9i −0.333235 + 0.577181i
\(690\) 0 0
\(691\) −3.78637e9 6.55818e9i −0.436565 0.756154i 0.560856 0.827913i \(-0.310472\pi\)
−0.997422 + 0.0717594i \(0.977139\pi\)
\(692\) −3.73190e9 −0.428113
\(693\) 0 0
\(694\) −3.69620e8 −0.0419756
\(695\) −4.80470e8 8.32198e8i −0.0542899 0.0940329i
\(696\) 0 0
\(697\) −1.08239e10 + 1.87475e10i −1.21079 + 2.09715i
\(698\) 4.69519e9 8.13231e9i 0.522588 0.905149i
\(699\) 0 0
\(700\) 1.91641e9 + 3.31932e9i 0.211176 + 0.365768i
\(701\) −4.42696e9 −0.485391 −0.242696 0.970102i \(-0.578032\pi\)
−0.242696 + 0.970102i \(0.578032\pi\)
\(702\) 0 0
\(703\) 1.09439e10 1.18803
\(704\) −4.05571e9 7.02469e9i −0.438089 0.758792i
\(705\) 0 0
\(706\) 2.30406e8 3.99074e8i 0.0246420 0.0426812i
\(707\) 3.42760e9 5.93678e9i 0.364773 0.631805i
\(708\) 0 0
\(709\) 5.66162e9 + 9.80621e9i 0.596594 + 1.03333i 0.993320 + 0.115393i \(0.0368129\pi\)
−0.396726 + 0.917937i \(0.629854\pi\)
\(710\) −3.57087e8 −0.0374429
\(711\) 0 0
\(712\) 7.00052e9 0.726859
\(713\) 3.87737e9 + 6.71581e9i 0.400612 + 0.693881i
\(714\) 0 0
\(715\) −9.74202e8 + 1.68737e9i −0.0996731 + 0.172639i
\(716\) −4.71746e9 + 8.17088e9i −0.480300 + 0.831905i
\(717\) 0 0
\(718\) −2.03526e9 3.52518e9i −0.205203 0.355423i
\(719\) −1.02156e10 −1.02497 −0.512487 0.858695i \(-0.671276\pi\)
−0.512487 + 0.858695i \(0.671276\pi\)
\(720\) 0 0
\(721\) −3.03521e9 −0.301589
\(722\) −1.49231e9 2.58475e9i −0.147563 0.255587i
\(723\) 0 0
\(724\) 2.23368e8 3.86885e8i 0.0218744 0.0378876i
\(725\) −2.52727e9 + 4.37737e9i −0.246303 + 0.426609i
\(726\) 0 0
\(727\) 9.76776e9 + 1.69183e10i 0.942811 + 1.63300i 0.760076 + 0.649834i \(0.225161\pi\)
0.182734 + 0.983162i \(0.441505\pi\)
\(728\) −6.63613e9 −0.637463
\(729\) 0 0
\(730\) 1.98036e9 0.188414
\(731\) 1.54421e10 + 2.67465e10i 1.46216 + 2.53254i
\(732\) 0 0
\(733\) 6.63725e9 1.14960e10i 0.622478 1.07816i −0.366545 0.930400i \(-0.619459\pi\)
0.989023 0.147763i \(-0.0472073\pi\)
\(734\) −1.63762e9 + 2.83644e9i −0.152854 + 0.264751i
\(735\) 0 0
\(736\) −4.48607e9 7.77010e9i −0.414757 0.718380i
\(737\) 1.45377e9 0.133770
\(738\) 0 0
\(739\) 1.69495e9 0.154490 0.0772452 0.997012i \(-0.475388\pi\)
0.0772452 + 0.997012i \(0.475388\pi\)
\(740\) 1.13193e9 + 1.96057e9i 0.102686 + 0.177857i
\(741\) 0 0
\(742\) −2.68828e9 + 4.65624e9i −0.241580 + 0.418429i
\(743\) 4.67246e9 8.09294e9i 0.417912 0.723845i −0.577817 0.816166i \(-0.696095\pi\)
