Properties

Label 81.6.c.b.55.1
Level $81$
Weight $6$
Character 81.55
Analytic conductor $12.991$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,6,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9910894049\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.6.c.b.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(16.0000 + 27.7128i) q^{4} +(105.500 - 182.731i) q^{7} +(387.500 + 671.170i) q^{13} +(-512.000 + 886.810i) q^{16} +3143.00 q^{19} +(1562.50 - 2706.33i) q^{25} +6752.00 q^{28} +(5162.00 + 8940.85i) q^{31} -9889.00 q^{37} +(1676.00 - 2902.92i) q^{43} +(-13857.0 - 24001.0i) q^{49} +(-12400.0 + 21477.4i) q^{52} +(9150.50 - 15849.1i) q^{61} -32768.0 q^{64} +(-36737.5 - 63631.2i) q^{67} -78127.0 q^{73} +(50288.0 + 87101.4i) q^{76} +(-4853.50 + 8406.51i) q^{79} +163525. q^{91} +(21669.5 - 37532.7i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{4} + 211 q^{7} + 775 q^{13} - 1024 q^{16} + 6286 q^{19} + 3125 q^{25} + 13504 q^{28} + 10324 q^{31} - 19778 q^{37} + 3352 q^{43} - 27714 q^{49} - 24800 q^{52} + 18301 q^{61} - 65536 q^{64} - 73475 q^{67}+ \cdots + 43339 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 16.0000 + 27.7128i 0.500000 + 0.866025i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 105.500 182.731i 0.813781 1.40951i −0.0964195 0.995341i \(-0.530739\pi\)
0.910200 0.414169i \(-0.135928\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 387.500 + 671.170i 0.635936 + 1.10147i 0.986316 + 0.164866i \(0.0527191\pi\)
−0.350380 + 0.936608i \(0.613948\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −512.000 + 886.810i −0.500000 + 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 3143.00 1.99738 0.998689 0.0511835i \(-0.0162993\pi\)
0.998689 + 0.0511835i \(0.0162993\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 1562.50 2706.33i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 6752.00 1.62756
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 5162.00 + 8940.85i 0.964748 + 1.67099i 0.710291 + 0.703908i \(0.248563\pi\)
0.254456 + 0.967084i \(0.418103\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9889.00 −1.18754 −0.593770 0.804635i \(-0.702361\pi\)
−0.593770 + 0.804635i \(0.702361\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 1676.00 2902.92i 0.138230 0.239422i −0.788597 0.614911i \(-0.789192\pi\)
0.926827 + 0.375489i \(0.122525\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) −13857.0 24001.0i −0.824478 1.42804i
\(50\) 0 0
\(51\) 0 0
\(52\) −12400.0 + 21477.4i −0.635936 + 1.10147i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 9150.50 15849.1i 0.314862 0.545357i −0.664546 0.747247i \(-0.731375\pi\)
0.979408 + 0.201890i \(0.0647084\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −32768.0 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −36737.5 63631.2i −0.999822 1.73174i −0.516260 0.856432i \(-0.672676\pi\)
−0.483561 0.875310i \(-0.660657\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −78127.0 −1.71591 −0.857954 0.513727i \(-0.828265\pi\)
−0.857954 + 0.513727i \(0.828265\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 50288.0 + 87101.4i 0.998689 + 1.72978i
\(77\) 0 0
\(78\) 0 0
\(79\) −4853.50 + 8406.51i −0.0874958 + 0.151547i −0.906452 0.422309i \(-0.861220\pi\)
0.818956 + 0.573856i \(0.194553\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 163525. 2.07005
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 21669.5 37532.7i 0.233840 0.405023i −0.725095 0.688649i \(-0.758204\pi\)
0.958935 + 0.283626i \(0.0915373\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 100000. 1.00000
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −35288.5 61121.5i −0.327748 0.567676i 0.654317 0.756221i \(-0.272956\pi\)
−0.982065 + 0.188544i \(0.939623\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 114482. 0.922935 0.461467 0.887157i \(-0.347323\pi\)
0.461467 + 0.887157i \(0.347323\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 108032. + 187117.i 0.813781 + 1.40951i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 80525.5 + 139474.i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −165184. + 286107.i −0.964748 + 1.67099i
\(125\) 0 0
\(126\) 0 0
\(127\) −267100. −1.46948 −0.734742 0.678347i \(-0.762697\pi\)
