Properties

Label 81.5.f.a.8.9
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.9
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.35935 + 0.768672i) q^{2} +(3.37802 + 1.22950i) q^{4} +(-27.2417 - 32.4654i) q^{5} +(-49.1081 + 17.8739i) q^{7} +(-47.5559 - 27.4564i) q^{8} +(-93.8009 - 162.468i) q^{10} +(-11.4420 + 13.6360i) q^{11} +(21.2681 + 120.617i) q^{13} +(-227.819 + 40.1706i) q^{14} +(-230.269 - 193.218i) q^{16} +(377.223 - 217.790i) q^{17} +(65.4306 - 113.329i) q^{19} +(-52.1069 - 143.162i) q^{20} +(-60.3613 + 50.6491i) q^{22} +(240.426 - 660.564i) q^{23} +(-203.361 + 1153.32i) q^{25} +542.162i q^{26} -187.864 q^{28} +(-809.117 - 142.669i) q^{29} +(-367.484 - 133.753i) q^{31} +(-290.544 - 346.257i) q^{32} +(1811.86 - 659.462i) q^{34} +(1918.07 + 1107.40i) q^{35} +(-905.030 - 1567.56i) q^{37} +(372.348 - 443.747i) q^{38} +(404.120 + 2291.88i) q^{40} +(-1779.62 + 313.795i) q^{41} +(201.781 + 169.314i) q^{43} +(-55.4168 + 31.9949i) q^{44} +(1555.86 - 2694.82i) q^{46} +(-31.4023 - 86.2770i) q^{47} +(252.856 - 212.171i) q^{49} +(-1773.05 + 4871.41i) q^{50} +(-76.4550 + 433.598i) q^{52} +1069.64i q^{53} +754.398 q^{55} +(2826.13 + 498.323i) q^{56} +(-3417.56 - 1243.89i) q^{58} +(-239.279 - 285.161i) q^{59} +(1175.69 - 427.916i) q^{61} +(-1499.18 - 865.552i) q^{62} +(1404.33 + 2432.37i) q^{64} +(3336.51 - 3976.30i) q^{65} +(781.472 + 4431.95i) q^{67} +(1542.04 - 271.903i) q^{68} +(7510.32 + 6301.90i) q^{70} +(4815.68 - 2780.33i) q^{71} +(-1761.03 + 3050.19i) q^{73} +(-2740.41 - 7529.21i) q^{74} +(360.364 - 302.381i) q^{76} +(318.165 - 874.152i) q^{77} +(1741.86 - 9878.58i) q^{79} +12739.4i q^{80} -7999.21 q^{82} +(-4460.90 - 786.577i) q^{83} +(-17346.8 - 6313.72i) q^{85} +(749.486 + 893.203i) q^{86} +(918.530 - 334.318i) q^{88} +(-11590.4 - 6691.71i) q^{89} +(-3200.34 - 5543.15i) q^{91} +(1624.33 - 1935.80i) q^{92} +(-70.5749 - 400.250i) q^{94} +(-5461.71 + 963.047i) q^{95} +(-5334.35 - 4476.05i) q^{97} +(1265.38 - 730.567i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.35935 + 0.768672i 1.08984 + 0.192168i 0.689562 0.724227i \(-0.257803\pi\)
0.400276 + 0.916395i \(0.368914\pi\)
\(3\) 0 0
\(4\) 3.37802 + 1.22950i 0.211126 + 0.0768437i
\(5\) −27.2417 32.4654i −1.08967 1.29862i −0.951311 0.308233i \(-0.900262\pi\)
−0.138357 0.990382i \(-0.544182\pi\)
\(6\) 0 0
\(7\) −49.1081 + 17.8739i −1.00221 + 0.364773i −0.790435 0.612546i \(-0.790145\pi\)
−0.211771 + 0.977319i \(0.567923\pi\)
\(8\) −47.5559 27.4564i −0.743061 0.429006i
\(9\) 0 0
\(10\) −93.8009 162.468i −0.938009 1.62468i
\(11\) −11.4420 + 13.6360i −0.0945619 + 0.112694i −0.811250 0.584699i \(-0.801213\pi\)
0.716688 + 0.697394i \(0.245657\pi\)
\(12\) 0 0
\(13\) 21.2681 + 120.617i 0.125847 + 0.713713i 0.980801 + 0.195010i \(0.0624739\pi\)
