Properties

Label 81.8.c.b.55.1
Level $81$
Weight $8$
Character 81.55
Analytic conductor $25.303$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.8.c.b.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(64.0000 + 110.851i) q^{4} +(-881.500 + 1526.80i) q^{7} +(-6302.50 - 10916.3i) q^{13} +(-8192.00 + 14189.0i) q^{16} +14357.0 q^{19} +(39062.5 - 67658.2i) q^{25} -225664. q^{28} +(-89458.0 - 154946. i) q^{31} -615373. q^{37} +(-517612. + 896530. i) q^{43} +(-1.14231e6 - 1.97854e6i) q^{49} +(806720. - 1.39728e6i) q^{52} +(-768600. + 1.33125e6i) q^{61} -2.09715e6 q^{64} +(2.02923e6 + 3.51473e6i) q^{67} +1.23681e6 q^{73} +(918848. + 1.59149e6i) q^{76} +(2.12271e6 - 3.67665e6i) q^{79} +2.22226e7 q^{91} +(-2.63818e6 + 4.56946e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 128 q^{4} - 1763 q^{7} - 12605 q^{13} - 16384 q^{16} + 28714 q^{19} + 78125 q^{25} - 451328 q^{28} - 178916 q^{31} - 1230746 q^{37} - 1035224 q^{43} - 2284626 q^{49} + 1613440 q^{52} - 1537199 q^{61}+ \cdots - 5276357 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 64.0000 + 110.851i 0.500000 + 0.866025i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −881.500 + 1526.80i −0.971358 + 1.68244i −0.279892 + 0.960031i \(0.590299\pi\)
−0.691466 + 0.722409i \(0.743035\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) −6302.50 10916.3i −0.795630 1.37807i −0.922438 0.386144i \(-0.873807\pi\)
0.126808 0.991927i \(-0.459527\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −8192.00 + 14189.0i −0.500000 + 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 14357.0 0.480204 0.240102 0.970748i \(-0.422819\pi\)
0.240102 + 0.970748i \(0.422819\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 39062.5 67658.2i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) −225664. −1.94272
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −89458.0 154946.i −0.539328 0.934144i −0.998940 0.0460243i \(-0.985345\pi\)
0.459612 0.888120i \(-0.347988\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −615373. −1.99725 −0.998625 0.0524236i \(-0.983305\pi\)
−0.998625 + 0.0524236i \(0.983305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) −517612. + 896530.i −0.992807 + 1.71959i −0.392716 + 0.919660i \(0.628465\pi\)
−0.600090 + 0.799932i \(0.704869\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) −1.14231e6 1.97854e6i −1.38707 2.40248i
\(50\) 0 0
\(51\) 0 0
\(52\) 806720. 1.39728e6i 0.795630 1.37807i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −768600. + 1.33125e6i −0.433556 + 0.750942i −0.997177 0.0750923i \(-0.976075\pi\)
0.563620 + 0.826034i \(0.309408\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −2.09715e6 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.02923e6 + 3.51473e6i 0.824269 + 1.42768i 0.902477 + 0.430739i \(0.141747\pi\)
−0.0782078 + 0.996937i \(0.524920\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.23681e6 0.372111 0.186056 0.982539i \(-0.440430\pi\)
0.186056 + 0.982539i \(0.440430\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 918848. + 1.59149e6i 0.240102 + 0.415869i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.12271e6 3.67665e6i 0.484392 0.838991i −0.515448 0.856921i \(-0.672374\pi\)
0.999839 + 0.0179303i \(0.00570769\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 2.22226e7 3.09137
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.63818e6 + 4.56946e6i −0.293497 + 0.508351i −0.974634 0.223805i \(-0.928152\pi\)
0.681137 + 0.732156i \(0.261486\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000e7 1.00000
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 1.09599e7 + 1.89830e7i 0.988268 + 1.71173i 0.626400 + 0.779502i \(0.284528\pi\)
0.361868 + 0.932229i \(0.382139\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −1.68240e7 −1.24433 −0.622167 0.782884i \(-0.713748\pi\)
−0.622167 + 0.782884i \(0.713748\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.44425e7 2.50151e7i −0.971358 1.68244i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.74359e6 + 1.68764e7i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.14506e7 1.98331e7i 0.539328 0.934144i
\(125\) 0 0
\(126\) 0 0
\(127\) −4.51256e7 −1.95484 −0.977418 0.211317i \(-0.932225\pi\)