−0.734742 + 0.678347i \(0.762697\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 331586. 574325.i 1.62543 2.81532i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) −101096. 175104.i −0.443812 0.768705i 0.554157 0.832412i \(-0.313041\pi\)
−0.997969 + 0.0637074i \(0.979708\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −158224. 274052.i −0.593770 1.02844i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) −268176. + 464494.i −0.957143 + 1.65782i −0.227756 + 0.973718i \(0.573139\pi\)
−0.729387 + 0.684102i \(0.760194\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −54607.0 94582.1i −0.176807 0.306239i 0.763978 0.645242i \(-0.223243\pi\)
−0.940785 + 0.339004i \(0.889910\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −352375. −1.03881 −0.519405 0.854528i \(-0.673846\pi\)
−0.519405 + 0.854528i \(0.673846\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −114666. + 198607.i −0.308829 + 0.534907i
\(170\) 0 0
\(171\) 0 0
\(172\) 107264. 0.276460
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −329688. 571036.i −0.813781 1.40951i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −853027. −1.93538 −0.967690 0.252142i \(-0.918865\pi\)
−0.967690 + 0.252142i \(0.918865\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 510588. + 884365.i 0.986683 + 1.70899i 0.634204 + 0.773166i \(0.281328\pi\)
0.352480 + 0.935820i \(0.385339\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 443424. 768033.i 0.824478 1.42804i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 1.01476e6 1.81648 0.908241 0.418448i \(-0.137426\pi\)
0.908241 + 0.418448i \(0.137426\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −793600. −1.27187
\(209\) 0 0
\(210\) 0 0
\(211\) 473662. + 820406.i 0.732423 + 1.26859i 0.955845 + 0.293872i \(0.0949439\pi\)
−0.223422 + 0.974722i \(0.571723\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.17836e6 3.14037
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −152026. + 263317.i −0.204718 + 0.354582i −0.950043 0.312120i \(-0.898961\pi\)
0.745325 + 0.666701i \(0.232294\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) −634909. 1.09969e6i −0.800060 1.38575i −0.919576 0.392913i \(-0.871467\pi\)
0.119515 0.992832i \(-0.461866\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) −218288. + 378087.i −0.242096 + 0.419323i −0.961311 0.275465i \(-0.911168\pi\)
0.719215 + 0.694788i \(0.244502\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 585632. 0.629724
\(245\) 0 0
\(246\) 0 0
\(247\) 1.21791e6 + 2.10949e6i 1.27020 + 2.20006i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −524288. 908093.i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) −1.04329e6 + 1.80703e6i −0.966397 + 1.67385i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.17560e6 2.03620e6i 0.999822 1.73174i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −1.88700e6 −1.56081 −0.780403 0.625277i \(-0.784986\pi\)
−0.780403 + 0.625277i \(0.784986\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.24331e6 2.15347e6i 0.973596 1.68632i 0.289105 0.957297i \(-0.406642\pi\)
0.684491 0.729021i \(-0.260024\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) −976.000 1690.48i −0.000724409 0.00125471i 0.865663 0.500627i \(-0.166897\pi\)
−0.866387 + 0.499373i \(0.833564\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.41986e6 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −1.25003e6 2.16512e6i −0.857954 1.48602i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −353636. 612516.i −0.224978 0.389673i
\(302\) 0 0
\(303\) 0 0
\(304\) −1.60922e6 + 2.78724e6i −0.998689 + 1.72978i
\(305\) 0 0
\(306\) 0 0
\(307\) −2.30114e6 −1.39347 −0.696733 0.717331i \(-0.745364\pi\)
−0.696733 + 0.717331i \(0.745364\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −1.28354e6 + 2.22315e6i −0.740539 + 1.28265i 0.211712 + 0.977332i \(0.432096\pi\)
−0.952250 + 0.305318i \(0.901237\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −310624. −0.174992
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.42188e6 1.27187
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 273076. 472981.i 0.136998 0.237287i −0.789361 0.613929i \(-0.789588\pi\)
0.926359 + 0.376642i \(0.122921\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.31586e6 2.27914e6i −0.631155 1.09319i −0.987316 0.158767i \(-0.949248\pi\)
0.356161 0.934424i \(-0.384085\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −2.30138e6 −1.05622