−0.854954 + 0.518703i \(0.826415\pi\)
\(14\) −227.819 + 40.1706i −1.16234 + 0.204952i
\(15\) 0 0
\(16\) −230.269 193.218i −0.899487 0.754759i
\(17\) 377.223 217.790i 1.30527 0.753597i 0.323966 0.946069i \(-0.394984\pi\)
0.981303 + 0.192471i \(0.0616502\pi\)
\(18\) 0 0
\(19\) 65.4306 113.329i 0.181248 0.313931i −0.761058 0.648684i \(-0.775320\pi\)
0.942306 + 0.334753i \(0.108653\pi\)
\(20\) −52.1069 143.162i −0.130267 0.357906i
\(21\) 0 0
\(22\) −60.3613 + 50.6491i −0.124713 + 0.104647i
\(23\) 240.426 660.564i 0.454491 1.24870i −0.475041 0.879963i \(-0.657567\pi\)
0.929532 0.368740i \(-0.120211\pi\)
\(24\) 0 0
\(25\) −203.361 + 1153.32i −0.325378 + 1.84531i
\(26\) 542.162i 0.802016i
\(27\) 0 0
\(28\) −187.864 −0.239623
\(29\) −809.117 142.669i −0.962090 0.169642i −0.329522 0.944148i \(-0.606888\pi\)
−0.632567 + 0.774505i \(0.717999\pi\)
\(30\) 0 0
\(31\) −367.484 133.753i −0.382397 0.139181i 0.143667 0.989626i \(-0.454111\pi\)
−0.526064 + 0.850445i \(0.676333\pi\)
\(32\) −290.544 346.257i −0.283735 0.338142i
\(33\) 0 0
\(34\) 1811.86 659.462i 1.56735 0.570469i
\(35\) 1918.07 + 1107.40i 1.56577 + 0.903998i
\(36\) 0 0
\(37\) −905.030 1567.56i −0.661088 1.14504i −0.980330 0.197365i \(-0.936762\pi\)
0.319242 0.947673i \(-0.396572\pi\)
\(38\) 372.348 443.747i 0.257859 0.307304i
\(39\) 0 0
\(40\) 404.120 + 2291.88i 0.252575 + 1.43242i
\(41\) −1779.62 + 313.795i −1.05867 + 0.186672i −0.675766 0.737117i \(-0.736187\pi\)
−0.382903 + 0.923789i \(0.625076\pi\)
\(42\) 0 0
\(43\) 201.781 + 169.314i 0.109130 + 0.0915706i 0.695720 0.718313i \(-0.255086\pi\)
−0.586590 + 0.809884i \(0.699530\pi\)
\(44\) −55.4168 + 31.9949i −0.0286244 + 0.0165263i
\(45\) 0 0
\(46\) 1555.86 2694.82i 0.735283 1.27355i
\(47\) −31.4023 86.2770i −0.0142156 0.0390570i 0.932382 0.361475i \(-0.117727\pi\)
−0.946597 + 0.322418i \(0.895504\pi\)
\(48\) 0 0
\(49\) 252.856 212.171i 0.105313 0.0883679i
\(50\) −1773.05 + 4871.41i −0.709219 + 1.94856i
\(51\) 0 0
\(52\) −76.4550 + 433.598i −0.0282748 + 0.160354i
\(53\) 1069.64i 0.380791i 0.981707 + 0.190395i \(0.0609770\pi\)
−0.981707 + 0.190395i \(0.939023\pi\)
\(54\) 0 0
\(55\) 754.398 0.249388
\(56\) 2826.13 + 498.323i 0.901190 + 0.158904i
\(57\) 0 0
\(58\) −3417.56 1243.89i −1.01592 0.369766i
\(59\) −239.279 285.161i −0.0687385 0.0819194i 0.730579 0.682828i \(-0.239250\pi\)
−0.799318 + 0.600908i \(0.794806\pi\)
\(60\) 0 0
\(61\) 1175.69 427.916i 0.315961 0.115000i −0.179172 0.983818i \(-0.557342\pi\)
0.495132 + 0.868818i \(0.335120\pi\)
\(62\) −1499.18 865.552i −0.390005 0.225170i
\(63\) 0 0
\(64\) 1404.33 + 2432.37i 0.342853 + 0.593839i
\(65\) 3336.51 3976.30i 0.789707 0.941137i
\(66\) 0 0
\(67\) 781.472 + 4431.95i 0.174086 + 0.987291i 0.939194 + 0.343388i \(0.111575\pi\)
−0.765108 + 0.643903i \(0.777314\pi\)