−0.977418 + 0.211317i \(0.932225\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −1.26557e7 + 2.19203e7i −0.466450 + 0.807915i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) −489774. 848313.i −0.0154683 0.0267919i 0.858188 0.513336i \(-0.171591\pi\)
−0.873656 + 0.486544i \(0.838257\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −3.93839e7 6.82149e7i −0.998625 1.72967i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 4.10572e6 7.11131e6i 0.0970443 0.168086i −0.813416 0.581683i \(-0.802394\pi\)
0.910460 + 0.413597i \(0.135728\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.10057e7 7.10240e7i −0.845659 1.46472i −0.885047 0.465501i \(-0.845874\pi\)
0.0393881 0.999224i \(-0.487459\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.50255e7 −0.271752 −0.135876 0.990726i \(-0.543385\pi\)
−0.135876 + 0.990726i \(0.543385\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −4.80688e7 + 8.32575e7i −0.766054 + 1.32684i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.32509e8 −1.98561
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 6.88672e7 + 1.19281e8i 0.971358 + 1.68244i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1.53710e8 1.92676 0.963378 0.268146i \(-0.0864109\pi\)
0.963378 + 0.268146i \(0.0864109\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 5.15960e7 + 8.93669e7i 0.516613 + 0.894800i 0.999814 + 0.0192904i \(0.00614071\pi\)
−0.483201 + 0.875509i \(0.660526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.46216e8 2.53254e8i 1.38707 2.40248i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −7.37380e7 −0.663293 −0.331646 0.943404i \(-0.607604\pi\)
−0.331646 + 0.943404i \(0.607604\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 2.06520e8 1.59126
\(209\) 0 0
\(210\) 0 0
\(211\) 1.44390e7 + 2.50090e7i 0.105815 + 0.183277i 0.914071 0.405554i \(-0.132921\pi\)
−0.808256 + 0.588832i \(0.799588\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.15429e8 2.09552
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.31448e8 + 2.27675e8i −0.793759 + 1.37483i 0.129866 + 0.991532i \(0.458545\pi\)
−0.923624 + 0.383299i \(0.874788\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 1.00593e8 + 1.74232e8i 0.553534 + 0.958749i 0.998016 + 0.0629609i \(0.0200543\pi\)
−0.444482 + 0.895788i \(0.646612\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) −1.72131e8 + 2.98140e8i −0.792136 + 1.37202i 0.132506 + 0.991182i \(0.457698\pi\)
−0.924642 + 0.380838i \(0.875636\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.96761e8 −0.867113
\(245\) 0 0
\(246\) 0 0
\(247\) −9.04850e7 1.56725e8i −0.382065 0.661756i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −1.34218e8 2.32472e8i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 5.42451e8 9.39553e8i 1.94004 3.36025i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.59741e8 + 4.49885e8i −0.824269 + 1.42768i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −6.23847e8 −1.90408 −0.952041 0.305969i \(-0.901020\pi\)
−0.952041 + 0.305969i \(0.901020\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.92548e6 + 5.06708e6i −0.00827024 + 0.0143245i −0.870131 0.492821i \(-0.835966\pi\)
0.861861 + 0.507145i \(0.169299\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) 2.23802e8 + 3.87637e8i 0.586964 + 1.01665i 0.994627 + 0.103520i \(0.0330105\pi\)
−0.407663 + 0.913132i \(0.633656\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4.10339e8 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 7.91558e7 + 1.37102e8i 0.186056 + 0.322258i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −9.12550e8 1.58058e9i −1.92874 3.34068i
\(302\) 0 0
\(303\) 0 0
\(304\) −1.17613e8 + 2.03711e8i −0.240102 + 0.415869i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.79003e8 −0.353082 −0.176541 0.984293i \(-0.556491\pi\)
−0.176541 + 0.984293i \(0.556491\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −2.78504e8 + 4.82383e8i −0.513365 + 0.889175i 0.486515 + 0.873672i \(0.338268\pi\)
−0.999880 + 0.0155022i \(0.995065\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 5.43415e8 0.968783
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −9.84766e8 −1.59126
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.26161e8 + 2.18517e8i −0.191217 + 0.331197i −0.945654 0.325175i \(-0.894577\pi\)
0.754437 + 0.656372i \(0.227910\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.74047e8 + 9.94279e8i 0.817039 + 1.41515i 0.907854 + 0.419286i \(0.137719\pi\)
