Properties

Label 81.8.c.c.28.1
Level $81$
Weight $8$
Character 81.28
Analytic conductor $25.303$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,8,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,6,0,92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 28.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 81.28
Dual form 81.8.c.c.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.00000 + 5.19615i) q^{2} +(46.0000 - 79.6743i) q^{4} +(195.000 - 337.750i) q^{5} +(32.0000 + 55.4256i) q^{7} +1320.00 q^{8} +2340.00 q^{10} +(-474.000 - 820.992i) q^{11} +(2549.00 - 4415.00i) q^{13} +(-192.000 + 332.554i) q^{14} +(-1928.00 - 3339.39i) q^{16} -28386.0 q^{17} -8620.00 q^{19} +(-17940.0 - 31073.0i) q^{20} +(2844.00 - 4925.95i) q^{22} +(-7644.00 + 13239.8i) q^{23} +(-36987.5 - 64064.2i) q^{25} +30588.0 q^{26} +5888.00 q^{28} +(18255.0 + 31618.6i) q^{29} +(138404. - 239723. i) q^{31} +(96048.0 - 166360. i) q^{32} +(-85158.0 - 147498. i) q^{34} +24960.0 q^{35} +268526. q^{37} +(-25860.0 - 44790.8i) q^{38} +(257400. - 445830. i) q^{40} +(-314859. + 545352. i) q^{41} +(-342886. - 593896. i) q^{43} -87216.0 q^{44} -91728.0 q^{46} +(291648. + 505149. i) q^{47} +(409724. - 709662. i) q^{49} +(221925. - 384385. i) q^{50} +(-234508. - 406180. i) q^{52} +428058. q^{53} -369720. q^{55} +(42240.0 + 73161.8i) q^{56} +(-109530. + 189712. i) q^{58} +(653190. - 1.13136e6i) q^{59} +(-150331. - 260381. i) q^{61} +1.66085e6 q^{62} +659008. q^{64} +(-994110. - 1.72185e6i) q^{65} +(253622. - 439286. i) q^{67} +(-1.30576e6 + 2.26164e6i) q^{68} +(74880.0 + 129696. i) q^{70} -5.56063e6 q^{71} +1.36908e6 q^{73} +(805578. + 1.39530e6i) q^{74} +(-396520. + 686793. i) q^{76} +(30336.0 - 52543.5i) q^{77} +(3.45686e6 + 5.98746e6i) q^{79} -1.50384e6 q^{80} -3.77831e6 q^{82} +(-2.18837e6 - 3.79037e6i) q^{83} +(-5.53527e6 + 9.58737e6i) q^{85} +(2.05732e6 - 3.56338e6i) q^{86} +(-625680. - 1.08371e6i) q^{88} +8.52831e6 q^{89} +326272. q^{91} +(703248. + 1.21806e6i) q^{92} +(-1.74989e6 + 3.03089e6i) q^{94} +(-1.68090e6 + 2.91140e6i) q^{95} +(4.41341e6 + 7.64425e6i) q^{97} +4.91668e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{2} + 92 q^{4} + 390 q^{5} + 64 q^{7} + 2640 q^{8} + 4680 q^{10} - 948 q^{11} + 5098 q^{13} - 384 q^{14} - 3856 q^{16} - 56772 q^{17} - 17240 q^{19} - 35880 q^{20} + 5688 q^{22} - 15288 q^{23}+ \cdots + 9833364 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 + 5.19615i 0.265165 + 0.459279i 0.967607 0.252462i \(-0.0812402\pi\)
−0.702442 + 0.711741i \(0.747907\pi\)
\(3\) 0 0
\(4\) 46.0000 79.6743i 0.359375 0.622456i
\(5\) 195.000 337.750i 0.697653 1.20837i −0.271625 0.962403i \(-0.587561\pi\)
0.969278 0.245968i \(-0.0791057\pi\)
\(6\) 0 0
\(7\) 32.0000 + 55.4256i 0.0352620 + 0.0610756i 0.883118 0.469151i \(-0.155440\pi\)
−0.847856 + 0.530227i \(0.822107\pi\)
\(8\) 1320.00 0.911505
\(9\) 0 0
\(10\) 2340.00 0.739973
\(11\) −474.000 820.992i −0.107375 0.185979i 0.807331 0.590099i \(-0.200911\pi\)
−0.914706 + 0.404120i \(0.867578\pi\)
\(12\) 0 0
\(13\) 2549.00 4415.00i 0.321787 0.557351i −0.659070 0.752082i \(-0.729050\pi\)
0.980857 + 0.194731i \(0.0623833\pi\)
\(14\) −192.000 + 332.554i −0.0187005 + 0.0323902i
\(15\) 0 0
\(16\) −1928.00 3339.39i −0.117676 0.203820i
\(17\) −28386.0 −1.40131 −0.700653 0.713502i \(-0.747108\pi\)
−0.700653 + 0.713502i \(0.747108\pi\)
\(18\) 0 0
\(19\) −8620.00 −0.288317 −0.144158 0.989555i \(-0.546047\pi\)
−0.144158 + 0.989555i \(0.546047\pi\)
\(20\) −17940.0 31073.0i −0.501438 0.868517i
\(21\) 0 0
\(22\) 2844.00 4925.95i 0.0569443 0.0986304i
\(23\) −7644.00 + 13239.8i −0.131001 + 0.226900i −0.924063 0.382241i \(-0.875152\pi\)
0.793062 + 0.609141i \(0.208486\pi\)
\(24\) 0 0
\(25\) −36987.5 64064.2i −0.473440 0.820022i
\(26\) 30588.0 0.341306
\(27\) 0 0
\(28\) 5888.00 0.0506891
\(29\) 18255.0 + 31618.6i 0.138992 + 0.240741i 0.927115 0.374776i \(-0.122281\pi\)
−0.788124 + 0.615517i \(0.788947\pi\)
\(30\) 0 0
\(31\) 138404. 239723.i 0.834416 1.44525i −0.0600887 0.998193i \(-0.519138\pi\)
0.894505 0.447058i \(-0.147528\pi\)
\(32\) 96048.0 166360.i 0.518159 0.897478i
\(33\) 0 0
\(34\) −85158.0 147498.i −0.371577 0.643591i
\(35\) 24960.0 0.0984026
\(36\) 0 0
\(37\) 268526. 0.871526 0.435763 0.900061i \(-0.356479\pi\)
0.435763 + 0.900061i \(0.356479\pi\)
\(38\) −25860.0 44790.8i −0.0764515 0.132418i
\(39\) 0 0
\(40\) 257400. 445830.i 0.635914 1.10144i
\(41\) −314859. + 545352.i −0.713465 + 1.23576i 0.250084 + 0.968224i \(0.419542\pi\)
−0.963549 + 0.267533i \(0.913791\pi\)
\(42\) 0 0
\(43\) −342886. 593896.i −0.657673 1.13912i −0.981216 0.192910i \(-0.938207\pi\)
0.323543 0.946213i \(-0.395126\pi\)
\(44\) −87216.0 −0.154352
\(45\) 0 0
\(46\) −91728.0 −0.138947
\(47\) 291648. + 505149.i 0.409748 + 0.709704i 0.994861 0.101248i \(-0.0322834\pi\)
−0.585114 + 0.810951i \(0.698950\pi\)
\(48\) 0 0
\(49\) 409724. 709662.i 0.497513 0.861718i
\(50\) 221925. 384385.i 0.251079 0.434882i
\(51\) 0 0
\(52\) −234508. 406180.i −0.231284 0.400596i
\(53\) 428058. 0.394945 0.197473 0.980308i \(-0.436727\pi\)
0.197473 + 0.980308i \(0.436727\pi\)
\(54\) 0 0
\(55\) −369720. −0.299643
\(56\) 42240.0 + 73161.8i 0.0321415 + 0.0556707i
\(57\) 0 0
\(58\) −109530. + 189712.i −0.0737115 + 0.127672i
\(59\) 653190. 1.13136e6i 0.414054 0.717163i −0.581274 0.813708i \(-0.697446\pi\)
0.995329 + 0.0965444i \(0.0307790\pi\)
\(60\) 0 0
\(61\) −150331. 260381.i −0.0847997 0.146877i 0.820506 0.571638i \(-0.193692\pi\)
−0.905306 + 0.424760i \(0.860358\pi\)
\(62\) 1.66085e6 0.885032
\(63\) 0 0
\(64\) 659008. 0.314240
\(65\) −994110. 1.72185e6i −0.448991 0.777675i
\(66\) 0 0
\(67\) 253622. 439286.i 0.103021 0.178437i −0.809907 0.586558i \(-0.800482\pi\)
0.912928 + 0.408121i \(0.133816\pi\)
\(68\) −1.30576e6 + 2.26164e6i −0.503594 + 0.872251i
\(69\) 0 0
\(70\) 74880.0 + 129696.i 0.0260929 + 0.0451943i
\(71\) −5.56063e6 −1.84383 −0.921913 0.387397i \(-0.873374\pi\)
−0.921913 + 0.387397i \(0.873374\pi\)
\(72\) 0 0
\(73\) 1.36908e6 0.411907 0.205954 0.978562i \(-0.433970\pi\)
0.205954 + 0.978562i \(0.433970\pi\)
\(74\) 805578. + 1.39530e6i 0.231098 + 0.400274i
\(75\) 0 0
\(76\) −396520. + 686793.i −0.103614 + 0.179464i
\(77\) 30336.0 52543.5i 0.00757253 0.0131160i