0.995729 + 0.0923211i \(0.0294286\pi\)
\(744\) 0 0
\(745\) −1.33958e9 2.32023e9i −0.118692 0.205581i
\(746\) −2.04785e9 −0.180598
\(747\) 0 0
\(748\) −1.27906e10 −1.11747
\(749\) −6.56927e9 1.13783e10i −0.571256 0.989444i
\(750\) 0 0
\(751\) 6.55969e9 1.13617e10i 0.565124 0.978824i −0.431914 0.901915i \(-0.642162\pi\)
0.997038 0.0769088i \(-0.0245050\pi\)
\(752\) 1.49165e9 2.58362e9i 0.127910 0.221547i
\(753\) 0 0
\(754\) −1.55182e9 2.68784e9i −0.131839 0.228351i
\(755\) −3.48770e9 −0.294934
\(756\) 0 0
\(757\) 5.72593e9 0.479745 0.239873 0.970804i \(-0.422894\pi\)
0.239873 + 0.970804i \(0.422894\pi\)
\(758\) −3.05181e9 5.28589e9i −0.254516 0.440835i
\(759\) 0 0
\(760\) −1.10910e9 + 1.92101e9i −0.0916478 + 0.158739i
\(761\) 7.38104e9 1.27843e10i 0.607115 1.05155i −0.384598 0.923084i \(-0.625660\pi\)
0.991713 0.128470i \(-0.0410066\pi\)
\(762\) 0 0
\(763\) −6.35928e9 1.10146e10i −0.518289 0.897703i
\(764\) 8.14847e9 0.661072
\(765\) 0 0
\(766\) −7.47131e9 −0.600615
\(767\) 9.43628e8 + 1.63441e9i 0.0755122 + 0.130791i
\(768\) 0 0
\(769\) −2.81775e9 + 4.88049e9i −0.223440 + 0.387010i −0.955850 0.293854i \(-0.905062\pi\)
0.732410 + 0.680864i \(0.238395\pi\)
\(770\) −9.15389e8 + 1.58550e9i −0.0722584 + 0.125155i
\(771\) 0 0
\(772\) 2.01826e9 + 3.49574e9i 0.157877 + 0.273450i
\(773\) 4.65338e9 0.362360 0.181180 0.983450i \(-0.442008\pi\)
0.181180 + 0.983450i \(0.442008\pi\)
\(774\) 0 0
\(775\) −1.11174e10 −0.857918
\(776\) −1.10704e10 1.91745e10i −0.850445 1.47301i
\(777\) 0 0
\(778\) −8.21033e8 + 1.42207e9i −0.0625075 + 0.108266i
\(779\) −6.60889e9 + 1.14469e10i −0.500896 + 0.867578i
\(780\) 0 0
\(781\) −1.77250e9 3.07007e9i −0.133140 0.230605i
\(782\) 1.43256e10 1.07125
\(783\) 0 0
\(784\) 6.77006e8 0.0501749
\(785\) −1.35137e9 2.34065e9i −0.0997084 0.172700i
\(786\) 0 0
\(787\) 6.17937e9 1.07030e10i 0.451890 0.782696i −0.546614 0.837385i \(-0.684083\pi\)
0.998503 + 0.0546889i \(0.0174167\pi\)
\(788\) 3.68747e9 6.38688e9i 0.268464 0.464993i
\(789\) 0 0
\(790\) 6.34188e8 + 1.09845e9i 0.0457639 + 0.0792654i
\(791\) 1.60050e9 0.114984
\(792\) 0 0
\(793\) −1.77364e8 −0.0126302
\(794\) 1.64599e9 + 2.85094e9i 0.116696 + 0.202123i
\(795\) 0 0
\(796\) −7.40765e9 + 1.28304e10i −0.520577 + 0.901666i
\(797\) −8.52222e9 + 1.47609e10i −0.596278 + 1.03278i 0.397087 + 0.917781i \(0.370021\pi\)
−0.993365 + 0.115003i \(0.963312\pi\)