−0.0908150 + 0.995868i \(0.528947\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.57589e9 3.44665
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 4.44540e8 7.69967e8i 0.559786 0.969578i −0.437728 0.899108i \(-0.644217\pi\)
0.997514 0.0704706i \(-0.0224501\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6.87748e8 −0.769404
\(362\) 0 0
\(363\) 0 0
\(364\) 1.42225e9 + 2.46340e9i 1.54568 + 2.67720i
\(365\) 0 0
\(366\) 0 0
\(367\) 9.26445e8 1.60465e9i 0.978336 1.69453i 0.309882 0.950775i \(-0.399710\pi\)
0.668454 0.743754i \(-0.266956\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.74912e8 1.16898e9i −0.673389 1.16634i −0.976937 0.213528i \(-0.931505\pi\)
0.303548 0.952816i \(-0.401829\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.28135e8 0.781383 0.390692 0.920522i \(-0.372236\pi\)
0.390692 + 0.920522i \(0.372236\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −6.75374e8 −0.586993
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.90824e9 1.53062 0.765308 0.643665i \(-0.222587\pi\)
0.765308 + 0.643665i \(0.222587\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.40000e8 + 1.10851e9i 0.500000 + 0.866025i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) −1.12762e9 + 1.95309e9i −0.858212 + 1.48647i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.34610e8 + 4.06356e8i 0.169557 + 0.293681i 0.938264 0.345920i \(-0.112433\pi\)
−0.768707 + 0.639601i \(0.779100\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.40286e9 + 2.42983e9i −0.988268 + 1.71173i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 3.46148e8 5.99547e8i 0.226087 0.391594i −0.730558 0.682850i \(-0.760740\pi\)
0.956645 + 0.291257i \(0.0940734\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.35504e9 2.34700e9i −0.842277 1.45887i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −1.11566e9 −0.660424 −0.330212 0.943907i \(-0.607120\pi\)
−0.330212 + 0.943907i \(0.607120\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.07674e9 1.86496e9i −0.622167 1.07763i
\(437\) 0 0
\(438\) 0 0
\(439\) 1.62577e9 2.81592e9i 0.917135 1.58853i 0.113391 0.993550i \(-0.463829\pi\)
0.803744 0.594975i \(-0.202838\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.84864e9 3.20194e9i 0.971358 1.68244i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.03355e9 + 3.52221e9i −0.996661 + 1.72627i −0.427619 + 0.903959i \(0.640647\pi\)
−0.569042 + 0.822308i \(0.692686\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) −1.54006e9 2.66746e9i −0.721114 1.24901i −0.960554 0.278094i \(-0.910297\pi\)
0.239440 0.970911i \(-0.423036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −7.15506e9 −3.20264
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 5.60820e8 9.71369e8i 0.240102 0.415869i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 3.87839e9 + 6.71757e9i 1.58907 + 2.75235i
\(482\) 0 0
\(483\) 0 0
\(484\) −1.24718e9 + 2.16018e9i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −4.48049e9 −1.75782 −0.878910 0.476988i \(-0.841728\pi\)
−0.878910 + 0.476988i \(0.841728\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 2.93136e9 1.07866
\(497\) 0 0
\(498\) 0 0
\(499\) −1.77574e9 3.07567e9i −0.639775 1.10812i −0.985482 0.169780i \(-0.945694\pi\)
0.345707 0.938343i \(-0.387639\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −2.88804e9 5.00223e9i −0.977418 1.69294i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −1.09025e9 + 1.88836e9i −0.361453 + 0.626055i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 4.97447e9 1.52052 0.760258 0.649621i \(-0.225072\pi\)
0.760258 + 0.649621i \(0.225072\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.70241e9 2.94867e9i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) −3.23986e9 −0.932900
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.36581e9 2.00000 1.00000 0.000770940i \(-0.000245398\pi\)
1.00000 0.000770940i \(0.000245398\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5.70743e8 + 9.88556e8i −0.149103 + 0.258253i −0.930896 0.365284i \(-0.880972\pi\)
0.781793 + 0.623537i \(0.214305\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 3.74234e9 + 6.48193e9i 0.941035 + 1.62992i
\(554\) 0 0
\(555\) 0 0
\(556\) 6.26910e7 1.08584e8i 0.0154683 0.0267919i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 1.30490e10 3.15963