\(78\) 0 0
\(79\) 3.45686e6 + 5.98746e6i 0.788836 + 1.36630i 0.926680 + 0.375851i \(0.122649\pi\)
−0.137844 + 0.990454i \(0.544017\pi\)
\(80\) −1.50384e6 −0.328388
\(81\) 0 0
\(82\) −3.77831e6 −0.756744
\(83\) −2.18837e6 3.79037e6i −0.420096 0.727627i 0.575853 0.817553i \(-0.304670\pi\)
−0.995948 + 0.0899264i \(0.971337\pi\)
\(84\) 0 0
\(85\) −5.53527e6 + 9.58737e6i −0.977626 + 1.69330i
\(86\) 2.05732e6 3.56338e6i 0.348784 0.604111i
\(87\) 0 0
\(88\) −625680. 1.08371e6i −0.0978730 0.169521i
\(89\) 8.52831e6 1.28232 0.641162 0.767405i \(-0.278453\pi\)
0.641162 + 0.767405i \(0.278453\pi\)
\(90\) 0 0
\(91\) 326272. 0.0453874
\(92\) 703248. + 1.21806e6i 0.0941567 + 0.163084i
\(93\) 0 0
\(94\) −1.74989e6 + 3.03089e6i −0.217302 + 0.376377i
\(95\) −1.68090e6 + 2.91140e6i −0.201145 + 0.348393i
\(96\) 0 0
\(97\) 4.41341e6 + 7.64425e6i 0.490990 + 0.850420i 0.999946 0.0103725i \(-0.00330171\pi\)
−0.508956 + 0.860793i \(0.669968\pi\)
\(98\) 4.91668e6 0.527692
\(99\) 0 0
\(100\) −6.80570e6 −0.680570
\(101\) 5.99321e6 + 1.03805e7i 0.578808 + 1.00253i 0.995616 + 0.0935309i \(0.0298154\pi\)
−0.416808 + 0.908995i \(0.636851\pi\)
\(102\) 0 0
\(103\) −3.60470e6 + 6.24352e6i −0.325041 + 0.562988i −0.981521 0.191356i \(-0.938711\pi\)
0.656480 + 0.754344i \(0.272045\pi\)
\(104\) 3.36468e6 5.82780e6i 0.293310 0.508028i
\(105\) 0 0
\(106\) 1.28417e6 + 2.22425e6i 0.104726 + 0.181390i
\(107\) −1.14261e7 −0.901683 −0.450842 0.892604i \(-0.648876\pi\)
−0.450842 + 0.892604i \(0.648876\pi\)
\(108\) 0 0
\(109\) 4.02095e6 0.297397 0.148698 0.988883i \(-0.452492\pi\)
0.148698 + 0.988883i \(0.452492\pi\)
\(110\) −1.10916e6 1.92112e6i −0.0794547 0.137620i
\(111\) 0 0
\(112\) 123392. 213721.i 0.00829896 0.0143742i
\(113\) −8.85316e6 + 1.53341e7i −0.577197 + 0.999734i 0.418603 + 0.908169i \(0.362520\pi\)
−0.995799 + 0.0915642i \(0.970813\pi\)
\(114\) 0 0
\(115\) 2.98116e6 + 5.16352e6i 0.182786 + 0.316595i
\(116\) 3.35892e6 0.199801
\(117\) 0 0
\(118\) 7.83828e6 0.439171
\(119\) −908352. 1.57331e6i −0.0494128 0.0855855i
\(120\) 0 0
\(121\) 9.29423e6 1.60981e7i 0.476941 0.826086i
\(122\) 901986. 1.56229e6i 0.0449718 0.0778935i
\(123\) 0 0
\(124\) −1.27332e7 2.20545e7i −0.599737 1.03877i
\(125\) 1.61850e6 0.0741187
\(126\) 0 0
\(127\) 1.67883e7 0.727267 0.363633 0.931542i \(-0.381536\pi\)
0.363633 + 0.931542i \(0.381536\pi\)
\(128\) −1.03171e7 1.78698e7i −0.434834 0.753155i
\(129\) 0 0
\(130\) 5.96466e6 1.03311e7i 0.238113 0.412425i
\(131\) 8.41339e6 1.45724e7i 0.326980 0.566346i −0.654931 0.755689i \(-0.727302\pi\)
0.981911 + 0.189343i \(0.0606357\pi\)
\(132\) 0 0
\(133\) −275840. 477769.i −0.0101666 0.0176091i
\(134\) 3.04346e6 0.109270
\(135\) 0 0
\(136\) −3.74695e7 −1.27730
\(137\) 1.40225e7 + 2.42876e7i 0.465910 + 0.806980i 0.999242 0.0389262i \(-0.0123937\pi\)
−0.533332 + 0.845906i \(0.679060\pi\)
\(138\) 0 0
\(139\) 5.91365e6 1.02427e7i 0.186769 0.323493i −0.757402 0.652948i \(-0.773532\pi\)
0.944171 + 0.329456i \(0.106865\pi\)
\(140\) 1.14816e6 1.98867e6i 0.0353634 0.0612512i
\(141\) 0 0
\(142\) −1.66819e7 2.88939e7i −0.488918 0.846831i
\(143\) −4.83290e6 −0.138208
\(144\) 0 0
\(145\) 1.42389e7 0.387872
\(146\) 4.10725e6 + 7.11396e6i 0.109223 + 0.189180i
\(147\) 0 0
\(148\) 1.23522e7 2.13946e7i 0.313205 0.542486i
\(149\) 1.03923e7 1.80000e7i 0.257371 0.445780i −0.708165 0.706046i \(-0.750477\pi\)
0.965537 + 0.260266i \(0.0838103\pi\)
\(150\) 0 0
\(151\) −38056.0 65914.9i −0.000899505 0.00155799i 0.865575 0.500779i \(-0.166953\pi\)
−0.866475 + 0.499221i \(0.833620\pi\)
\(152\) −1.13784e7 −0.262802
\(153\) 0 0
\(154\) 364032. 0.00803188
\(155\) −5.39776e7 9.34919e7i −1.16427 2.01657i
\(156\) 0 0
\(157\) 1.60912e7 2.78708e7i 0.331849 0.574780i −0.651025 0.759056i \(-0.725661\pi\)
0.982874 + 0.184276i \(0.0589942\pi\)
\(158\) −2.07412e7 + 3.59247e7i −0.418344 + 0.724593i
\(159\) 0 0
\(160\) −3.74587e7 6.48804e7i −0.722991 1.25226i
\(161\) −978432. −0.0184774
\(162\) 0 0
\(163\) 5.83435e7 1.05520 0.527601 0.849492i \(-0.323092\pi\)
0.527601 + 0.849492i \(0.323092\pi\)
\(164\) 2.89670e7 + 5.01724e7i 0.512803 + 0.888201i
\(165\) 0 0
\(166\) 1.31302e7 2.27422e7i 0.222789 0.385883i
\(167\) −1.29183e7 + 2.23751e7i −0.214633 + 0.371755i −0.953159 0.302470i \(-0.902189\pi\)
0.738526 + 0.674225i \(0.235522\pi\)
\(168\) 0 0
\(169\) 1.83795e7 + 3.18342e7i 0.292907 + 0.507329i
\(170\) −6.64232e7 −1.03693
\(171\) 0 0
\(172\) −6.30910e7 −0.945405
\(173\) 3.17600e7 + 5.50100e7i 0.466358 + 0.807756i 0.999262 0.0384200i \(-0.0122325\pi\)
−0.532904 + 0.846176i \(0.678899\pi\)
\(174\) 0 0
\(175\) 2.36720e6 4.10011e6i 0.0333889 0.0578312i
\(176\) −1.82774e6 + 3.16575e6i −0.0252709 + 0.0437705i
\(177\) 0 0
\(178\) 2.55849e7 + 4.43144e7i 0.340028 + 0.588945i
\(179\) 8.09559e7 1.05503 0.527513 0.849547i \(-0.323125\pi\)
0.527513 + 0.849547i \(0.323125\pi\)
\(180\) 0 0
\(181\) 6.45032e7 0.808549 0.404274 0.914638i \(-0.367524\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(182\) 978816. + 1.69536e6i 0.0120351 + 0.0208455i
\(183\) 0 0
\(184\) −1.00901e7 + 1.74765e7i −0.119408 + 0.206820i
\(185\) 5.23626e7 9.06946e7i 0.608023 1.05313i
\(186\) 0 0
\(187\) 1.34550e7 + 2.33047e7i 0.150465 + 0.260614i
\(188\) 5.36632e7 0.589012
\(189\) 0 0
\(190\) −2.01708e7 −0.213346
\(191\) 2.84137e7 + 4.92140e7i 0.295060 + 0.511060i 0.974999 0.222209i \(-0.0713269\pi\)
−0.679939 + 0.733269i \(0.737994\pi\)
\(192\) 0 0
\(193\) −5.81885e7 + 1.00785e8i −0.582621 + 1.00913i 0.412546 + 0.910937i \(0.364640\pi\)
−0.995167 + 0.0981931i \(0.968694\pi\)
\(194\) −2.64804e7 + 4.58655e7i −0.260387 + 0.451003i
\(195\) 0 0
\(196\) −3.76946e7 6.52889e7i −0.357588 0.619360i
\(197\) 1.18816e8 1.10724 0.553622 0.832768i \(-0.313245\pi\)
0.553622 + 0.832768i \(0.313245\pi\)
\(198\) 0 0
\(199\) −9.50106e7 −0.854646 −0.427323 0.904099i \(-0.640543\pi\)
−0.427323 + 0.904099i \(0.640543\pi\)
\(200\) −4.88235e7 8.45648e7i −0.431543 0.747454i
\(201\) 0 0
\(202\) −3.59593e7 + 6.22833e7i −0.306959 + 0.531669i
\(203\) −1.16832e6 + 2.02359e6i −0.00980225 + 0.0169780i
\(204\) 0 0
\(205\) 1.22795e8 + 2.12687e8i 0.995502 + 1.72426i
\(206\) −4.32564e7 −0.344758
\(207\) 0 0
\(208\) −1.96579e7 −0.151466
