Properties

Label 81.8.c.a
Level $81$
Weight $8$
Character orbit 81.c
Analytic conductor $25.303$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (6 \zeta_{6} - 6) q^{2} + 92 \zeta_{6} q^{4} - 390 \zeta_{6} q^{5} + ( - 64 \zeta_{6} + 64) q^{7} - 1320 q^{8} + 2340 q^{10} + ( - 948 \zeta_{6} + 948) q^{11} + 5098 \zeta_{6} q^{13} + 384 \zeta_{6} q^{14} + \cdots - 4916682 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} + 92 q^{4} - 390 q^{5} + 64 q^{7} - 2640 q^{8} + 4680 q^{10} + 948 q^{11} + 5098 q^{13} + 384 q^{14} - 3856 q^{16} + 56772 q^{17} - 17240 q^{19} + 35880 q^{20} + 5688 q^{22} + 15288 q^{23}+ \cdots - 9833364 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 0.866025i
0.500000 + 0.866025i
−3.00000 5.19615i 0 46.0000 79.6743i −195.000 + 337.750i 0 32.0000 + 55.4256i −1320.00 0 2340.00
55.1 −3.00000 + 5.19615i 0 46.0000 + 79.6743i −195.000 337.750i 0 32.0000 55.4256i −1320.00 0 2340.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.8.c.a 2
3.b odd 2 1 81.8.c.c 2
9.c even 3 1 3.8.a.a 1
9.c even 3 1 inner 81.8.c.a 2
9.d odd 6 1 9.8.a.a 1
9.d odd 6 1 81.8.c.c 2
36.f odd 6 1 48.8.a.g 1
36.h even 6 1 144.8.a.b 1
45.h odd 6 1 225.8.a.i 1
45.j even 6 1 75.8.a.a 1
45.k odd 12 2 75.8.b.c 2
45.l even 12 2 225.8.b.f 2
63.g even 3 1 147.8.e.b 2
63.h even 3 1 147.8.e.b 2
63.k odd 6 1 147.8.e.a 2
63.l odd 6 1 147.8.a.b 1
63.o even 6 1 441.8.a.a 1
63.t odd 6 1 147.8.e.a 2
72.j odd 6 1 576.8.a.w 1
72.l even 6 1 576.8.a.x 1
72.n even 6 1 192.8.a.i 1
72.p odd 6 1 192.8.a.a 1
99.h odd 6 1 363.8.a.b 1
117.t even 6 1 507.8.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.8.a.a 1 9.c even 3 1
9.8.a.a 1 9.d odd 6 1
48.8.a.g 1 36.f odd 6 1
75.8.a.a 1 45.j even 6 1
75.8.b.c 2 45.k odd 12 2
81.8.c.a 2 1.a even 1 1 trivial
81.8.c.a 2 9.c even 3 1 inner
81.8.c.c 2 3.b odd 2 1
81.8.c.c 2 9.d odd 6 1
144.8.a.b 1 36.h even 6 1
147.8.a.b 1 63.l odd 6 1
147.8.e.a 2 63.k odd 6 1
147.8.e.a 2 63.t odd 6 1
147.8.e.b 2 63.g even 3 1
147.8.e.b 2 63.h even 3 1
192.8.a.a 1 72.p odd 6 1
192.8.a.i 1 72.n even 6 1
225.8.a.i 1 45.h odd 6 1
225.8.b.f 2 45.l even 12 2
363.8.a.b 1 99.h odd 6 1
441.8.a.a 1 63.o even 6 1
507.8.a.a 1 117.t even 6 1
576.8.a.w 1 72.j odd 6 1
576.8.a.x 1 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 6T_{2} + 36 \) acting on \(S_{8}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 390T + 152100 \) Copy content Toggle raw display
$7$ \( T^{2} - 64T + 4096 \) Copy content Toggle raw display
$11$ \( T^{2} - 948T + 898704 \) Copy content Toggle raw display
$13$ \( T^{2} - 5098 T + 25989604 \) Copy content Toggle raw display
$17$ \( (T - 28386)^{2} \) Copy content Toggle raw display
$19$ \( (T + 8620)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 15288 T + 233722944 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 1332980100 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 76622668864 \) Copy content Toggle raw display
$37$ \( (T - 268526)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 396544759524 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 470283235984 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 340234223616 \) Copy content Toggle raw display
$53$ \( (T + 428058)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1706628704400 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 90397638244 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 257296475536 \) Copy content Toggle raw display
$71$ \( (T - 5560632)^{2} \) Copy content Toggle raw display
$73$ \( (T - 1369082)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 47799524238400 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 19155923055504 \) Copy content Toggle raw display
$89$ \( (T + 8528310)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 77912645390596 \) Copy content Toggle raw display
show more
show less