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 4.33318e9 + 7.50529e9i 0.974048 + 1.68710i 0.683042 + 0.730379i \(0.260657\pi\)
0.291006 + 0.956721i \(0.406010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9.21890e9 −1.99785 −0.998927 0.0463088i \(-0.985254\pi\)
−0.998927 + 0.0463088i \(0.985254\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) −1.28435e9 2.22456e9i −0.258988 0.448580i
\(590\) 0 0
\(591\) 0 0
\(592\) 5.04114e9 8.73150e9i 0.998625 1.72967i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −3.70827e9 + 6.42291e9i −0.696804 + 1.20690i 0.272765 + 0.962081i \(0.412062\pi\)
−0.969569 + 0.244819i \(0.921272\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.05106e9 0.194089
\(605\) 0 0
\(606\) 0 0
\(607\) 4.07074e9 + 7.05073e9i 0.738776 + 1.27960i 0.953047 + 0.302824i \(0.0979293\pi\)
−0.214270 + 0.976774i \(0.568737\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.09176e9 −1.24349 −0.621745 0.783220i \(-0.713576\pi\)
−0.621745 + 0.783220i \(0.713576\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) 0 0
\(619\) 3.80567e9 6.59162e9i 0.644932 1.11706i −0.339385 0.940648i \(-0.610219\pi\)
0.984317 0.176408i \(-0.0564478\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.05176e9 5.28580e9i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 5.24873e9 9.09107e9i 0.845659 1.46472i
\(629\) 0 0
\(630\) 0 0
\(631\) 9.94859e9 1.57637 0.788186 0.615437i \(-0.211021\pi\)
0.788186 + 0.615437i \(0.211021\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.43989e10 + 2.49395e10i −2.20719 + 3.82297i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) −5.24727e8 9.08854e8i −0.0778386 0.134820i 0.824479 0.565893i \(-0.191469\pi\)
−0.902317 + 0.431073i \(0.858135\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −9.61634e8 1.66560e9i −0.135876 0.235344i
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) −4.10174e9 7.10442e9i −0.552412 0.956806i −0.998100 0.0616172i \(-0.980374\pi\)
0.445688 0.895188i \(-0.352959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.24739e9 9.08874e9i 0.663576 1.14935i −0.316094 0.948728i \(-0.602371\pi\)
0.979669 0.200619i \(-0.0642953\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.23056e10 −1.53211
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) −4.65111e9 8.05596e9i −0.570180 0.987581i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −8.48056e9 1.46888e10i −0.992807 1.71959i
\(689\) 0 0
\(690\) 0 0
\(691\) 7.60521e9 1.31726e10i 0.876876 1.51879i 0.0221249 0.999755i \(-0.492957\pi\)
0.854751 0.519038i \(-0.173710\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −8.81500e9 + 1.52680e10i −0.971358 + 1.68244i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −8.83491e9 −0.959088
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.35457e9 + 1.27385e10i −0.774989 + 1.34232i 0.159811 + 0.987148i \(0.448912\pi\)
−0.934800 + 0.355173i \(0.884422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −3.86445e10 −3.83985
\(722\) 0 0
\(723\) 0 0
\(724\) 9.83743e9 + 1.70389e10i 0.963378 + 1.66862i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.00798e9 6.94202e9i 0.386861 0.670063i −0.605165 0.796100i \(-0.706893\pi\)
0.992025 + 0.126038i \(0.0402261\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 9.88662e9 + 1.71241e10i 0.927223 + 1.60600i 0.787947 + 0.615743i \(0.211144\pi\)
0.139275 + 0.990254i \(0.455523\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.90404e10 1.73549 0.867743 0.497013i \(-0.165570\pi\)
0.867743 + 0.497013i \(0.165570\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.16816e9 7.21947e9i −0.359091 0.621964i 0.628718 0.777633i \(-0.283580\pi\)
−0.987809 + 0.155669i \(0.950247\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.61656e10 1.35443 0.677213 0.735787i \(-0.263187\pi\)
0.677213 + 0.735787i \(0.263187\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 1.48304e10 2.56870e10i 1.20869 2.09352i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1.21501e10 2.10447e10i −0.963472 1.66878i −0.713665 0.700487i \(-0.752966\pi\)
−0.249807 0.968296i \(-0.580367\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.60429e9 + 1.14390e10i −0.516613 + 0.894800i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −1.39778e10 −1.07866