\(209\) 4.08588e6 + 7.07695e6i 0.0309581 + 0.0536209i
\(210\) 0 0
\(211\) −8.96232e7 + 1.55232e8i −0.656798 + 1.13761i 0.324642 + 0.945837i \(0.394756\pi\)
−0.981440 + 0.191770i \(0.938577\pi\)
\(212\) 1.96907e7 3.41052e7i 0.141934 0.245836i
\(213\) 0 0
\(214\) −3.42782e7 5.93716e7i −0.239095 0.414124i
\(215\) −2.67451e8 −1.83531
\(216\) 0 0
\(217\) 1.77157e7 0.117693
\(218\) 1.20628e7 + 2.08935e7i 0.0788592 + 0.136588i
\(219\) 0 0
\(220\) −1.70071e7 + 2.94572e7i −0.107684 + 0.186514i
\(221\) −7.23559e7 + 1.25324e8i −0.450922 + 0.781019i
\(222\) 0 0
\(223\) 1.03268e8 + 1.78866e8i 0.623592 + 1.08009i 0.988811 + 0.149172i \(0.0476607\pi\)
−0.365219 + 0.930922i \(0.619006\pi\)
\(224\) 1.22941e7 0.0730853
\(225\) 0 0
\(226\) −1.06238e8 −0.612209
\(227\) 2.16977e7 + 3.75815e7i 0.123118 + 0.213247i 0.920996 0.389572i \(-0.127377\pi\)
−0.797877 + 0.602820i \(0.794044\pi\)
\(228\) 0 0
\(229\) 1.80965e7 3.13441e7i 0.0995799 0.172477i −0.811931 0.583753i \(-0.801583\pi\)
0.911511 + 0.411276i \(0.134917\pi\)
\(230\) −1.78870e7 + 3.09811e7i −0.0969369 + 0.167900i
\(231\) 0 0
\(232\) 2.40966e7 + 4.17365e7i 0.126692 + 0.219436i
\(233\) −9.22347e7 −0.477693 −0.238846 0.971057i \(-0.576769\pi\)
−0.238846 + 0.971057i \(0.576769\pi\)
\(234\) 0 0
\(235\) 2.27485e8 1.14345
\(236\) −6.00935e7 1.04085e8i −0.297602 0.515461i
\(237\) 0 0
\(238\) 5.45011e6 9.43987e6i 0.0262051 0.0453886i
\(239\) 2.49234e7 4.31686e7i 0.118090 0.204539i −0.800920 0.598771i \(-0.795656\pi\)
0.919011 + 0.394232i \(0.128989\pi\)
\(240\) 0 0
\(241\) −9.96870e7 1.72663e8i −0.458753 0.794583i 0.540142 0.841574i \(-0.318370\pi\)
−0.998895 + 0.0469902i \(0.985037\pi\)
\(242\) 1.11531e8 0.505872
\(243\) 0 0
\(244\) −2.76609e7 −0.121900
\(245\) −1.59792e8 2.76768e8i −0.694183 1.20236i
\(246\) 0 0
\(247\) −2.19724e7 + 3.80573e7i −0.0927765 + 0.160694i
\(248\) 1.82693e8 3.16434e8i 0.760574 1.31735i
\(249\) 0 0
\(250\) 4.85550e6 + 8.40997e6i 0.0196537 + 0.0340412i
\(251\) 3.94678e8 1.57538 0.787689 0.616073i \(-0.211277\pi\)
0.787689 + 0.616073i \(0.211277\pi\)
\(252\) 0 0
\(253\) 1.44930e7 0.0562649
\(254\) 5.03649e7 + 8.72345e7i 0.192846 + 0.334018i
\(255\) 0 0
\(256\) 1.04079e8 1.80271e8i 0.387725 0.671560i
\(257\) −7.14427e7 + 1.23742e8i −0.262538 + 0.454729i −0.966916 0.255096i \(-0.917893\pi\)
0.704378 + 0.709825i \(0.251226\pi\)
\(258\) 0 0
\(259\) 8.59283e6 + 1.48832e7i 0.0307317 + 0.0532289i
\(260\) −1.82916e8 −0.645425
\(261\) 0 0
\(262\) 1.00961e8 0.346815
\(263\) 2.20120e8 + 3.81260e8i 0.746131 + 1.29234i 0.949664 + 0.313269i \(0.101424\pi\)
−0.203533 + 0.979068i \(0.565243\pi\)
\(264\) 0 0
\(265\) 8.34713e7 1.44577e8i 0.275535 0.477241i
\(266\) 1.65504e6 2.86661e6i 0.00539166 0.00933863i
\(267\) 0 0
\(268\) −2.33332e7 4.04143e7i −0.0740462 0.128252i
\(269\) −2.75405e8 −0.862657 −0.431329 0.902195i \(-0.641955\pi\)
−0.431329 + 0.902195i \(0.641955\pi\)
\(270\) 0 0
\(271\) −4.24670e8 −1.29616 −0.648080 0.761572i \(-0.724428\pi\)
−0.648080 + 0.761572i \(0.724428\pi\)
\(272\) 5.47282e7 + 9.47920e7i 0.164900 + 0.285615i
\(273\) 0 0
\(274\) −8.41347e7 + 1.45726e8i −0.247086 + 0.427966i
\(275\) −3.50642e7 + 6.07329e7i −0.101671 + 0.176100i
\(276\) 0 0
\(277\) −2.58079e8 4.47006e8i −0.729581 1.26367i −0.957060 0.289889i \(-0.906382\pi\)
0.227479 0.973783i \(-0.426952\pi\)
\(278\) 7.09638e7 0.198098
\(279\) 0 0
\(280\) 3.29472e7 0.0896944
\(281\) −1.55521e8 2.69371e8i −0.418137 0.724234i 0.577616 0.816309i \(-0.303983\pi\)
−0.995752 + 0.0920753i \(0.970650\pi\)
\(282\) 0 0
\(283\) 2.97154e8 5.14686e8i 0.779344 1.34986i −0.152976 0.988230i \(-0.548886\pi\)
0.932320 0.361634i \(-0.117781\pi\)
\(284\) −2.55789e8 + 4.43040e8i −0.662625 + 1.14770i
\(285\) 0 0
\(286\) −1.44987e7 2.51125e7i −0.0366478 0.0634759i
\(287\) −4.03020e7 −0.100633
\(288\) 0 0
\(289\) 3.95426e8 0.963658
\(290\) 4.27167e7 + 7.39875e7i 0.102850 + 0.178142i
\(291\) 0 0
\(292\) 6.29778e7 1.09081e8i 0.148029 0.256394i
\(293\) 5.77574e7 1.00039e8i 0.134144 0.232344i −0.791126 0.611653i \(-0.790505\pi\)
0.925270 + 0.379309i \(0.123838\pi\)
\(294\) 0 0
\(295\) −2.54744e8 4.41230e8i −0.577733 1.00066i
\(296\) 3.54454e8 0.794400
\(297\) 0 0
\(298\) 1.24708e8 0.272984
\(299\) 3.89691e7 + 6.74965e7i 0.0843085 + 0.146027i
\(300\) 0 0
\(301\) 2.19447e7 3.80093e7i 0.0463817 0.0803355i
\(302\) 228336. 395490.i 0.000477035 0.000826249i
\(303\) 0 0
\(304\) 1.66194e7 + 2.87856e7i 0.0339279 + 0.0587648i
\(305\) −1.17258e8 −0.236643
\(306\) 0 0
\(307\) −2.60600e8 −0.514032 −0.257016 0.966407i \(-0.582739\pi\)
−0.257016 + 0.966407i \(0.582739\pi\)
\(308\) −2.79091e6 4.83400e6i −0.00544275 0.00942712i
\(309\) 0 0
\(310\) 3.23865e8 5.60951e8i 0.617445 1.06945i
\(311\) 2.88397e8 4.99519e8i 0.543663 0.941652i −0.455027 0.890478i \(-0.650370\pi\)
0.998690 0.0511744i \(-0.0162964\pi\)
\(312\) 0 0
\(313\) 2.30037e8 + 3.98436e8i 0.424026 + 0.734435i 0.996329 0.0856073i \(-0.0272831\pi\)
−0.572303 + 0.820043i \(0.693950\pi\)
\(314\) 1.93095e8 0.351979
\(315\) 0 0
\(316\) 6.36062e8 1.13395
\(317\) 3.12781e7 + 5.41752e7i 0.0551483 + 0.0955197i 0.892282 0.451479i \(-0.149103\pi\)
−0.837133 + 0.546999i \(0.815770\pi\)
\(318\) 0 0
\(319\) 1.73057e7 2.99744e7i 0.0298485 0.0516992i
\(320\) 1.28507e8 2.22580e8i 0.219230 0.379718i
\(321\) 0 0
\(322\) −2.93530e6 5.08408e6i −0.00489955 0.00848627i
\(323\) 2.44687e8 0.404020
\(324\) 0 0
\(325\) −3.77125e8 −0.609387
\(326\) 1.75030e8 + 3.03162e8i 0.279803 + 0.484633i
\(327\) 0 0
\(328\) −4.15614e8 + 7.19864e8i −0.650327 + 1.12640i
\(329\) −1.86655e7 + 3.23295e7i −0.0288970 + 0.0500511i
\(330\) 0 0
\(331\) −3.42118e8 5.92566e8i −0.518535 0.898128i −0.999768 0.0215359i \(-0.993144\pi\)
0.481233 0.876593i \(-0.340189\pi\)
\(332\) −4.02661e8 −0.603888
\(333\) 0 0
\(334\) −1.55019e8 −0.227652
\(335\) −9.89126e7 1.71322e8i −0.143746 0.248975i
\(336\) 0 0
\(337\) 3.13156e8 5.42403e8i 0.445714 0.772000i −0.552387 0.833588i \(-0.686283\pi\)
0.998102 + 0.0615875i \(0.0196163\pi\)
\(338\) −1.10277e8 + 1.91005e8i −0.155337 + 0.269052i
\(339\) 0 0
\(340\) 5.09245e8 + 8.82038e8i 0.702668 + 1.21706i
\(341\) −2.62414e8 −0.358382
\(342\) 0 0
\(343\) 1.05151e8 0.140697
\(344\) −4.52610e8 7.83943e8i −0.599472 1.03832i
\(345\) 0 0
