Properties

Label 81.6.c
Level $81$
Weight $6$
Character orbit 81.c
Rep. character $\chi_{81}(28,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $38$
Newform subspaces $9$
Sturm bound $54$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 9 \)
Sturm bound: \(54\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(81, [\chi])\).

Total New Old
Modular forms 102 42 60
Cusp forms 78 38 40
Eisenstein series 24 4 20

Trace form

\( 38 q - 286 q^{4} - 143 q^{7} - 132 q^{10} + 907 q^{13} - 4030 q^{16} - 2102 q^{19} - 1830 q^{22} - 6067 q^{25} + 14332 q^{28} + 988 q^{31} - 39240 q^{34} + 45814 q^{37} + 31614 q^{40} + 39916 q^{43} - 172752 q^{46}+ \cdots - 264131 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.6.c.a 81.c 9.c $2$ $12.991$ \(\Q(\sqrt{-3}) \) None 3.6.a.a \(-6\) \(0\) \(6\) \(40\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-6+6\zeta_{6})q^{2}-4\zeta_{6}q^{4}+6\zeta_{6}q^{5}+\cdots\)
81.6.c.b 81.c 9.c $2$ $12.991$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 27.6.a.a \(0\) \(0\) \(0\) \(211\) $\mathrm{U}(1)[D_{3}]$ \(q+2^{5}\zeta_{6}q^{4}+(211-211\zeta_{6})q^{7}+775\zeta_{6}q^{13}+\cdots\)
81.6.c.c 81.c 9.c $2$ $12.991$ \(\Q(\sqrt{-3}) \) None 3.6.a.a \(6\) \(0\) \(-6\) \(40\) $\mathrm{SU}(2)[C_{3}]$ \(q+(6-6\zeta_{6})q^{2}-4\zeta_{6}q^{4}-6\zeta_{6}q^{5}+\cdots\)
81.6.c.d 81.c 9.c $4$ $12.991$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 27.6.a.b \(-9\) \(0\) \(-72\) \(8\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4\beta _{1}-\beta _{2})q^{2}+(-31+22\beta _{1}+\cdots)q^{4}+\cdots\)
81.6.c.e 81.c 9.c $4$ $12.991$ \(\Q(\sqrt{-3}, \sqrt{-43})\) None 81.6.a.a \(-3\) \(0\) \(30\) \(128\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2-2\beta _{1}-\beta _{3})q^{2}+(4\beta _{1}-3\beta _{2}+\cdots)q^{4}+\cdots\)
81.6.c.f 81.c 9.c $4$ $12.991$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 27.6.a.c \(0\) \(0\) \(0\) \(-334\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-22+22\beta _{1})q^{4}+(8\beta _{2}+\cdots)q^{5}+\cdots\)
81.6.c.g 81.c 9.c $4$ $12.991$ \(\Q(\sqrt{-3}, \sqrt{-43})\) None 81.6.a.a \(3\) \(0\) \(-30\) \(128\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}-\beta _{3})q^{2}+(\beta _{1}+3\beta _{2}-3\beta _{3})q^{4}+\cdots\)
81.6.c.h 81.c 9.c $4$ $12.991$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 27.6.a.b \(9\) \(0\) \(72\) \(8\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4\beta _{1}+\beta _{2})q^{2}+(-31+22\beta _{1}+9\beta _{2}+\cdots)q^{4}+\cdots\)
81.6.c.i 81.c 9.c $12$ $12.991$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 81.6.a.e \(0\) \(0\) \(0\) \(-372\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{2}+(\beta _{1}-5^{2}\beta _{2}-\beta _{8})q^{4}+(2\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)