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 1.74383e6 3.02040e6i 0.766373 1.32740i −0.173145 0.984896i \(-0.555393\pi\)
0.939518 0.342501i \(-0.111274\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 7.40235e6 2.98952
\(362\) 0 0
\(363\) 0 0
\(364\) 2.61640e6 + 4.53174e6i 1.03502 + 1.79272i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.29159e6 2.23710e6i 0.500563 0.867000i −0.499437 0.866350i \(-0.666460\pi\)
1.00000 0.000650122i \(-0.000206940\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.65864e6 + 4.60489e6i 0.989434 + 1.71375i 0.620276 + 0.784384i \(0.287021\pi\)
0.369158 + 0.929367i \(0.379646\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4.87806e6 −1.74441 −0.872206 0.489138i \(-0.837311\pi\)
−0.872206 + 0.489138i \(0.837311\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 1.38685e6 0.467681
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.78949e6 1.84359 0.921794 0.387681i \(-0.126724\pi\)
0.921794 + 0.387681i \(0.126724\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.60000e6 + 2.77128e6i 0.500000 + 0.866025i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) −4.00055e6 + 6.92916e6i −1.22704 + 2.12529i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −3.18244e6 5.51216e6i −0.940703 1.62935i −0.764134 0.645057i \(-0.776834\pi\)
−0.176569 0.984288i \(-0.556500\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.12923e6 1.95589e6i 0.327748 0.567676i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 2.43790e6 4.22257e6i 0.670364 1.16110i −0.307437 0.951568i \(-0.599471\pi\)
0.977801 0.209536i \(-0.0671953\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.93076e6 3.34417e6i −0.512457 0.887602i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 1.85760e6 0.476138 0.238069 0.971248i \(-0.423486\pi\)
0.238069 + 0.971248i \(0.423486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.83171e6 + 3.17262e6i 0.461467 + 0.799285i
\(437\) 0 0
\(438\) 0 0
\(439\) −1.99667e6 + 3.45833e6i −0.494475 + 0.856455i −0.999980 0.00636830i \(-0.997973\pi\)
0.505505 + 0.862824i \(0.331306\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −3.45702e6 + 5.98774e6i −0.813781 + 1.40951i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.12872e6 7.15116e6i 0.924752 1.60172i 0.132793 0.991144i \(-0.457605\pi\)
0.791959 0.610574i \(-0.209061\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) −1.46109e6 2.53068e6i −0.316755 0.548636i 0.663054 0.748572i \(-0.269260\pi\)
−0.979809 + 0.199936i \(0.935927\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −1.55032e7 −3.25454
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.91094e6 8.50599e6i 0.998689 1.72978i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) −3.83199e6 6.63720e6i −0.755199 1.30804i
\(482\) 0 0
\(483\) 0 0
\(484\) −2.57682e6 + 4.46318e6i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.36487e6 −0.260778 −0.130389 0.991463i \(-0.541623\pi\)
−0.130389 + 0.991463i \(0.541623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.05718e7 −1.92950
\(497\) 0 0
\(498\) 0 0
\(499\) 4.18078e6 + 7.24133e6i 0.751634 + 1.30187i 0.947030 + 0.321144i \(0.104067\pi\)
−0.195397 + 0.980724i \(0.562599\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −4.27360e6 7.40209e6i −0.734742 1.27261i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −8.24240e6 + 1.42763e7i −1.39637 + 2.41859i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 2.09363e6 0.334692 0.167346 0.985898i \(-0.446480\pi\)
0.167346 + 0.985898i \(0.446480\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.21817e6 5.57404e6i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.12215e7 3.25086
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.02235e6 −0.443968 −0.221984 0.975050i \(-0.571253\pi\)
−0.221984 + 0.975050i \(0.571253\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 746656. 1.29325e6i 0.106697 0.184805i −0.807733 0.589548i \(-0.799306\pi\)
0.914430 + 0.404744i \(0.132639\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.02409e6 + 1.77377e6i 0.142405 + 0.246652i
\(554\) 0 0
\(555\) 0 0
\(556\) 3.23509e6 5.60334e6i 0.443812 0.768705i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 2.59780e6 0.351622
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) −2.94390e6 5.09898e6i −0.377862 0.654475i 0.612889 0.790169i \(-0.290007\pi\)