\(346\) −1.90560e8 + 3.30060e8i −0.247324 + 0.428377i
\(347\) −6.26698e8 + 1.08547e9i −0.805203 + 1.39465i 0.110952 + 0.993826i \(0.464610\pi\)
−0.916154 + 0.400826i \(0.868723\pi\)
\(348\) 0 0
\(349\) −1.32675e8 2.29800e8i −0.167071 0.289375i 0.770318 0.637660i \(-0.220098\pi\)
−0.937389 + 0.348285i \(0.886764\pi\)
\(350\) 2.84064e7 0.0354142
\(351\) 0 0
\(352\) −1.82107e8 −0.222550
\(353\) −2.84818e8 4.93319e8i −0.344632 0.596920i 0.640655 0.767829i \(-0.278663\pi\)
−0.985287 + 0.170909i \(0.945330\pi\)
\(354\) 0 0
\(355\) −1.08432e9 + 1.87810e9i −1.28635 + 2.22803i
\(356\) 3.92302e8 6.79487e8i 0.460835 0.798190i
\(357\) 0 0
\(358\) 2.42868e8 + 4.20659e8i 0.279756 + 0.484551i
\(359\) −9.32541e8 −1.06374 −0.531872 0.846825i \(-0.678511\pi\)
−0.531872 + 0.846825i \(0.678511\pi\)
\(360\) 0 0
\(361\) −8.19567e8 −0.916874
\(362\) 1.93510e8 + 3.35168e8i 0.214399 + 0.371350i
\(363\) 0 0
\(364\) 1.50085e7 2.59955e7i 0.0163111 0.0282516i
\(365\) 2.66971e8 4.62407e8i 0.287368 0.497737i
\(366\) 0 0
\(367\) 4.26282e8 + 7.38343e8i 0.450159 + 0.779699i 0.998396 0.0566249i \(-0.0180339\pi\)
−0.548236 + 0.836323i \(0.684701\pi\)
\(368\) 5.89505e7 0.0616624
\(369\) 0 0
\(370\) 6.28351e8 0.644906
\(371\) 1.36979e7 + 2.37254e7i 0.0139266 + 0.0241215i
\(372\) 0 0
\(373\) −1.90592e8 + 3.30115e8i −0.190162 + 0.329370i −0.945304 0.326192i \(-0.894235\pi\)
0.755142 + 0.655561i \(0.227568\pi\)
\(374\) −8.07298e7 + 1.39828e8i −0.0797964 + 0.138211i
\(375\) 0 0
\(376\) 3.84975e8 + 6.66797e8i 0.373487 + 0.646898i
\(377\) 1.86128e8 0.178903
\(378\) 0 0
\(379\) −1.48353e9 −1.39978 −0.699889 0.714251i \(-0.746767\pi\)
−0.699889 + 0.714251i \(0.746767\pi\)
\(380\) 1.54643e8 + 2.67849e8i 0.144573 + 0.250408i
\(381\) 0 0
\(382\) −1.70482e8 + 2.95284e8i −0.156479 + 0.271030i
\(383\) −3.80965e8 + 6.59851e8i −0.346489 + 0.600136i −0.985623 0.168959i \(-0.945959\pi\)
0.639134 + 0.769095i \(0.279293\pi\)
\(384\) 0 0
\(385\) −1.18310e7 2.04920e7i −0.0105660 0.0183008i
\(386\) −6.98262e8 −0.617963
\(387\) 0 0
\(388\) 8.12067e8 0.705799
\(389\) 8.04509e8 + 1.39345e9i 0.692959 + 1.20024i 0.970864 + 0.239631i \(0.0770265\pi\)
−0.277905 + 0.960608i \(0.589640\pi\)
\(390\) 0 0
\(391\) 2.16983e8 3.75825e8i 0.183572 0.317956i
\(392\) 5.40835e8 9.36754e8i 0.453486 0.785460i
\(393\) 0 0
\(394\) 3.56448e8 + 6.17386e8i 0.293602 + 0.508534i
\(395\) 2.69635e9 2.20134
\(396\) 0 0
\(397\) 1.88016e9 1.50809 0.754046 0.656822i \(-0.228100\pi\)
0.754046 + 0.656822i \(0.228100\pi\)
\(398\) −2.85032e8 4.93690e8i −0.226622 0.392521i
\(399\) 0 0
\(400\) −1.42624e8 + 2.47032e8i −0.111425 + 0.192993i
\(401\) 1.34296e8 2.32608e8i 0.104006 0.180144i −0.809326 0.587360i \(-0.800167\pi\)
0.913332 + 0.407217i \(0.133501\pi\)
\(402\) 0 0
\(403\) −7.05584e8 1.22211e9i −0.537008 0.930125i
\(404\) 1.10275e9 0.832037
\(405\) 0 0
\(406\) −1.40198e7 −0.0103969
\(407\) −1.27281e8 2.20458e8i −0.0935803 0.162086i
\(408\) 0 0
\(409\) −4.49739e7 + 7.78971e7i −0.0325034 + 0.0562976i −0.881820 0.471587i \(-0.843681\pi\)
0.849316 + 0.527885i \(0.177015\pi\)
\(410\) −7.36770e8 + 1.27612e9i −0.527945 + 0.914427i
\(411\) 0 0
\(412\) 3.31632e8 + 5.74404e8i 0.233623 + 0.404647i
\(413\) 8.36083e7 0.0584015
\(414\) 0 0
\(415\) −1.70693e9 −1.17232
\(416\) −4.89653e8 8.48103e8i −0.333474 0.577593i
\(417\) 0 0
\(418\) −2.45153e7 + 4.24617e7i −0.0164180 + 0.0284368i
\(419\) 8.45271e8 1.46405e9i 0.561367 0.972317i −0.436010 0.899942i \(-0.643609\pi\)
0.997377 0.0723749i \(-0.0230578\pi\)
\(420\) 0 0
\(421\) 5.66664e8 + 9.81490e8i 0.370116 + 0.641060i 0.989583 0.143963i \(-0.0459845\pi\)
−0.619467 + 0.785023i \(0.712651\pi\)
\(422\) −1.07548e9 −0.696639
\(423\) 0 0
\(424\) 5.65037e8 0.359995
\(425\) 1.04993e9 + 1.81853e9i 0.663434 + 1.14910i
\(426\) 0 0
\(427\) 9.62118e6 1.66644e7i 0.00598041 0.0103584i
\(428\) −5.25599e8 + 9.10365e8i −0.324042 + 0.561258i
\(429\) 0 0
\(430\) −8.02353e8 1.38972e9i −0.486660 0.842921i
\(431\) −2.19943e9 −1.32324 −0.661621 0.749839i \(-0.730131\pi\)
−0.661621 + 0.749839i \(0.730131\pi\)
\(432\) 0 0
\(433\) −1.51738e8 −0.0898227 −0.0449114 0.998991i \(-0.514301\pi\)
−0.0449114 + 0.998991i \(0.514301\pi\)
\(434\) 5.31471e7 + 9.20535e7i 0.0312080 + 0.0540538i
\(435\) 0 0
\(436\) 1.84964e8 3.20367e8i 0.106877 0.185116i
\(437\) 6.58913e7 1.14127e8i 0.0377696 0.0654189i
\(438\) 0 0
\(439\) −4.95381e8 8.58026e8i −0.279456 0.484032i 0.691793 0.722095i \(-0.256821\pi\)
−0.971250 + 0.238063i \(0.923488\pi\)
\(440\) −4.88030e8 −0.273126
\(441\) 0 0
\(442\) −8.68271e8 −0.478275
\(443\) −8.86878e8 1.53612e9i −0.484675 0.839482i 0.515170 0.857088i \(-0.327729\pi\)
−0.999845 + 0.0176059i \(0.994396\pi\)
\(444\) 0 0
\(445\) 1.66302e9 2.88044e9i 0.894618 1.54952i
\(446\) −6.19611e8 + 1.07320e9i −0.330710 + 0.572806i
\(447\) 0 0
\(448\) 2.10883e7 + 3.65259e7i 0.0110807 + 0.0191924i
\(449\) 2.77010e8 0.144422 0.0722110 0.997389i \(-0.476994\pi\)
0.0722110 + 0.997389i \(0.476994\pi\)
\(450\) 0 0
\(451\) 5.96973e8 0.306434
\(452\) 8.14491e8 + 1.41074e9i 0.414860 + 0.718559i
\(453\) 0 0
\(454\) −1.30186e8 + 2.25489e8i −0.0652934 + 0.113092i
\(455\) 6.36230e7 1.10198e8i 0.0316646 0.0548448i
\(456\) 0 0
\(457\) −1.47379e9 2.55268e9i −0.722320 1.25109i −0.960068 0.279768i \(-0.909742\pi\)
0.237748 0.971327i \(-0.423591\pi\)
\(458\) 2.17159e8 0.105620
\(459\) 0 0
\(460\) 5.48533e8 0.262755
\(461\) −1.38344e9 2.39618e9i −0.657667 1.13911i −0.981218 0.192902i \(-0.938210\pi\)
0.323551 0.946211i \(-0.395123\pi\)
\(462\) 0 0
\(463\) −2.31776e8 + 4.01449e8i −0.108527 + 0.187973i −0.915174 0.403060i \(-0.867947\pi\)
0.806647 + 0.591034i \(0.201280\pi\)
\(464\) 7.03913e7 1.21921e8i 0.0327119 0.0566587i
\(465\) 0 0
\(466\) −2.76704e8 4.79265e8i −0.126667 0.219394i
\(467\) 4.17922e8 0.189883 0.0949415 0.995483i \(-0.469734\pi\)
0.0949415 + 0.995483i \(0.469734\pi\)
\(468\) 0 0
\(469\) 3.24636e7 0.0145309
\(470\) 6.82456e8 + 1.18205e9i 0.303202 + 0.525162i
\(471\) 0 0
\(472\) 8.62211e8 1.49339e9i 0.377413 0.653698i
\(473\) −3.25056e8 + 5.63013e8i −0.141236 + 0.244627i
\(474\) 0 0
\(475\) 3.18832e8 + 5.52234e8i 0.136501 + 0.236426i
\(476\) −1.67137e8 −0.0710310
\(477\) 0 0
\(478\) 2.99081e8 0.125254