\(798\) 0 0
\(799\) −2.24742e10 3.89264e10i −1.55873 2.69980i
\(800\) 1.28627e10 0.888210
\(801\) 0 0
\(802\) −1.84301e10 −1.26159
\(803\) 9.83008e9 + 1.70262e10i 0.669966 + 1.16041i
\(804\) 0 0
\(805\) −1.25073e9 + 2.16632e9i −0.0845039 + 0.146365i
\(806\) 3.41320e9 5.91184e9i 0.229609 0.397695i
\(807\) 0 0
\(808\) −6.99105e9 1.21089e10i −0.466233 0.807539i
\(809\) 1.00497e10 0.667315 0.333658 0.942694i \(-0.391717\pi\)
0.333658 + 0.942694i \(0.391717\pi\)
\(810\) 0 0
\(811\) 5.26821e9 0.346809 0.173404 0.984851i \(-0.444523\pi\)
0.173404 + 0.984851i \(0.444523\pi\)
\(812\) 1.77883e9 + 3.08102e9i 0.116597 + 0.201952i
\(813\) 0 0
\(814\) 9.21151e9 1.59548e10i 0.598612 1.03683i
\(815\) 1.42740e9 2.47233e9i 0.0923620 0.159976i
\(816\) 0 0
\(817\) 9.42873e9 + 1.63310e10i 0.604889 + 1.04770i
\(818\) −6.97814e9 −0.445762
\(819\) 0 0
\(820\) −2.73425e9 −0.173177
\(821\) −9.11011e9 1.57792e10i −0.574543 0.995138i −0.996091 0.0883319i \(-0.971846\pi\)
0.421548 0.906806i \(-0.361487\pi\)
\(822\) 0 0
\(823\) 6.79338e8 1.17665e9i 0.0424802 0.0735778i −0.844004 0.536338i \(-0.819807\pi\)
0.886484 + 0.462760i \(0.153141\pi\)
\(824\) −3.09536e9 + 5.36131e9i −0.192737 + 0.333830i
\(825\) 0 0
\(826\) 8.86660e8 + 1.53574e9i 0.0547428 + 0.0948173i
\(827\) 8.90171e9 0.547273 0.273637 0.961833i \(-0.411773\pi\)
0.273637 + 0.961833i \(0.411773\pi\)
\(828\) 0 0
\(829\) 6.14205e9 0.374432 0.187216 0.982319i \(-0.440054\pi\)
0.187216 + 0.982319i \(0.440054\pi\)
\(830\) 4.15566e8 + 7.19782e8i 0.0252271 + 0.0436946i
\(831\) 0 0
\(832\) −4.87806e9 + 8.44905e9i −0.293640 + 0.508600i
\(833\) 5.10010e9 8.83363e9i 0.305718 0.529519i
\(834\) 0 0
\(835\) −1.27297e9 2.20486e9i −0.0756689 0.131062i
\(836\) −7.80975e9 −0.462291
\(837\) 0 0
\(838\) −8.35455e9 −0.490421
\(839\) −5.27318e9 9.13341e9i −0.308252 0.533908i 0.669728 0.742606i \(-0.266411\pi\)
−0.977980 + 0.208698i \(0.933077\pi\)
\(840\) 0 0
\(841\) 6.27911e9 1.08757e10i 0.364009 0.630482i
\(842\) −8.15942e9 + 1.41325e10i −0.471050 + 0.815882i
\(843\) 0 0
\(844\) −2.28323e9 3.95466e9i −0.130723 0.226418i
\(845\) −1.78621e9 −0.101844
\(846\) 0 0
\(847\) −3.78578e9 −0.214074
\(848\) 1.16633e9 + 2.02015e9i 0.0656805 + 0.113762i
\(849\) 0 0
\(850\) −1.02688e10 + 1.77860e10i −0.573524 + 0.993373i
\(851\) 1.25860e10 2.17996e10i 0.700058 1.21254i
\(852\) 0 0
