Properties

Label 81.6.c.h
Level $81$
Weight $6$
Character orbit 81.c
Analytic conductor $12.991$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,6,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9910894049\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 4 \beta_1) q^{2} + (9 \beta_{3} + 9 \beta_{2} + 22 \beta_1 - 31) q^{4} + (10 \beta_{3} + 10 \beta_{2} + \cdots + 31) q^{5} + (18 \beta_{2} - 5 \beta_1) q^{7} + (35 \beta_{3} - 337) q^{8}+ \cdots + ( - 3750 \beta_{3} + 16158) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} - 53 q^{4} + 72 q^{5} + 8 q^{7} - 1278 q^{8} - 882 q^{10} + 522 q^{11} + 704 q^{13} - 1413 q^{14} - 3857 q^{16} - 432 q^{17} - 5680 q^{19} - 4977 q^{20} + 99 q^{22} - 36 q^{23} - 3992 q^{25}+ \cdots + 57132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} - 5\nu + 16 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 5\nu^{2} + 65\nu - 16 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} + 22 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 13\beta _1 - 14 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} - 22 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−0.780776 1.35234i
1.28078 + 2.21837i
−0.780776 + 1.35234i
1.28078 2.21837i
−0.842329 1.45896i 0 14.5810 25.2550i 48.9233 84.7376i 0 −53.6619 92.9452i −103.037 0 −164.838
28.2 5.34233 + 9.25319i 0 −41.0810 + 71.1543i −12.9233 + 22.3838i 0 57.6619 + 99.8734i −535.963 0 −276.162
55.1 −0.842329 + 1.45896i 0 14.5810 + 25.2550i 48.9233 + 84.7376i 0 −53.6619 + 92.9452i −103.037 0 −164.838
55.2 5.34233 9.25319i 0 −41.0810 71.1543i −12.9233 22.3838i 0 57.6619 99.8734i −535.963 0 −276.162
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.6.c.h 4
3.b odd 2 1 81.6.c.d 4
9.c even 3 1 27.6.a.b 2
9.c even 3 1 inner 81.6.c.h 4
9.d odd 6 1 27.6.a.d yes 2
9.d odd 6 1 81.6.c.d 4
36.f odd 6 1 432.6.a.k 2
36.h even 6 1 432.6.a.v 2
45.h odd 6 1 675.6.a.f 2
45.j even 6 1 675.6.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.6.a.b 2 9.c even 3 1
27.6.a.d yes 2 9.d odd 6 1
81.6.c.d 4 3.b odd 2 1
81.6.c.d 4 9.d odd 6 1
81.6.c.h 4 1.a even 1 1 trivial
81.6.c.h 4 9.c even 3 1 inner
432.6.a.k 2 36.f odd 6 1
432.6.a.v 2 36.h even 6 1
675.6.a.f 2 45.h odd 6 1
675.6.a.n 2 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 9T_{2}^{3} + 99T_{2}^{2} + 162T_{2} + 324 \) acting on \(S_{6}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 9 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 72 T^{3} + \cdots + 6395841 \) Copy content Toggle raw display
$7$ \( T^{4} - 8 T^{3} + \cdots + 153190129 \) Copy content Toggle raw display
$11$ \( T^{4} - 522 T^{3} + \cdots + 838276209 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 5532979456 \) Copy content Toggle raw display
$17$ \( (T^{2} + 216 T - 1067904)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 2840 T + 1570252)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 3705887376 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 102809237181121 \) Copy content Toggle raw display
$37$ \( (T^{2} - 9004 T - 24346796)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 24\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 83\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4536 T - 176302089)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 43\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{2} - 43848 T - 374378112)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 47218 T + 300403633)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 37\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 94\!\cdots\!81 \) Copy content Toggle raw display
$89$ \( (T^{2} - 35856 T - 3686257188)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 40\!\cdots\!21 \) Copy content Toggle raw display
show more
show less