\(479\) −7.54864e8 1.30746e9i −0.313830 0.543570i 0.665358 0.746524i \(-0.268279\pi\)
−0.979188 + 0.202955i \(0.934946\pi\)
\(480\) 0 0
\(481\) 6.84473e8 1.18554e9i 0.280445 0.485746i
\(482\) 5.98122e8 1.03598e9i 0.243290 0.421392i
\(483\) 0 0
\(484\) −8.55069e8 1.48102e9i −0.342801 0.593750i
\(485\) 3.44246e9 1.37016
\(486\) 0 0
\(487\) 9.29460e8 0.364653 0.182326 0.983238i \(-0.441637\pi\)
0.182326 + 0.983238i \(0.441637\pi\)
\(488\) −1.98437e8 3.43703e8i −0.0772953 0.133879i
\(489\) 0 0
\(490\) 9.58753e8 1.66061e9i 0.368146 0.637648i
\(491\) 2.56401e9 4.44100e9i 0.977541 1.69315i 0.306262 0.951947i \(-0.400922\pi\)
0.671280 0.741204i \(-0.265745\pi\)
\(492\) 0 0
\(493\) −5.18186e8 8.97525e8i −0.194770 0.337351i
\(494\) −2.63669e8 −0.0984043
\(495\) 0 0
\(496\) −1.06737e9 −0.392762
\(497\) −1.77940e8 3.08202e8i −0.0650170 0.112613i
\(498\) 0 0
\(499\) 2.05325e8 3.55633e8i 0.0739757 0.128130i −0.826665 0.562695i \(-0.809765\pi\)
0.900640 + 0.434565i \(0.143098\pi\)
\(500\) 7.44510e7 1.28953e8i 0.0266364 0.0461356i
\(501\) 0 0
\(502\) 1.18403e9 + 2.05081e9i 0.417735 + 0.723538i
\(503\) −5.02041e9 −1.75894 −0.879470 0.475954i \(-0.842103\pi\)
−0.879470 + 0.475954i \(0.842103\pi\)
\(504\) 0 0
\(505\) 4.67470e9 1.61523
\(506\) 4.34791e7 + 7.53080e7i 0.0149195 + 0.0258413i
\(507\) 0 0
\(508\) 7.72262e8 1.33760e9i 0.261361 0.452691i
\(509\) −1.62463e9 + 2.81394e9i −0.546062 + 0.945807i 0.452477 + 0.891776i \(0.350540\pi\)
−0.998539 + 0.0540314i \(0.982793\pi\)
\(510\) 0 0
\(511\) 4.38106e7 + 7.58822e7i 0.0145247 + 0.0251575i
\(512\) −1.39223e9 −0.458423
\(513\) 0 0
\(514\) −8.57312e8 −0.278463
\(515\) 1.40583e9 + 2.43497e9i 0.453532 + 0.785540i
\(516\) 0 0
\(517\) 2.76482e8 4.78881e8i 0.0879935 0.152409i
\(518\) −5.15570e7 + 8.92993e7i −0.0162980 + 0.0282289i
\(519\) 0 0
\(520\) −1.31223e9 2.27284e9i −0.409258 0.708855i
\(521\) 2.10950e9 0.653503 0.326752 0.945110i \(-0.394046\pi\)
0.326752 + 0.945110i \(0.394046\pi\)
\(522\) 0 0
\(523\) −5.28911e9 −1.61669 −0.808345 0.588709i \(-0.799636\pi\)
−0.808345 + 0.588709i \(0.799636\pi\)
\(524\) −7.74032e8 1.34066e9i −0.235017 0.407061i
\(525\) 0 0
\(526\) −1.32072e9 + 2.28756e9i −0.395696 + 0.685365i
\(527\) −3.92874e9 + 6.80477e9i −1.16927 + 2.02524i
\(528\) 0 0
\(529\) 1.58555e9 + 2.74626e9i 0.465678 + 0.806577i
\(530\) 1.00166e9 0.292249
\(531\) 0 0
\(532\) −5.07546e7 −0.0146145
\(533\) 1.60515e9 + 2.78020e9i 0.459167 + 0.795301i
\(534\) 0 0
\(535\) −2.22808e9 + 3.85916e9i −0.629062 + 1.08957i
\(536\) 3.34781e8 5.79858e8i 0.0939040 0.162646i
\(537\) 0 0
\(538\) −8.26214e8 1.43104e9i −0.228747 0.396201i
\(539\) −7.76836e8 −0.213682
\(540\) 0 0
\(541\) 3.04614e9 0.827101 0.413551 0.910481i \(-0.364288\pi\)
0.413551 + 0.910481i \(0.364288\pi\)
\(542\) −1.27401e9 2.20665e9i −0.343696 0.595300i
\(543\) 0 0
\(544\) −2.72642e9 + 4.72230e9i −0.726100 + 1.25764i
\(545\) 7.84085e8 1.35808e9i 0.207480 0.359365i
\(546\) 0 0
\(547\) 2.42768e9 + 4.20487e9i 0.634215 + 1.09849i 0.986681 + 0.162668i \(0.0520100\pi\)
−0.352466 + 0.935825i \(0.614657\pi\)
\(548\) 2.58013e9 0.669746
\(549\) 0 0
\(550\) −4.20770e8 −0.107839
\(551\) −1.57358e8 2.72552e8i −0.0400736 0.0694095i
\(552\) 0 0
\(553\) −2.21239e8 + 3.83197e8i −0.0556319 + 0.0963573i
\(554\) 1.54847e9 2.68204e9i 0.386919 0.670163i
\(555\) 0 0
\(556\) −5.44056e8 9.42332e8i −0.134240 0.232510i
\(557\) −1.27762e9 −0.313263 −0.156631 0.987657i \(-0.550063\pi\)
−0.156631 + 0.987657i \(0.550063\pi\)
\(558\) 0 0
\(559\) −3.49607e9 −0.846522
\(560\) −4.81229e7 8.33513e7i −0.0115796 0.0200565i
\(561\) 0 0
\(562\) 9.33129e8 1.61623e9i 0.221750 0.384083i
\(563\) 2.35632e9 4.08127e9i 0.556487 0.963865i −0.441299 0.897360i \(-0.645482\pi\)
0.997786 0.0665042i \(-0.0211846\pi\)
\(564\) 0 0
\(565\) 3.45273e9 + 5.98031e9i 0.805366 + 1.39493i
\(566\) 3.56585e9 0.826619
\(567\) 0 0
\(568\) −7.34003e9 −1.68066
\(569\) 2.28900e9 + 3.96466e9i 0.520898 + 0.902222i 0.999705 + 0.0243013i \(0.00773611\pi\)
−0.478807 + 0.877920i \(0.658931\pi\)
\(570\) 0 0
\(571\) −2.47560e9 + 4.28786e9i −0.556485 + 0.963860i 0.441301 + 0.897359i \(0.354517\pi\)
−0.997786 + 0.0665012i \(0.978816\pi\)
\(572\) −2.22314e8 + 3.85058e8i −0.0496684 + 0.0860281i
\(573\) 0 0
\(574\) −1.20906e8 2.09415e8i −0.0266843 0.0462186i
\(575\) 1.13093e9 0.248084
\(576\) 0 0
\(577\) 8.51847e9 1.84606 0.923031 0.384725i \(-0.125704\pi\)
0.923031 + 0.384725i \(0.125704\pi\)
\(578\) 1.18628e9 + 2.05470e9i 0.255529 + 0.442588i
\(579\) 0 0
\(580\) 6.54989e8 1.13447e9i 0.139392 0.241433i
\(581\) 1.40056e8 2.42584e8i 0.0296268 0.0513152i
\(582\) 0 0
\(583\) −2.02899e8 3.51432e8i −0.0424073 0.0734517i
\(584\) 1.80719e9 0.375455
\(585\) 0 0
\(586\) 6.93088e8 0.142281
\(587\) −2.81124e8 4.86921e8i −0.0573673 0.0993630i 0.835916 0.548858i \(-0.184937\pi\)
−0.893283 + 0.449495i \(0.851604\pi\)
\(588\) 0 0
\(589\) −1.19304e9 + 2.06641e9i −0.240576 + 0.416690i
\(590\) 1.52846e9 2.64738e9i 0.306389 0.530682i
\(591\) 0 0
\(592\) −5.17718e8 8.96714e8i −0.102557 0.177635i
\(593\) −3.62110e9 −0.713099 −0.356549 0.934277i \(-0.616047\pi\)
−0.356549 + 0.934277i \(0.616047\pi\)
\(594\) 0 0
\(595\) −7.08515e8 −0.137892
\(596\) −9.56093e8 1.65600e9i −0.184986 0.320405i
\(597\) 0 0
\(598\) −2.33815e8 + 4.04979e8i −0.0447113 + 0.0774423i
\(599\) −3.74052e9 + 6.47877e9i −0.711112 + 1.23168i 0.253328 + 0.967380i \(0.418475\pi\)
−0.964440 + 0.264301i \(0.914859\pi\)
\(600\) 0 0
\(601\) 2.90635e9 + 5.03395e9i 0.546119 + 0.945906i 0.998536 + 0.0540994i \(0.0172288\pi\)
−0.452416 + 0.891807i \(0.649438\pi\)
\(602\) 2.63336e8 0.0491953
\(603\) 0 0
\(604\) −7.00230e6 −0.00129304
\(605\) −3.62475e9 6.27825e9i −0.665479 1.15264i
\(606\) 0 0
\(607\) −1.92026e9 + 3.32598e9i −0.348497 + 0.603614i −0.985983 0.166848i \(-0.946641\pi\)
0.637486 + 0.770462i \(0.279974\pi\)
\(608\) −8.27934e8 + 1.43402e9i −0.149394 + 0.258758i
\(609\) 0 0
\(610\) −3.51775e8 6.09291e8i −0.0627495 0.108685i
\(611\) 2.97364e9 0.527405
\(612\) 0 0
\(613\) 1.70484e9 0.298932 0.149466 0.988767i \(-0.452245\pi\)
0.149466 + 0.988767i \(0.452245\pi\)
\(614\) −7.81799e8 1.35412e9i −0.136303 0.236084i
\(615\) 0 0
\(616\) 4.00435e7 6.93574e7i 0.00690239 0.0119553i
\(617\) −1.40405e9 + 2.43188e9i −0.240649 + 0.416816i −0.960899 0.276898i \(-0.910693\pi\)