\(853\) −1.70939e9 2.96075e9i −0.0943018 0.163336i 0.815015 0.579440i \(-0.196729\pi\)
−0.909317 + 0.416104i \(0.863395\pi\)
\(854\) −1.66656e8 −0.00915628
\(855\) 0 0
\(856\) −2.67978e10 −1.46030
\(857\) 1.08519e10 + 1.87960e10i 0.588941 + 1.02007i 0.994372 + 0.105949i \(0.0337881\pi\)
−0.405431 + 0.914126i \(0.632879\pi\)
\(858\) 0 0
\(859\) 1.09605e10 1.89842e10i 0.590005 1.02192i −0.404226 0.914659i \(-0.632459\pi\)
0.994231 0.107260i \(-0.0342076\pi\)
\(860\) −1.95044e9 + 3.37826e9i −0.104565 + 0.181112i
\(861\) 0 0
\(862\) 6.14494e9 + 1.06434e10i 0.326770 + 0.565982i
\(863\) −1.35347e10 −0.716822 −0.358411 0.933564i \(-0.616681\pi\)
−0.358411 + 0.933564i \(0.616681\pi\)
\(864\) 0 0
\(865\) 3.49170e9 0.183434
\(866\) 4.42418e9 + 7.66290e9i 0.231484 + 0.400941i
\(867\) 0 0
\(868\) −3.91249e9 + 6.77663e9i −0.203064 + 0.351718i
\(869\) −6.29596e9 + 1.09049e10i −0.325456 + 0.563707i
\(870\) 0 0
\(871\) −8.74274e8 1.51429e9i −0.0448316 0.0776505i
\(872\) −2.59412e10 −1.32490
\(873\) 0 0
\(874\) 8.74701e9 0.443169
\(875\) −3.69138e9 6.39366e9i −0.186278 0.322642i
\(876\) 0 0
\(877\) −1.22598e10 + 2.12347e10i −0.613743 + 1.06303i 0.376861 + 0.926270i \(0.377004\pi\)
−0.990604 + 0.136764i \(0.956330\pi\)
\(878\) 7.90076e9 1.36845e10i 0.393947 0.682336i
\(879\) 0 0
\(880\) 3.97148e8 + 6.87881e8i 0.0196455 + 0.0340270i
\(881\) −2.13536e10 −1.05210 −0.526048 0.850455i \(-0.676327\pi\)
−0.526048 + 0.850455i \(0.676327\pi\)
\(882\) 0 0
\(883\) −1.64504e9 −0.0804109 −0.0402054 0.999191i \(-0.512801\pi\)
−0.0402054 + 0.999191i \(0.512801\pi\)
\(884\) 7.69205e9 + 1.33230e10i 0.374506 + 0.648664i
\(885\) 0 0
\(886\) 8.47042e9 1.46712e10i 0.409154 0.708676i
\(887\) −4.82651e9 + 8.35976e9i −0.232220 + 0.402217i −0.958461 0.285223i \(-0.907932\pi\)
0.726241 + 0.687440i \(0.241266\pi\)
\(888\) 0 0
\(889\) 3.56955e9 + 6.18264e9i 0.170395 + 0.295133i
\(890\) −2.32291e9 −0.110450
\(891\) 0 0
\(892\) −9.90949e9 −0.467492
\(893\) −1.37224e10 2.37679e10i −0.644837 1.11689i
\(894\) 0 0
\(895\) 4.41384e9 7.64499e9i 0.205795 0.356448i
\(896\) 3.65375e9 6.32849e9i 0.169692 0.293915i
\(897\) 0 0
\(898\) −9.59163e9 1.66132e10i −0.442003 0.765571i
\(899\) −1.03192e10 −0.473683
\(900\) 0 0
\(901\) 3.51454e10 1.60078
\(902\) 1.11254e10 + 1.92698e10i 0.504771 + 0.874289i
\(903\) 0 0
\(904\) 1.63222e9 2.82709e9i 0.0734833 0.127277i
\(905\) −2.08992e8 + 3.61984e8i −0.00937257 + 0.0162338i