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 3.74313e10 2.77414
\(785\) 0 0
\(786\) 0 0
\(787\) 1.11711e10 + 1.93488e10i 0.816926 + 1.41496i 0.907937 + 0.419107i \(0.137657\pi\)
−0.0910110 + 0.995850i \(0.529010\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.93764e10 1.37980
\(794\) 0 0
\(795\) 0 0
\(796\) −4.71923e9 8.17395e9i −0.331646 0.574429i
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 8.58179e9 0.564944 0.282472 0.959276i \(-0.408846\pi\)
0.282472 + 0.959276i \(0.408846\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.43136e9 + 1.28715e10i −0.476750 + 0.825755i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) 9.17153e9 + 1.58856e10i 0.573512 + 0.993352i 0.996202 + 0.0870772i \(0.0277527\pi\)
−0.422690 + 0.906274i \(0.638914\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 2.47130e10 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.32173e10 + 2.28930e10i 0.795630 + 1.37807i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 8.62494e9 + 1.49388e10i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.84819e9 + 3.20116e9i −0.105815 + 0.183277i
\(845\) 0 0
\(846\) 0 0
\(847\) −3.43559e10 −1.94272
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.77096e10 + 3.06739e10i −0.976981 + 1.69218i −0.303745 + 0.952754i \(0.598237\pi\)
−0.673237 + 0.739427i \(0.735096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) −1.85768e10 3.21759e10i −0.999986 1.73203i −0.504617 0.863343i \(-0.668366\pi\)
−0.495368 0.868683i \(-0.664967\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 2.01875e10 + 3.49657e10i 1.04776 + 1.81478i
\(869\) 0 0
\(870\) 0 0
\(871\) 2.55784e10 4.43031e10i 1.31163 2.27180i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.63166e10 2.82611e10i −0.816828 1.41479i −0.908008 0.418953i \(-0.862397\pi\)
0.0911805 0.995834i \(-0.470936\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −4.16837e9 −0.203753 −0.101876 0.994797i \(-0.532485\pi\)
−0.101876 + 0.994797i \(0.532485\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 3.97782e10 6.88979e10i 1.89884 3.28889i
\(890\) 0 0
\(891\) 0 0
\(892\) −3.36508e10 −1.58752
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.75341e10 + 3.03699e10i −0.780293 + 1.35151i 0.151479 + 0.988461i \(0.451597\pi\)
−0.931771 + 0.363046i \(0.881737\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.28759e10 + 2.23017e10i −0.553534 + 0.958749i
\(917\) 0 0
\(918\) 0 0
\(919\) 3.77715e10 1.60532 0.802658 0.596440i \(-0.203419\pi\)
0.802658 + 0.596440i \(0.203419\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −2.40380e10 + 4.16351e10i −0.998625 + 1.72967i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) −1.64002e10 2.84060e10i −0.666078 1.15368i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −4.17131e10 −1.65647 −0.828236 0.560379i \(-0.810655\pi\)
−0.828236 + 0.560379i \(0.810655\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) −7.79499e9 1.35013e10i −0.296063 0.512796i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.24916e9 + 3.89566e9i −0.0817502 + 0.141595i
\(962\) 0 0
\(963\) 0 0
\(964\) −4.40656e10 −1.58427
\(965\) 0 0
\(966\) 0 0
\(967\) −2.66355e10 4.61341e10i −0.947260 1.64070i −0.751163 0.660117i \(-0.770507\pi\)
−0.196097 0.980585i \(-0.562827\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 1.72694e9 0.0601011
\(974\) 0 0
\(975\) 0 0
\(976\) −1.25927e10 2.18113e10i −0.433556 0.750942i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.15821e10 2.00607e10i 0.382065 0.661756i
\(989\) 0 0
\(990\) 0 0
\(991\) 1.10040e10 0.359163 0.179581 0.983743i \(-0.442526\pi\)
0.179581 + 0.983743i \(0.442526\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.80718e10 + 4.86218e10i −0.897093 + 1.55381i −0.0659013 + 0.997826i \(0.520992\pi\)
−0.831192 + 0.555985i \(0.812341\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.b.55.1 2
3.2 odd 2 CM 81.8.c.b.55.1 2
9.2 odd 6 27.8.a.a.1.1 1
9.4 even 3 inner 81.8.c.b.28.1 2
9.5 odd 6 inner 81.8.c.b.28.1 2
9.7 even 3 27.8.a.a.1.1 1
36.7 odd 6 432.8.a.d.1.1 1
36.11 even 6 432.8.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.a.1.1 1 9.2 odd 6
27.8.a.a.1.1 1 9.7 even 3
81.8.c.b.28.1 2 9.4 even 3 inner
81.8.c.b.28.1 2 9.5 odd 6 inner
81.8.c.b.55.1 2 1.1 even 1 trivial
81.8.c.b.55.1 2 3.2 odd 2 CM
432.8.a.d.1.1 1 36.7 odd 6
432.8.a.d.1.1 1 36.11 even 6