0.720251 + 0.693714i \(0.244027\pi\)
\(618\) 0 0
\(619\) 1.27183e9 + 2.20287e9i 0.215532 + 0.373312i 0.953437 0.301593i \(-0.0975182\pi\)
−0.737905 + 0.674904i \(0.764185\pi\)
\(620\) −9.93187e9 −1.67363
\(621\) 0 0
\(622\) 3.46077e9 0.576642
\(623\) 2.72906e8 + 4.72687e8i 0.0452173 + 0.0783187i
\(624\) 0 0
\(625\) 3.20526e9 5.55167e9i 0.525149 0.909585i
\(626\) −1.38022e9 + 2.39062e9i −0.224874 + 0.389493i
\(627\) 0 0
\(628\) −1.48039e9 2.56412e9i −0.238517 0.413123i
\(629\) −7.62238e9 −1.22127
\(630\) 0 0
\(631\) −1.51146e8 −0.0239494 −0.0119747 0.999928i \(-0.503812\pi\)
−0.0119747 + 0.999928i \(0.503812\pi\)
\(632\) 4.56306e9 + 7.90344e9i 0.719028 + 1.24539i
\(633\) 0 0
\(634\) −1.87668e8 + 3.25051e8i −0.0292468 + 0.0506570i
\(635\) 3.27372e9 5.67025e9i 0.507380 0.878808i
\(636\) 0 0
\(637\) −2.08877e9 3.61786e9i −0.320186 0.554579i
\(638\) 2.07669e8 0.0316591
\(639\) 0 0
\(640\) −8.04735e9 −1.21345
\(641\) −6.18126e9 1.07062e10i −0.926987 1.60559i −0.788334 0.615247i \(-0.789056\pi\)
−0.138653 0.990341i \(-0.544277\pi\)
\(642\) 0 0
\(643\) −1.43372e9 + 2.48328e9i −0.212680 + 0.368372i −0.952552 0.304375i \(-0.901552\pi\)
0.739873 + 0.672747i \(0.234886\pi\)
\(644\) −4.50079e7 + 7.79559e7i −0.00664030 + 0.0115013i
\(645\) 0 0
\(646\) 7.34062e8 + 1.27143e9i 0.107132 + 0.185558i
\(647\) 4.10640e9 0.596068 0.298034 0.954555i \(-0.403669\pi\)
0.298034 + 0.954555i \(0.403669\pi\)
\(648\) 0 0
\(649\) −1.23845e9 −0.177837
\(650\) −1.13137e9 1.95960e9i −0.161588 0.279879i
\(651\) 0 0
\(652\) 2.68380e9 4.64848e9i 0.379213 0.656817i
\(653\) 3.45550e9 5.98510e9i 0.485640 0.841153i −0.514224 0.857656i \(-0.671920\pi\)
0.999864 + 0.0165027i \(0.00525320\pi\)
\(654\) 0 0
\(655\) −3.28122e9 5.68324e9i −0.456237 0.790226i
\(656\) 2.42819e9 0.335830
\(657\) 0 0
\(658\) −2.23986e8 −0.0306499
\(659\) 1.71222e9 + 2.96565e9i 0.233056 + 0.403665i 0.958706 0.284399i \(-0.0917941\pi\)
−0.725650 + 0.688064i \(0.758461\pi\)
\(660\) 0 0
\(661\) 3.38219e9 5.85812e9i 0.455504 0.788956i −0.543213 0.839595i \(-0.682792\pi\)
0.998717 + 0.0506388i \(0.0161257\pi\)
\(662\) 2.05271e9 3.55539e9i 0.274995 0.476305i
\(663\) 0 0
\(664\) −2.88865e9 5.00329e9i −0.382919 0.663236i
\(665\) −2.15155e8 −0.0283711
\(666\) 0 0
\(667\) −5.58165e8 −0.0728320
\(668\) 1.18848e9 + 2.05851e9i 0.154267 + 0.267199i
\(669\) 0 0
\(670\) 5.93475e8 1.02793e9i 0.0762326 0.132039i
\(671\) −1.42514e8 + 2.46841e8i −0.0182108 + 0.0315420i
\(672\) 0 0
\(673\) 8.74796e8 + 1.51519e9i 0.110625 + 0.191608i 0.916023 0.401127i \(-0.131381\pi\)
−0.805397 + 0.592735i \(0.798048\pi\)
\(674\) 3.75788e9 0.472752
\(675\) 0 0
\(676\) 3.38182e9 0.421053
\(677\) 4.15006e9 + 7.18811e9i 0.514036 + 0.890337i 0.999867 + 0.0162840i \(0.00518358\pi\)
−0.485831 + 0.874053i \(0.661483\pi\)
\(678\) 0 0
\(679\) −2.82458e8 + 4.89232e8i −0.0346266 + 0.0599750i
\(680\) −7.30656e9 + 1.26553e10i −0.891110 + 1.54345i
\(681\) 0 0
\(682\) −7.87242e8 1.36354e9i −0.0950305 0.164598i
\(683\) 1.21232e10 1.45594 0.727969 0.685610i \(-0.240464\pi\)
0.727969 + 0.685610i \(0.240464\pi\)
\(684\) 0 0
\(685\) 1.09375e10 1.30017
\(686\) 3.15454e8 + 5.46382e8i 0.0373080 + 0.0646193i
\(687\) 0 0
\(688\) −1.32217e9 + 2.29006e9i −0.154784 + 0.268094i
\(689\) 1.09112e9 1.88988e9i 0.127088 0.220123i
\(690\) 0 0
\(691\) −4.10923e9 7.11739e9i −0.473791 0.820631i 0.525758 0.850634i \(-0.323782\pi\)
−0.999550 + 0.0300033i \(0.990448\pi\)
\(692\) 5.84385e9 0.670390
\(693\) 0 0
\(694\) −7.52038e9 −0.854046
\(695\) −2.30632e9 3.99467e9i −0.260599 0.451371i
\(696\) 0 0
\(697\) 8.93759e9 1.54804e10i 0.999783 1.73167i
\(698\) 7.96051e8 1.37880e9i 0.0886027 0.153464i
\(699\) 0 0
\(700\) −2.17782e8 3.77210e8i −0.0239983 0.0415662i
\(701\) −4.72231e9 −0.517775 −0.258888 0.965907i \(-0.583356\pi\)
−0.258888 + 0.965907i \(0.583356\pi\)
\(702\) 0 0
\(703\) −2.31469e9 −0.251275
\(704\) −3.12370e8 5.41040e8i −0.0337415 0.0584420i
\(705\) 0 0
\(706\) 1.70891e9 2.95991e9i 0.182769 0.316565i
\(707\) −3.83566e8 + 6.64355e8i −0.0408199 + 0.0707021i
\(708\) 0 0
\(709\) −1.39487e9 2.41599e9i −0.146985 0.254585i 0.783127 0.621862i \(-0.213624\pi\)
−0.930112 + 0.367277i \(0.880290\pi\)
\(710\) −1.30119e10 −1.36438
\(711\) 0 0
\(712\) 1.12574e10 1.16885
\(713\) 2.11592e9 + 3.66488e9i 0.218618 + 0.378658i
\(714\) 0 0
\(715\) −9.42416e8 + 1.63231e9i −0.0964210 + 0.167006i
\(716\) 3.72397e9 6.45011e9i 0.379150 0.656707i
\(717\) 0 0
\(718\) −2.79762e9 4.84562e9i −0.282068 0.488556i
\(719\) −1.51985e9 −0.152493 −0.0762463 0.997089i \(-0.524294\pi\)
−0.0762463 + 0.997089i \(0.524294\pi\)
\(720\) 0 0
\(721\) −4.61401e8 −0.0458464
\(722\) −2.45870e9 4.25860e9i −0.243123 0.421101i
\(723\) 0 0
\(724\) 2.96715e9 5.13925e9i 0.290572 0.503286i
\(725\) 1.35041e9 2.33899e9i 0.131608 0.227953i
\(726\) 0 0
\(727\) 4.05880e9 + 7.03005e9i 0.391767 + 0.678560i 0.992683 0.120752i \(-0.0385307\pi\)
−0.600916 + 0.799312i \(0.705197\pi\)
\(728\) 4.30679e8 0.0413708
\(729\) 0 0
\(730\) 3.20365e9 0.304800
\(731\) 9.73316e9 + 1.68583e10i 0.921601 + 1.59626i
\(732\) 0 0
\(733\) 5.16203e9 8.94090e9i 0.484124 0.838528i −0.515709 0.856764i \(-0.672472\pi\)
0.999834 + 0.0182357i \(0.00580493\pi\)
\(734\) −2.55769e9 + 4.43006e9i −0.238733 + 0.413498i
\(735\) 0 0
\(736\) 1.46838e9 + 2.54331e9i 0.135758 + 0.235140i
\(737\) −4.80867e8 −0.0442475
\(738\) 0 0
\(739\) −1.35365e10 −1.23382 −0.616908 0.787035i \(-0.711615\pi\)
−0.616908 + 0.787035i \(0.711615\pi\)
\(740\) −4.81736e9 8.34391e9i −0.437016 0.756935i
\(741\) 0 0
\(742\) −8.21871e7 + 1.42352e8i −0.00738567 + 0.0127924i
\(743\) −8.59680e9 + 1.48901e10i −0.768910 + 1.33179i 0.169244 + 0.985574i \(0.445868\pi\)
−0.938154 + 0.346218i \(0.887466\pi\)
\(744\) 0 0
\(745\) −4.05300e9 7.02001e9i −0.359112 0.622000i
\(746\) −2.28710e9 −0.201697
\(747\) 0 0
\(748\) 2.47571e9 0.216294
\(749\) −3.65634e8 6.33297e8i −0.0317951 0.0550708i
\(750\) 0 0
\(751\) −5.62392e9 + 9.74092e9i −0.484506 + 0.839190i −0.999842 0.0177991i \(-0.994334\pi\)
0.515335 + 0.856989i \(0.327667\pi\)
\(752\) 1.12459e9 1.94786e9i 0.0964348 0.167030i
\(753\) 0 0
\(754\) 5.58384e8 + 9.67149e8i 0.0474387 + 0.0821663i
\(755\) −2.96837e7 −0.00251017