\(68\) 1542.04 271.903i 0.333486 0.0588026i
\(69\) 0 0
\(70\) 7510.32 + 6301.90i 1.53272 + 1.28610i
\(71\) 4815.68 2780.33i 0.955303 0.551544i 0.0605786 0.998163i \(-0.480705\pi\)
0.894724 + 0.446619i \(0.147372\pi\)
\(72\) 0 0
\(73\) −1761.03 + 3050.19i −0.330461 + 0.572375i −0.982602 0.185722i \(-0.940538\pi\)
0.652141 + 0.758097i \(0.273871\pi\)
\(74\) −2740.41 7529.21i −0.500440 1.37495i
\(75\) 0 0
\(76\) 360.364 302.381i 0.0623899 0.0523513i
\(77\) 318.165 874.152i 0.0536626 0.147437i
\(78\) 0 0
\(79\) 1741.86 9878.58i 0.279099 1.58285i −0.446532 0.894768i \(-0.647341\pi\)
0.725631 0.688084i \(-0.241548\pi\)
\(80\) 12739.4i 1.99052i
\(81\) 0 0
\(82\) −7999.21 −1.18965
\(83\) −4460.90 786.577i −0.647540 0.114179i −0.159775 0.987154i \(-0.551077\pi\)
−0.487765 + 0.872975i \(0.662188\pi\)
\(84\) 0 0
\(85\) −17346.8 6313.72i −2.40094 0.873871i
\(86\) 749.486 + 893.203i 0.101337 + 0.120768i
\(87\) 0 0
\(88\) 918.530 334.318i 0.118612 0.0431712i
\(89\) −11590.4 6691.71i −1.46325 0.844807i −0.464088 0.885789i \(-0.653618\pi\)
−0.999160 + 0.0409821i \(0.986951\pi\)
\(90\) 0 0
\(91\) −3200.34 5543.15i −0.386468 0.669382i
\(92\) 1624.33 1935.80i 0.191910 0.228710i
\(93\) 0 0
\(94\) −70.5749 400.250i −0.00798720 0.0452976i
\(95\) −5461.71 + 963.047i −0.605176 + 0.106709i
\(96\) 0 0
\(97\) −5334.35 4476.05i −0.566942 0.475721i 0.313688 0.949526i \(-0.398435\pi\)
−0.880629 + 0.473806i \(0.842880\pi\)
\(98\) 1265.38 730.567i 0.131755 0.0760690i
\(99\) 0 0
\(100\) −2104.96 + 3645.90i −0.210496 + 0.364590i
\(101\) 1327.24 + 3646.56i 0.130109 + 0.357471i 0.987592 0.157041i \(-0.0501954\pi\)
−0.857483 + 0.514512i \(0.827973\pi\)
\(102\) 0 0
\(103\) 6389.00 5361.01i 0.602224 0.505326i −0.289935 0.957046i \(-0.593634\pi\)
0.892160 + 0.451720i \(0.149189\pi\)
\(104\) 2300.30 6320.02i 0.212676 0.584321i
\(105\) 0 0
\(106\) −822.203 + 4662.94i −0.0731758 + 0.415000i
\(107\) 12245.4i 1.06956i −0.844991 0.534781i \(-0.820394\pi\)
0.844991 0.534781i \(-0.179606\pi\)
\(108\) 0 0
\(109\) 21833.7 1.83770 0.918852 0.394603i \(-0.129118\pi\)
0.918852 + 0.394603i \(0.129118\pi\)
\(110\) 3288.69 + 579.884i 0.271792 + 0.0479243i
\(111\) 0 0
\(112\) 14761.6 + 5372.79i 1.17679 + 0.428315i
\(113\) −325.882 388.371i −0.0255213 0.0304151i 0.753133 0.657868i \(-0.228542\pi\)
−0.778654 + 0.627453i \(0.784097\pi\)
\(114\) 0 0
\(115\) −27995.1 + 10189.4i −2.11683 + 0.770463i
\(116\) −2557.81 1476.75i −0.190087 0.109747i
\(117\) 0 0
\(118\) −823.905 1427.05i −0.0591716 0.102488i
\(119\) −14631.9 + 17437.7i −1.03326 + 1.23139i
\(120\) 0 0
\(121\) 2487.36 + 14106.5i 0.169890 + 0.963495i
\(122\) 5454.17 961.718i 0.366445 0.0646142i
\(123\) 0 0
\(124\) −1076.92 903.643i −0.0700390 0.0587697i
\(125\) 20043.7 11572.2i 1.28280 0.740623i
\(126\) 0 0