−0.990751 + 0.135693i \(0.956674\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.46322e7 1.82966 0.914830 0.403839i \(-0.132324\pi\)
0.914830 + 0.403839i \(0.132324\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) 1.62242e7 + 2.81011e7i 1.92697 + 3.33760i
\(590\) 0 0
\(591\) 0 0
\(592\) 5.06317e6 8.76966e6i 0.593770 1.02844i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −3.01081e6 + 5.21488e6i −0.340015 + 0.588923i −0.984435 0.175749i \(-0.943765\pi\)
0.644420 + 0.764671i \(0.277099\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.71632e7 −1.91429
\(605\) 0 0
\(606\) 0 0
\(607\) 7.84027e6 + 1.35797e7i 0.863693 + 1.49596i 0.868339 + 0.495970i \(0.165188\pi\)
−0.00464665 + 0.999989i \(0.501479\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −566773. −0.0609197 −0.0304599 0.999536i \(-0.509697\pi\)
−0.0304599 + 0.999536i \(0.509697\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) 0 0
\(619\) −9.39140e6 + 1.62664e7i −0.985153 + 1.70634i −0.343901 + 0.939006i \(0.611748\pi\)
−0.641253 + 0.767330i \(0.721585\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.88281e6 8.45728e6i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.74742e6 3.02663e6i 0.176807 0.306239i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.82315e7 1.82284 0.911422 0.411472i \(-0.134985\pi\)
0.911422 + 0.411472i \(0.134985\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.07392e7 1.86008e7i 1.04863 1.81628i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) −1.03351e7 1.79009e7i −0.985796 1.70745i −0.638342 0.769753i \(-0.720380\pi\)
−0.347454 0.937697i \(-0.612954\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −5.63800e6 9.76530e6i −0.519405 0.899636i
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 345474. + 598379.i 0.0307548 + 0.0532688i 0.880993 0.473129i \(-0.156876\pi\)
−0.850238 + 0.526398i \(0.823542\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.65576e6 + 1.49922e7i −0.736661 + 1.27593i 0.217330 + 0.976098i \(0.430265\pi\)
−0.953991 + 0.299836i \(0.903068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −7.33862e6 −0.617658
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) −4.57226e6 7.91939e6i −0.380590 0.659201i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.71622e6 + 2.97259e6i 0.138230 + 0.239422i
\(689\) 0 0
\(690\) 0 0
\(691\) −8.68152e6 + 1.50368e7i −0.691673 + 1.19801i 0.279616 + 0.960112i \(0.409793\pi\)
−0.971289 + 0.237901i \(0.923541\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.05500e7 1.82731e7i 0.813781 1.40951i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −3.10811e7 −2.37197
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.18185e7 + 2.04702e7i −0.882971 + 1.52935i −0.0349502 + 0.999389i \(0.511127\pi\)
−0.848021 + 0.529962i \(0.822206\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −1.48917e7 −1.06686
\(722\) 0 0
\(723\) 0 0
\(724\) −1.36484e7 2.36398e7i −0.967690 1.67609i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.42256e7 2.46395e7i 0.998240 1.72900i 0.447767 0.894150i \(-0.352219\pi\)
0.550474 0.834853i \(-0.314447\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.65138e6 + 9.78847e6i 0.388503 + 0.672907i 0.992248 0.124270i \(-0.0396590\pi\)
−0.603746 + 0.797177i \(0.706326\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −2.96035e7 −1.99403 −0.997017 0.0771842i \(-0.975407\pi\)
−0.997017 + 0.0771842i \(0.975407\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.36610e7 + 2.36615e7i 0.883857 + 1.53088i 0.847019 + 0.531563i \(0.178395\pi\)
0.0368381 + 0.999321i \(0.488271\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.12909e7 0.716124 0.358062 0.933698i \(-0.383438\pi\)
0.358062 + 0.933698i \(0.383438\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 1.20779e7 2.09195e7i 0.751066 1.30089i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1.25009e7 2.16521e7i −0.762296 1.32034i −0.941664 0.336554i \(-0.890739\pi\)
0.179368 0.983782i \(-0.442595\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.63388e7 + 2.82997e7i −0.986683 + 1.70899i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 3.22625e7 1.92950
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2.83791e7 1.64896
\(785\) 0 0
\(786\) 0 0