\(756\) 0 0
\(757\) 1.63068e10 1.36626 0.683131 0.730296i \(-0.260618\pi\)
0.683131 + 0.730296i \(0.260618\pi\)
\(758\) −4.45059e9 7.70865e9i −0.371172 0.642889i
\(759\) 0 0
\(760\) −2.21879e9 + 3.84305e9i −0.183345 + 0.317562i
\(761\) 3.07035e9 5.31800e9i 0.252546 0.437423i −0.711680 0.702504i \(-0.752065\pi\)
0.964226 + 0.265081i \(0.0853986\pi\)
\(762\) 0 0
\(763\) 1.28670e8 + 2.22864e8i 0.0104868 + 0.0181637i
\(764\) 5.22812e9 0.424149
\(765\) 0 0
\(766\) −4.57158e9 −0.367507
\(767\) −3.32996e9 5.76766e9i −0.266474 0.461547i
\(768\) 0 0
\(769\) −1.22534e10 + 2.12236e10i −0.971664 + 1.68297i −0.281132 + 0.959669i \(0.590710\pi\)
−0.690532 + 0.723302i \(0.742624\pi\)
\(770\) 7.09862e7 1.22952e8i 0.00560346 0.00970549i
\(771\) 0 0
\(772\) 5.35334e9 + 9.27226e9i 0.418759 + 0.725312i
\(773\) 1.01722e10 0.792110 0.396055 0.918227i \(-0.370379\pi\)
0.396055 + 0.918227i \(0.370379\pi\)
\(774\) 0 0
\(775\) −2.04769e10 −1.58018
\(776\) 5.82570e9 + 1.00904e10i 0.447540 + 0.775162i
\(777\) 0 0
\(778\) −4.82705e9 + 8.36070e9i −0.367497 + 0.636523i
\(779\) 2.71408e9 4.70093e9i 0.205704 0.356289i
\(780\) 0 0
\(781\) 2.63574e9 + 4.56523e9i 0.197981 + 0.342913i
\(782\) 2.60379e9 0.194707
\(783\) 0 0
\(784\) −3.15979e9 −0.234181
\(785\) −6.27558e9 1.08696e10i −0.463031 0.801994i
\(786\) 0 0
\(787\) 4.89567e9 8.47956e9i 0.358015 0.620100i −0.629614 0.776908i \(-0.716787\pi\)
0.987629 + 0.156808i \(0.0501204\pi\)
\(788\) 5.46554e9 9.46659e9i 0.397916 0.689211i
\(789\) 0 0
\(790\) 8.08905e9 + 1.40106e10i 0.583718 + 1.01103i
\(791\) −1.13320e9 −0.0814124
\(792\) 0 0
\(793\) −1.53277e9 −0.109150
\(794\) 5.64047e9 + 9.76959e9i 0.399893 + 0.692635i
\(795\) 0 0
\(796\) −4.37049e9 + 7.56991e9i −0.307139 + 0.531980i
\(797\) −4.87891e9 + 8.45052e9i −0.341365 + 0.591261i −0.984686 0.174335i \(-0.944222\pi\)
0.643322 + 0.765596i \(0.277556\pi\)
\(798\) 0 0
\(799\) −8.27872e9 1.43392e10i −0.574182 0.994512i
\(800\) −1.42103e10 −0.981270
\(801\) 0 0
\(802\) 1.61155e9 0.110315
\(803\) −6.48945e8 1.12401e9i −0.0442286 0.0766062i
\(804\) 0 0
\(805\) −1.90794e8 + 3.30465e8i −0.0128908 + 0.0223275i
\(806\) 4.23350e9 7.33264e9i 0.284792 0.493273i
\(807\) 0 0
\(808\) 7.91104e9 + 1.37023e10i 0.527587 + 0.913807i
\(809\) 2.78706e9 0.185066 0.0925330 0.995710i \(-0.470504\pi\)
0.0925330 + 0.995710i \(0.470504\pi\)
\(810\) 0 0
\(811\) −7.99983e9 −0.526633 −0.263316 0.964710i \(-0.584816\pi\)
−0.263316 + 0.964710i \(0.584816\pi\)
\(812\) 1.07485e8 + 1.86170e8i 0.00704537 + 0.0122029i
\(813\) 0 0
\(814\) 7.63688e8 1.32275e9i 0.0496284 0.0859590i
\(815\) 1.13770e10 1.97055e10i 0.736165 1.27508i
\(816\) 0 0
\(817\) 2.95568e9 + 5.11938e9i 0.189618 + 0.328428i
\(818\) −5.39687e8 −0.0344751
\(819\) 0 0
\(820\) 2.25943e10 1.43103
\(821\) −5.12009e9 8.86826e9i −0.322906 0.559290i 0.658180 0.752861i \(-0.271327\pi\)
−0.981086 + 0.193570i \(0.937993\pi\)
\(822\) 0 0
\(823\) −1.39341e10 + 2.41346e10i −0.871324 + 1.50918i −0.0106973 + 0.999943i \(0.503405\pi\)
−0.860627 + 0.509236i \(0.829928\pi\)
\(824\) −4.75820e9 + 8.24144e9i −0.296277 + 0.513166i
\(825\) 0 0
\(826\) 2.50825e8 + 4.34442e8i 0.0154860 + 0.0268226i
\(827\) −2.35125e10 −1.44554 −0.722769 0.691090i \(-0.757131\pi\)
−0.722769 + 0.691090i \(0.757131\pi\)
\(828\) 0 0
\(829\) −1.28598e10 −0.783960 −0.391980 0.919974i \(-0.628210\pi\)
−0.391980 + 0.919974i \(0.628210\pi\)
\(830\) −5.12080e9 8.86948e9i −0.310859 0.538424i
\(831\) 0 0
\(832\) 1.67981e9 2.90952e9i 0.101118 0.175142i
\(833\) −1.16304e10 + 2.01445e10i −0.697168 + 1.20753i
\(834\) 0 0
\(835\) 5.03812e9 + 8.72628e9i 0.299479 + 0.518712i
\(836\) 7.51802e8 0.0445022
\(837\) 0 0
\(838\) 1.01433e10 0.595420
\(839\) −3.99916e9 6.92675e9i −0.233777 0.404914i 0.725139 0.688602i \(-0.241775\pi\)
−0.958917 + 0.283688i \(0.908442\pi\)
\(840\) 0 0
\(841\) 7.95845e9 1.37844e10i 0.461363 0.799103i
\(842\) −3.39998e9 + 5.88894e9i −0.196284 + 0.339973i
\(843\) 0 0
\(844\) 8.24533e9 + 1.42813e10i 0.472074 + 0.817655i
\(845\) 1.43360e10 0.817389
\(846\) 0 0
\(847\) 1.18966e9 0.0672716
\(848\) −8.25296e8 1.42945e9i −0.0464755 0.0804979i
\(849\) 0 0
\(850\) −6.29956e9 + 1.09112e10i −0.351839 + 0.609403i
\(851\) −2.05261e9 + 3.55523e9i −0.114170 + 0.197749i
\(852\) 0 0
\(853\) −2.10414e9 3.64447e9i −0.116079 0.201054i 0.802132 0.597147i \(-0.203699\pi\)
−0.918210 + 0.396093i \(0.870366\pi\)
\(854\) 1.15454e8 0.00634318
\(855\) 0 0
\(856\) −1.50824e10 −0.821888
\(857\) 1.59653e10 + 2.76528e10i 0.866453 + 1.50074i 0.865597 + 0.500741i \(0.166939\pi\)
0.000855933 1.00000i \(0.499728\pi\)
\(858\) 0 0
\(859\) −1.09001e10 + 1.88795e10i −0.586752 + 1.01628i 0.407903 + 0.913025i \(0.366260\pi\)
−0.994655 + 0.103259i \(0.967073\pi\)
\(860\) −1.23027e10 + 2.13090e10i −0.659565 + 1.14240i
\(861\) 0 0
\(862\) −6.59828e9 1.14286e10i −0.350877 0.607737i
\(863\) −1.04728e10 −0.554657 −0.277329 0.960775i \(-0.589449\pi\)
−0.277329 + 0.960775i \(0.589449\pi\)
\(864\) 0 0
\(865\) 2.47728e10 1.30142
\(866\) −4.55214e8 7.88453e8i −0.0238178 0.0412537i
\(867\) 0 0
\(868\) 8.14923e8 1.41149e9i 0.0422958 0.0732585i
\(869\) 3.27710e9 5.67611e9i 0.169403 0.293414i
\(870\) 0 0
\(871\) −1.29296e9 2.23948e9i −0.0663015 0.114838i
\(872\) 5.30765e9 0.271078
\(873\) 0 0
\(874\) 7.90695e8 0.0400608
\(875\) 5.17920e7 + 8.97064e7i 0.00261357 + 0.00452684i
\(876\) 0 0
\(877\) 8.88935e9 1.53968e10i 0.445012 0.770783i −0.553041 0.833154i \(-0.686533\pi\)
0.998053 + 0.0623707i \(0.0198661\pi\)
\(878\) 2.97229e9 5.14815e9i 0.148204 0.256697i
\(879\) 0 0
\(880\) 7.12820e8 + 1.23464e9i 0.0352607 + 0.0610733i
\(881\) 7.64253e9 0.376549 0.188274 0.982116i \(-0.439711\pi\)
0.188274 + 0.982116i \(0.439711\pi\)
\(882\) 0 0
\(883\) −2.76375e10 −1.35094 −0.675472 0.737386i \(-0.736060\pi\)
−0.675472 + 0.737386i \(0.736060\pi\)
\(884\) 6.65674e9 + 1.15298e10i 0.324100 + 0.561358i
\(885\) 0 0
\(886\) 5.32127e9 9.21671e9i 0.257038 0.445203i
\(887\) 1.61544e10 2.79802e10i 0.777243 1.34622i −0.156282 0.987713i \(-0.549951\pi\)
0.933525 0.358512i \(-0.116716\pi\)
\(888\) 0 0
\(889\) 5.37225e8 + 9.30502e8i 0.0256449 + 0.0444182i
\(890\) 1.99562e10 0.948886
\(891\) 0 0
\(892\) 1.90014e10 0.896414
\(893\) −2.51401e9 4.35439e9i −0.118137 0.204619i