\(906\) 0 0
\(907\) 4.02709e9 + 6.97512e9i 0.179211 + 0.310403i 0.941611 0.336704i \(-0.109312\pi\)
−0.762399 + 0.647107i \(0.775979\pi\)
\(908\) 2.39272e8 0.0106070
\(909\) 0 0
\(910\) 2.20200e9 0.0968661
\(911\) −2.86899e9 4.96924e9i −0.125723 0.217759i 0.796292 0.604912i \(-0.206792\pi\)
−0.922015 + 0.387153i \(0.873458\pi\)
\(912\) 0 0
\(913\) −4.12557e9 + 7.14570e9i −0.179406 + 0.310740i
\(914\) −7.12363e9 + 1.23385e10i −0.308596 + 0.534503i
\(915\) 0 0
\(916\) −9.71291e8 1.68233e9i −0.0417557 0.0723229i
\(917\) 3.11925e10 1.33585
\(918\) 0 0
\(919\) 3.67326e10 1.56116 0.780579 0.625057i \(-0.214924\pi\)
0.780579 + 0.625057i \(0.214924\pi\)
\(920\) 2.55102e9 + 4.41850e9i 0.108008 + 0.187076i
\(921\) 0 0
\(922\) −7.49167e9 + 1.29759e10i −0.314789 + 0.545231i
\(923\) −2.13191e9 + 3.69257e9i −0.0892406 + 0.154569i
\(924\) 0 0
\(925\) 1.80435e10 + 3.12523e10i 0.749593 + 1.29833i
\(926\) 1.21755e10 0.503906
\(927\) 0 0
\(928\) 1.19392e10 0.490408
\(929\) 1.75384e9 + 3.03774e9i 0.0717687 + 0.124307i 0.899677 0.436557i \(-0.143802\pi\)
−0.827908 + 0.560864i \(0.810469\pi\)
\(930\) 0 0
\(931\) 3.11405e9 5.39368e9i 0.126474 0.219059i
\(932\) 1.23608e10 2.14096e10i 0.500141 0.866270i
\(933\) 0 0
\(934\) −5.02644e9 8.70605e9i −0.201858 0.349629i
\(935\) 1.19674e10 0.478805
\(936\) 0 0
\(937\) −1.68124e10 −0.667638 −0.333819 0.942637i \(-0.608337\pi\)
−0.333819 + 0.942637i \(0.608337\pi\)
\(938\) −8.21493e8 1.42287e9i −0.0325008 0.0562930i
\(939\) 0 0
\(940\) 2.83863e9 4.91665e9i 0.111471 0.193073i
\(941\) −1.75727e10 + 3.04368e10i −0.687503 + 1.19079i 0.285141 + 0.958486i \(0.407960\pi\)
−0.972643 + 0.232304i \(0.925374\pi\)
\(942\) 0 0
\(943\) 1.52011e10 + 2.63290e10i 0.590314 + 1.02245i
\(944\) 7.69368e8 0.0297668
\(945\) 0 0
\(946\) 3.17447e10 1.21914
\(947\) −1.65295e10 2.86300e10i −0.632463 1.09546i −0.987047 0.160434i \(-0.948711\pi\)
0.354584 0.935024i \(-0.384623\pi\)
\(948\) 0 0
\(949\) 1.18233e10 2.04785e10i 0.449062 0.777798i
\(950\) −6.26995e9 + 1.08599e10i −0.237264 + 0.410953i
\(951\) 0 0
\(952\) 2.03800e10 + 3.52993e10i 0.765553 + 1.32598i
\(953\) 6.24805e9 0.233840 0.116920 0.993141i \(-0.462698\pi\)
0.116920 + 0.993141i \(0.462698\pi\)
\(954\) 0 0
\(955\) −7.62401e9 −0.283251
\(956\) −1.33364e10 2.30993e10i −0.493669 0.855060i
\(957\) 0 0
\(958\) −9.27248e9 + 1.60604e10i −0.340735 + 0.590170i