\(787\) 3.70188e6 + 6.41185e6i 0.213052 + 0.369017i 0.952668 0.304012i \(-0.0983263\pi\)
−0.739616 + 0.673029i \(0.764993\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.41833e7 0.800928
\(794\) 0 0
\(795\) 0 0
\(796\) 1.62362e7 + 2.81219e7i 0.908241 + 1.57312i
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 2.27708e7 1.21570 0.607849 0.794053i \(-0.292033\pi\)
0.607849 + 0.794053i \(0.292033\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5.26767e6 9.12387e6i 0.276098 0.478216i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) −8.21099e6 1.42218e7i −0.422567 0.731908i 0.573623 0.819120i \(-0.305538\pi\)
−0.996190 + 0.0872118i \(0.972204\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −2.26485e7 −1.14460 −0.572299 0.820045i \(-0.693948\pi\)
−0.572299 + 0.820045i \(0.693948\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.26976e7 2.19929e7i −0.635936 1.10147i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 1.02556e7 + 1.77632e7i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.51572e7 + 2.62530e7i −0.732423 + 1.26859i
\(845\) 0 0
\(846\) 0 0
\(847\) 3.39818e7 1.62756
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.50421e6 2.60537e6i 0.0707842 0.122602i −0.828461 0.560047i \(-0.810783\pi\)
0.899245 + 0.437445i \(0.144116\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 1.94487e7 + 3.36862e7i 0.899307 + 1.55765i 0.828381 + 0.560164i \(0.189262\pi\)
0.0709259 + 0.997482i \(0.477405\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 3.48538e7 + 6.03686e7i 1.57019 + 2.71964i
\(869\) 0 0
\(870\) 0 0
\(871\) 2.84716e7 4.93142e7i 1.27165 2.20255i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.06152e7 3.57066e7i −0.905084 1.56765i −0.820804 0.571210i \(-0.806474\pi\)
−0.0842800 0.996442i \(-0.526859\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −4.58066e7 −1.97709 −0.988545 0.150925i \(-0.951775\pi\)
−0.988545 + 0.150925i \(0.951775\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) −2.81791e7 + 4.88075e7i −1.19584 + 2.07125i
\(890\) 0 0
\(891\) 0 0
\(892\) −9.72966e6 −0.409436
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.47611e7 4.28875e7i 0.999428 1.73106i 0.470433 0.882436i \(-0.344098\pi\)
0.528995 0.848625i \(-0.322569\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 2.03171e7 3.51902e7i 0.800060 1.38575i
\(917\) 0 0
\(918\) 0 0
\(919\) 4.63039e7 1.80854 0.904271 0.426959i \(-0.140415\pi\)
0.904271 + 0.426959i \(0.140415\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.54516e7 + 2.67629e7i −0.593770 + 1.02844i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) −4.35526e7 7.54352e7i −1.64679 2.85233i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −4.89709e7 −1.82217 −0.911085 0.412219i \(-0.864754\pi\)
−0.911085 + 0.412219i \(0.864754\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) −3.02742e7 5.24365e7i −1.09121 1.89003i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −3.89779e7 + 6.75117e7i −1.36148 + 2.35815i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.39705e7 −0.484193
\(965\) 0 0
\(966\) 0 0
\(967\) 1.28418e7 + 2.22426e7i 0.441631 + 0.764927i 0.997811 0.0661347i \(-0.0210667\pi\)
−0.556180 + 0.831062i \(0.687733\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −4.26627e7 −1.44466
\(974\) 0 0
\(975\) 0 0
\(976\) 9.37011e6 + 1.62295e7i 0.314862 + 0.545357i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −3.89732e7 + 6.75036e7i −1.27020 + 2.20006i
\(989\) 0 0
\(990\) 0 0
\(991\) −1.94402e7 −0.628804 −0.314402 0.949290i \(-0.601804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.24077e7 3.88113e7i 0.713937 1.23658i −0.249431 0.968393i \(-0.580244\pi\)
0.963368 0.268183i \(-0.0864230\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.6.c.b.55.1 2
3.2 odd 2 CM 81.6.c.b.55.1 2
9.2 odd 6 27.6.a.a.1.1 1
9.4 even 3 inner 81.6.c.b.28.1 2
9.5 odd 6 inner 81.6.c.b.28.1 2
9.7 even 3 27.6.a.a.1.1 1
36.7 odd 6 432.6.a.f.1.1 1
36.11 even 6 432.6.a.f.1.1 1
45.29 odd 6 675.6.a.c.1.1 1
45.34 even 6 675.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.a.a.1.1 1 9.2 odd 6
27.6.a.a.1.1 1 9.7 even 3
81.6.c.b.28.1 2 9.4 even 3 inner
81.6.c.b.28.1 2 9.5 odd 6 inner
81.6.c.b.55.1 2 1.1 even 1 trivial
81.6.c.b.55.1 2 3.2 odd 2 CM
432.6.a.f.1.1 1 36.7 odd 6
432.6.a.f.1.1 1 36.11 even 6
675.6.a.c.1.1 1 45.29 odd 6
675.6.a.c.1.1 1 45.34 even 6