Properties

Label 81.6.a.d
Level $81$
Weight $6$
Character orbit 81.a
Self dual yes
Analytic conductor $12.991$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,6,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.9910894049\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4875021.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 3x + 226 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{3} - 2 \beta_1 + 13) q^{4} + (\beta_{3} + \beta_{2} + \beta_1 + 20) q^{5} + ( - 2 \beta_{3} + 3 \beta_{2} + \cdots - 4) q^{7} + (5 \beta_{3} - 4 \beta_{2} - 8 \beta_1 + 95) q^{8}+ \cdots + ( - 1225 \beta_{3} + 1682 \beta_{2} + \cdots - 9873) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + 49 q^{4} + 78 q^{5} - 28 q^{7} + 375 q^{8} + 30 q^{10} + 444 q^{11} + 182 q^{13} + 1392 q^{14} + 289 q^{16} + 2178 q^{17} + 476 q^{19} + 6684 q^{20} - 1011 q^{22} + 8844 q^{23} + 1654 q^{25}+ \cdots - 28827 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 32x^{2} - 3x + 226 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 19\nu - 13 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} - 11\nu^{2} - 11\nu + 170 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 19\nu^{2} - 19\nu + 301 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 3\beta_1 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} - \beta _1 + 96 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -11\beta_{3} + 19\beta_{2} + 27 ) / 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.11874
−4.47989
4.75965
−3.39850
−7.54935 0 24.9927 87.4311 0 −41.2065 52.9007 0 −660.048
1.2 −2.95347 0 −23.2770 −64.8509 0 −160.190 163.259 0 191.535
1.3 3.57955 0 −19.1868 8.10775 0 175.428 −183.226 0 29.0221
1.4 9.92326 0 66.4711 47.3121 0 −2.03091 342.066 0 469.490
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.6.a.d 4
3.b odd 2 1 81.6.a.c 4
9.c even 3 2 27.6.c.a 8
9.d odd 6 2 9.6.c.a 8
36.f odd 6 2 432.6.i.c 8
36.h even 6 2 144.6.i.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.6.c.a 8 9.d odd 6 2
27.6.c.a 8 9.c even 3 2
81.6.a.c 4 3.b odd 2 1
81.6.a.d 4 1.a even 1 1 trivial
144.6.i.c 8 36.h even 6 2
432.6.i.c 8 36.f odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 3T_{2}^{3} - 84T_{2}^{2} + 72T_{2} + 792 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + \cdots + 792 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 78 T^{3} + \cdots - 2174976 \) Copy content Toggle raw display
$7$ \( T^{4} + 28 T^{3} + \cdots - 2351756 \) Copy content Toggle raw display
$11$ \( T^{4} - 444 T^{3} + \cdots - 120652839 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 3591331348 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 917747509932 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 1740240514672 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 2546088335604 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 29497949996724 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 687830198031760 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 24412884987584 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 341598000989025 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 848570491190257 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 31\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 92\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 91\!\cdots\!51 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 47\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 73\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 82\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 27\!\cdots\!08 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 67\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 37\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 30\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 51\!\cdots\!53 \) Copy content Toggle raw display
show more
show less