\(959\) −2.95898e9 + 5.12510e9i −0.108337 + 0.187645i
\(960\) 0 0
\(961\) 2.40787e9 + 4.17055e9i 0.0875187 + 0.151587i
\(962\) −2.21586e10 −0.802471
\(963\) 0 0
\(964\) −2.10512e9 −0.0756846
\(965\) −1.88837e9 3.27074e9i −0.0676457 0.117166i
\(966\) 0 0
\(967\) −1.10632e10 + 1.91621e10i −0.393449 + 0.681474i −0.992902 0.118936i \(-0.962052\pi\)
0.599453 + 0.800410i \(0.295385\pi\)
\(968\) −3.86081e9 + 6.68711e9i −0.136809 + 0.236960i
\(969\) 0 0
\(970\) 3.67337e9 + 6.36246e9i 0.129230 + 0.223833i
\(971\) 5.45446e9 0.191199 0.0955993 0.995420i \(-0.469523\pi\)
0.0955993 + 0.995420i \(0.469523\pi\)
\(972\) 0 0
\(973\) −1.07815e10 −0.375217
\(974\) −5.21320e7 9.02952e7i −0.00180779 0.00313118i
\(975\) 0 0
\(976\) −3.61525e7 + 6.26180e7i −0.00124470 + 0.00215588i
\(977\) 2.47687e10 4.29006e10i 0.849711 1.47174i −0.0317547 0.999496i \(-0.510110\pi\)
0.881466 0.472247i \(-0.156557\pi\)
\(978\) 0 0
\(979\) −1.15304e10 1.99713e10i −0.392741 0.680248i
\(980\) 1.28835e9 0.0437263
\(981\) 0 0
\(982\) 4.80086e9 0.161781
\(983\) 4.36021e9 + 7.55211e9i 0.146410 + 0.253589i 0.929898 0.367817i \(-0.119895\pi\)
−0.783488 + 0.621407i \(0.786562\pi\)
\(984\) 0 0
\(985\) −3.45013e9 + 5.97581e9i −0.115029 + 0.199237i
\(986\) −9.53153e9 + 1.65091e10i −0.316660 + 0.548471i
\(987\) 0 0
\(988\) 4.69665e9 + 8.13484e9i 0.154931 + 0.268349i
\(989\) 4.33739e10 1.42574
\(990\) 0 0
\(991\) 1.64359e10 0.536458 0.268229 0.963355i \(-0.413562\pi\)
0.268229 + 0.963355i \(0.413562\pi\)
\(992\) 1.31300e10 + 2.27418e10i 0.427045 + 0.739664i
\(993\) 0 0
\(994\) −2.00320e9 + 3.46965e9i −0.0646953 + 0.112056i
\(995\) 6.93088e9 1.20046e10i 0.223053 0.386339i
\(996\) 0 0
\(997\) 1.59359e10 + 2.76017e10i 0.509264 + 0.882070i 0.999942 + 0.0107299i \(0.00341551\pi\)
−0.490679 + 0.871341i \(0.663251\pi\)
\(998\) 1.84797e10 0.588487
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.d.28.2 4
3.2 odd 2 81.8.c.h.28.1 4
9.2 odd 6 81.8.c.h.55.1 4
9.4 even 3 27.8.a.e.1.1 yes 2
9.5 odd 6 27.8.a.b.1.2 2
9.7 even 3 inner 81.8.c.d.55.2 4
36.23 even 6 432.8.a.j.1.2 2
36.31 odd 6 432.8.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.b.1.2 2 9.5 odd 6
27.8.a.e.1.1 yes 2 9.4 even 3
81.8.c.d.28.2 4 1.1 even 1 trivial
81.8.c.d.55.2 4 9.7 even 3 inner
81.8.c.h.28.1 4 3.2 odd 2
81.8.c.h.55.1 4 9.2 odd 6
432.8.a.j.1.2 2 36.23 even 6
432.8.a.q.1.1 2 36.31 odd 6