\(127\) 4191.94 7260.66i 0.259901 0.450162i −0.706314 0.707899i \(-0.749643\pi\)
0.966215 + 0.257737i \(0.0829767\pi\)
\(128\) 6725.80 + 18479.0i 0.410510 + 1.12787i
\(129\) 0 0
\(130\) 17601.5 14769.4i 1.04151 0.873930i
\(131\) 433.685 1191.54i 0.0252716 0.0694330i −0.926415 0.376503i \(-0.877126\pi\)
0.951687 + 0.307070i \(0.0993486\pi\)
\(132\) 0 0
\(133\) −1187.54 + 6734.87i −0.0671344 + 0.380738i
\(134\) 19921.1i 1.10944i
\(135\) 0 0
\(136\) −23918.9 −1.29319
\(137\) 6325.87 + 1115.42i 0.337038 + 0.0594290i 0.339606 0.940568i \(-0.389706\pi\)
−0.00256773 + 0.999997i \(0.500817\pi\)
\(138\) 0 0
\(139\) 25528.9 + 9291.76i 1.32130 + 0.480915i 0.903876 0.427795i \(-0.140709\pi\)
0.417428 + 0.908710i \(0.362932\pi\)
\(140\) 5117.74 + 6099.08i 0.261109 + 0.311178i
\(141\) 0 0
\(142\) 23130.4 8418.78i 1.14711 0.417516i
\(143\) −1888.09 1090.09i −0.0923318 0.0533078i
\(144\) 0 0
\(145\) 17409.9 + 30154.9i 0.828058 + 1.43424i
\(146\) −10021.5 + 11943.2i −0.470141 + 0.560292i
\(147\) 0 0
\(148\) −1129.90 6407.98i −0.0515842 0.292548i
\(149\) 20092.3 3542.81i 0.905016 0.159579i 0.298277 0.954479i \(-0.403588\pi\)
0.606740 + 0.794901i \(0.292477\pi\)
\(150\) 0 0
\(151\) −19325.9 16216.3i −0.847589 0.711211i 0.111669 0.993745i \(-0.464380\pi\)
−0.959257 + 0.282534i \(0.908825\pi\)
\(152\) −6223.22 + 3592.98i −0.269357 + 0.155513i
\(153\) 0 0
\(154\) 2058.93 3566.17i 0.0868161 0.150370i
\(155\) 5668.53 + 15574.2i 0.235943 + 0.648249i
\(156\) 0 0
\(157\) 3606.81 3026.47i 0.146327 0.122783i −0.566686 0.823934i \(-0.691775\pi\)
0.713013 + 0.701151i \(0.247330\pi\)
\(158\) 15186.8 41725.3i 0.608346 1.67142i
\(159\) 0 0
\(160\) −3326.46 + 18865.3i −0.129940 + 0.736925i
\(161\) 36736.4i 1.41724i
\(162\) 0 0
\(163\) 21591.9 0.812674 0.406337 0.913723i \(-0.366806\pi\)
0.406337 + 0.913723i \(0.366806\pi\)
\(164\) −6397.42 1128.04i −0.237858 0.0419407i
\(165\) 0 0
\(166\) −18842.0 6857.94i −0.683772 0.248873i
\(167\) −3328.14 3966.32i −0.119335 0.142218i 0.703069 0.711121i \(-0.251812\pi\)
−0.822405 + 0.568903i \(0.807368\pi\)
\(168\) 0 0
\(169\) 12742.3 4637.82i 0.446144 0.162383i
\(170\) −70767.7 40857.7i −2.44871 1.41376i
\(171\) 0 0
\(172\) 473.448 + 820.036i 0.0160035 + 0.0277189i
\(173\) −1271.62 + 1515.46i −0.0424878 + 0.0506350i −0.786870 0.617119i \(-0.788300\pi\)
0.744382 + 0.667754i \(0.232744\pi\)
\(174\) 0 0
\(175\) −10627.6 60272.1i −0.347024 1.96807i
\(176\) 5269.46 929.148i 0.170114 0.0299957i
\(177\) 0 0
\(178\) −45382.9 38080.8i −1.43236 1.20189i
\(179\) 40882.5 23603.5i 1.27594 0.736666i 0.299842 0.953989i \(-0.403066\pi\)
0.976100 + 0.217323i \(0.0697326\pi\)
\(180\) 0 0
\(181\) −27157.1 + 47037.5i −0.828946 + 1.43578i 0.0699192 + 0.997553i \(0.477726\pi\)
−0.898866 + 0.438225i \(0.855607\pi\)