\(894\) 0 0
\(895\) 1.57864e10 2.73428e10i 0.736042 1.27486i
\(896\) 6.60296e8 1.14367e9i 0.0306662 0.0531155i
\(897\) 0 0
\(898\) 8.31031e8 + 1.43939e9i 0.0382957 + 0.0663301i
\(899\) 1.01063e10 0.463908
\(900\) 0 0
\(901\) −1.21509e10 −0.553439
\(902\) 1.79092e9 + 3.10196e9i 0.0812555 + 0.140739i
\(903\) 0 0
\(904\) −1.16862e10 + 2.02410e10i −0.526117 + 0.911262i
\(905\) 1.25781e10 2.17859e10i 0.564087 0.977027i
\(906\) 0 0
\(907\) −1.13571e10 1.96711e10i −0.505409 0.875394i −0.999980 0.00625673i \(-0.998008\pi\)
0.494572 0.869137i \(-0.335325\pi\)
\(908\) 3.99238e9 0.176983
\(909\) 0 0
\(910\) 7.63476e8 0.0335854
\(911\) 3.75463e9 + 6.50320e9i 0.164533 + 0.284979i 0.936489 0.350696i \(-0.114055\pi\)
−0.771957 + 0.635675i \(0.780722\pi\)
\(912\) 0 0
\(913\) −2.07458e9 + 3.59328e9i −0.0902157 + 0.156258i
\(914\) 8.84275e9 1.53161e10i 0.383068 0.663493i
\(915\) 0 0
\(916\) −1.66488e9 2.88366e9i −0.0715730 0.123968i
\(917\) 1.07691e9 0.0461199
\(918\) 0 0
\(919\) −2.49374e10 −1.05986 −0.529928 0.848043i \(-0.677781\pi\)
−0.529928 + 0.848043i \(0.677781\pi\)
\(920\) 3.93513e9 + 6.81585e9i 0.166610 + 0.288577i
\(921\) 0 0
\(922\) 8.30062e9 1.43771e10i 0.348781 0.604106i
\(923\) −1.41741e10 + 2.45502e10i −0.593319 + 1.02766i
\(924\) 0 0
\(925\) −9.93211e9 1.72029e10i −0.412615 0.714671i
\(926\) −2.78132e9 −0.115110
\(927\) 0 0
\(928\) 7.01342e9 0.288079
\(929\) −4.33103e9 7.50156e9i −0.177229 0.306970i 0.763701 0.645570i \(-0.223380\pi\)
−0.940931 + 0.338600i \(0.890047\pi\)
\(930\) 0 0
\(931\) −3.53182e9 + 6.11729e9i −0.143441 + 0.248448i
\(932\) −4.24280e9 + 7.34874e9i −0.171671 + 0.297343i
\(933\) 0 0
\(934\) 1.25377e9 + 2.17159e9i 0.0503503 + 0.0872093i
\(935\) 1.04949e10 0.419891
\(936\) 0 0
\(937\) 2.82655e10 1.12245 0.561226 0.827663i \(-0.310330\pi\)
0.561226 + 0.827663i \(0.310330\pi\)
\(938\) 9.73908e7 + 1.68686e8i 0.00385308 + 0.00667373i
\(939\) 0 0
\(940\) 1.04643e10 1.81248e10i 0.410926 0.711745i
\(941\) −2.33541e10 + 4.04505e10i −0.913691 + 1.58256i −0.104884 + 0.994484i \(0.533447\pi\)
−0.808807 + 0.588074i \(0.799886\pi\)
\(942\) 0 0
\(943\) −4.81356e9 8.33734e9i −0.186929 0.323770i
\(944\) −5.03740e9 −0.194897
\(945\) 0 0
\(946\) −3.90067e9 −0.149803
\(947\) −2.33696e10 4.04774e10i −0.894184 1.54877i −0.834812 0.550535i \(-0.814424\pi\)
−0.0593718 0.998236i \(-0.518910\pi\)
\(948\) 0 0
\(949\) 3.48979e9 6.04449e9i 0.132546 0.229577i
\(950\) −1.91299e9 + 3.31340e9i −0.0723904 + 0.125384i
\(951\) 0 0
\(952\) −1.19902e9 2.07677e9i −0.0450400 0.0780116i
\(953\) −3.82420e10 −1.43125 −0.715625 0.698484i \(-0.753858\pi\)
−0.715625 + 0.698484i \(0.753858\pi\)
\(954\) 0 0
\(955\) 2.21627e10 0.823399
\(956\) −2.29295e9 3.97151e9i −0.0848775 0.147012i
\(957\) 0 0
\(958\) 4.52919e9 7.84478e9i 0.166434 0.288271i
\(959\) −8.97437e8 + 1.55441e9i −0.0328578 + 0.0569114i
\(960\) 0 0
\(961\) −2.45550e10 4.25306e10i −0.892501 1.54586i
\(962\) 8.21367e9 0.297457
\(963\) 0 0
\(964\) −1.83424e10 −0.659457
\(965\) 2.26935e10 + 3.93063e10i 0.812935 + 1.40805i
\(966\) 0 0
\(967\) 2.45006e10 4.24363e10i 0.871333 1.50919i 0.0107146 0.999943i \(-0.496589\pi\)
0.860618 0.509250i \(-0.170077\pi\)
\(968\) 1.22684e10 2.12495e10i 0.434734 0.752982i
\(969\) 0 0
\(970\) 1.03274e10 + 1.78875e10i 0.363320 + 0.629288i
\(971\) −2.72929e10 −0.956713 −0.478357 0.878166i \(-0.658767\pi\)
−0.478357 + 0.878166i \(0.658767\pi\)
\(972\) 0 0
\(973\) 7.56947e8 0.0263433
\(974\) 2.78838e9 + 4.82962e9i 0.0966931 + 0.167477i
\(975\) 0 0
\(976\) −5.79676e8 + 1.00403e9i −0.0199577 + 0.0345678i
\(977\) 1.97241e9 3.41631e9i 0.0676653 0.117200i −0.830208 0.557454i \(-0.811778\pi\)
0.897873 + 0.440254i \(0.145112\pi\)
\(978\) 0 0
\(979\) −4.04242e9 7.00167e9i −0.137690 0.238486i
\(980\) −2.94018e10 −0.997889
\(981\) 0 0
\(982\) 3.07682e10 1.03684
\(983\) 2.37160e8 + 4.10774e8i 0.00796351 + 0.0137932i 0.869980 0.493088i \(-0.164132\pi\)
−0.862016 + 0.506881i \(0.830798\pi\)
\(984\) 0 0
\(985\) 2.31691e10 4.01301e10i 0.772472 1.33796i
\(986\) 3.10912e9 5.38515e9i 0.103292 0.178908i
\(987\) 0 0
\(988\) 2.02146e9 + 3.50127e9i 0.0666831 + 0.115498i
\(989\) 1.04841e10 0.344622
\(990\) 0 0
\(991\) 1.22197e10 0.398843 0.199421 0.979914i \(-0.436094\pi\)
0.199421 + 0.979914i \(0.436094\pi\)
\(992\) −2.65869e10 4.60498e10i −0.864721 1.49774i
\(993\) 0 0
\(994\) 1.06764e9 1.84921e9i 0.0344805 0.0597219i
\(995\) −1.85271e10 + 3.20898e10i −0.596247 + 1.03273i
\(996\) 0 0
\(997\) 1.80345e10 + 3.12367e10i 0.576330 + 0.998233i 0.995896 + 0.0905079i \(0.0288490\pi\)
−0.419566 + 0.907725i \(0.637818\pi\)
\(998\) 2.46390e9 0.0784631
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.c.28.1 2
3.2 odd 2 81.8.c.a.28.1 2
9.2 odd 6 81.8.c.a.55.1 2
9.4 even 3 9.8.a.a.1.1 1
9.5 odd 6 3.8.a.a.1.1 1
9.7 even 3 inner 81.8.c.c.55.1 2
36.23 even 6 48.8.a.g.1.1 1
36.31 odd 6 144.8.a.b.1.1 1
45.4 even 6 225.8.a.i.1.1 1
45.13 odd 12 225.8.b.f.199.2 2
45.14 odd 6 75.8.a.a.1.1 1
45.22 odd 12 225.8.b.f.199.1 2
45.23 even 12 75.8.b.c.49.1 2
45.32 even 12 75.8.b.c.49.2 2
63.5 even 6 147.8.e.a.67.1 2
63.13 odd 6 441.8.a.a.1.1 1
63.23 odd 6 147.8.e.b.67.1 2
63.32 odd 6 147.8.e.b.79.1 2
63.41 even 6 147.8.a.b.1.1 1
63.59 even 6 147.8.e.a.79.1 2
72.5 odd 6 192.8.a.i.1.1 1
72.13 even 6 576.8.a.w.1.1 1
72.59 even 6 192.8.a.a.1.1 1
72.67 odd 6 576.8.a.x.1.1 1
99.32 even 6 363.8.a.b.1.1 1
117.77 odd 6 507.8.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.8.a.a.1.1 1 9.5 odd 6
9.8.a.a.1.1 1 9.4 even 3
48.8.a.g.1.1 1 36.23 even 6
75.8.a.a.1.1 1 45.14 odd 6
75.8.b.c.49.1 2 45.23 even 12
75.8.b.c.49.2 2 45.32 even 12
81.8.c.a.28.1 2 3.2 odd 2
81.8.c.a.55.1 2 9.2 odd 6
81.8.c.c.28.1 2 1.1 even 1 trivial
81.8.c.c.55.1 2 9.7 even 3 inner
144.8.a.b.1.1 1 36.31 odd 6
147.8.a.b.1.1 1 63.41 even 6
147.8.e.a.67.1 2 63.5 even 6
147.8.e.a.79.1 2 63.59 even 6
147.8.e.b.67.1 2 63.23 odd 6
147.8.e.b.79.1 2 63.32 odd 6
192.8.a.a.1.1 1 72.59 even 6
192.8.a.i.1.1 1 72.5 odd 6
225.8.a.i.1.1 1 45.4 even 6
225.8.b.f.199.1 2 45.22 odd 12
225.8.b.f.199.2 2 45.13 odd 12
363.8.a.b.1.1 1 99.32 even 6
441.8.a.a.1.1 1 63.13 odd 6
507.8.a.a.1.1 1 117.77 odd 6
576.8.a.w.1.1 1 72.13 even 6
576.8.a.x.1.1 1 72.67 odd 6