Properties

Label 81.8.c.b
Level $81$
Weight $8$
Character orbit 81.c
Analytic conductor $25.303$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 128 \zeta_{6} q^{4} + (1763 \zeta_{6} - 1763) q^{7} - 12605 \zeta_{6} q^{13} + (16384 \zeta_{6} - 16384) q^{16} + 14357 q^{19} + ( - 78125 \zeta_{6} + 78125) q^{25} - 225664 q^{28} - 178916 \zeta_{6} q^{31} + \cdots + (5276357 \zeta_{6} - 5276357) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 128 q^{4} - 1763 q^{7} - 12605 q^{13} - 16384 q^{16} + 28714 q^{19} + 78125 q^{25} - 451328 q^{28} - 178916 q^{31} - 1230746 q^{37} - 1035224 q^{43} - 2284626 q^{49} + 1613440 q^{52} - 1537199 q^{61}+ \cdots - 5276357 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 64.0000 110.851i 0 0 −881.500 1526.80i 0 0 0
55.1 0 0 64.0000 + 110.851i 0 0 −881.500 + 1526.80i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.c.b 2
3.b odd 2 1 CM 81.8.c.b 2
9.c even 3 1 27.8.a.a 1
9.c even 3 1 inner 81.8.c.b 2
9.d odd 6 1 27.8.a.a 1
9.d odd 6 1 inner 81.8.c.b 2
36.f odd 6 1 432.8.a.d 1
36.h even 6 1 432.8.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.8.a.a 1 9.c even 3 1
27.8.a.a 1 9.d odd 6 1
81.8.c.b 2 1.a even 1 1 trivial
81.8.c.b 2 3.b odd 2 1 CM
81.8.c.b 2 9.c even 3 1 inner
81.8.c.b 2 9.d odd 6 1 inner
432.8.a.d 1 36.f odd 6 1
432.8.a.d 1 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{8}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1763 T + 3108169 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 12605 T + 158886025 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 14357)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 32010935056 \) Copy content Toggle raw display
$37$ \( (T + 615373)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 1071688730176 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2362980765601 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 16471056987025 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 1236809)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 18023650412329 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 27839943191449 \) Copy content Toggle raw display
show more
show less