\(182\) −9690.55 26624.6i −0.292554 0.803785i
\(183\) 0 0
\(184\) −29570.4 + 24812.5i −0.873417 + 0.732884i
\(185\) −26236.8 + 72085.0i −0.766598 + 2.10621i
\(186\) 0 0
\(187\) −1346.39 + 7635.77i −0.0385024 + 0.218358i
\(188\) 330.055i 0.00933835i
\(189\) 0 0
\(190\) −24549.8 −0.680050
\(191\) −44953.9 7926.59i −1.23226 0.217280i −0.480662 0.876906i \(-0.659604\pi\)
−0.751594 + 0.659626i \(0.770715\pi\)
\(192\) 0 0
\(193\) 20916.3 + 7612.90i 0.561526 + 0.204379i 0.607160 0.794580i \(-0.292309\pi\)
−0.0456344 + 0.998958i \(0.514531\pi\)
\(194\) −19813.7 23613.1i −0.526457 0.627406i
\(195\) 0 0
\(196\) 1115.02 405.833i 0.0290248 0.0105642i
\(197\) −34055.1 19661.7i −0.877506 0.506628i −0.00767091 0.999971i \(-0.502442\pi\)
−0.869835 + 0.493342i \(0.835775\pi\)
\(198\) 0 0
\(199\) −12706.2 22007.8i −0.320856 0.555739i 0.659809 0.751433i \(-0.270637\pi\)
−0.980665 + 0.195694i \(0.937304\pi\)
\(200\) 41337.0 49263.5i 1.03343 1.23159i
\(201\) 0 0
\(202\) 2982.90 + 16916.9i 0.0731031 + 0.414589i
\(203\) 42284.3 7455.86i 1.02609 0.180928i
\(204\) 0 0
\(205\) 58667.4 + 49227.8i 1.39601 + 1.17139i
\(206\) 31972.8 18459.5i 0.753435 0.434996i
\(207\) 0 0
\(208\) 18408.1 31883.8i 0.425484 0.736960i
\(209\) 796.703 + 2188.92i 0.0182391 + 0.0501116i
\(210\) 0 0
\(211\) −27165.9 + 22794.9i −0.610183 + 0.512004i −0.894700 0.446667i \(-0.852611\pi\)
0.284518 + 0.958671i \(0.408167\pi\)
\(212\) −1315.12 + 3613.27i −0.0292614 + 0.0803950i
\(213\) 0 0
\(214\) 9412.70 53382.1i 0.205535 1.16565i
\(215\) 11163.3i 0.241499i
\(216\) 0 0
\(217\) 20437.1 0.434011
\(218\) 95181.0 + 16783.0i 2.00280 + 0.353148i
\(219\) 0 0
\(220\) 2548.37 + 927.532i 0.0526523 + 0.0191639i
\(221\) 34292.1 + 40867.7i 0.702116 + 0.836750i
\(222\) 0 0
\(223\) −62151.6 + 22621.3i −1.24981 + 0.454892i −0.880336 0.474350i \(-0.842683\pi\)
−0.369470 + 0.929243i \(0.620461\pi\)
\(224\) 20457.0 + 11810.9i 0.407706 + 0.235389i
\(225\) 0 0
\(226\) −1122.10 1943.54i −0.0219693 0.0380520i
\(227\) 928.758 1106.85i 0.0180240 0.0214802i −0.756957 0.653465i \(-0.773315\pi\)
0.774981 + 0.631984i \(0.217759\pi\)
\(228\) 0 0
\(229\) −9704.08 55034.6i −0.185048 1.04946i −0.925894 0.377783i \(-0.876687\pi\)
0.740847 0.671674i \(-0.234425\pi\)
\(230\) −129873. + 22900.1i −2.45506 + 0.432893i
\(231\) 0 0
\(232\) 34561.1 + 29000.2i 0.642114 + 0.538797i
\(233\) −58380.7 + 33706.1i −1.07537 + 0.620864i −0.929643 0.368461i \(-0.879885\pi\)
−0.145725 + 0.989325i \(0.546551\pi\)
\(234\) 0 0
\(235\) −1945.57 + 3369.82i −0.0352298 + 0.0610198i
\(236\) −457.683 1257.47i −0.00821753 0.0225775i
\(237\) 0 0
\(238\) −77189.6 + 64769.8i −1.36272 + 1.14345i
\(239\) 19327.5 53101.8i 0.338360 0.929637i −0.647500 0.762066i \(-0.724185\pi\)
0.985860 0.167571i \(-0.0535924\pi\)
\(240\) 0 0
\(241\) 6917.70 39232.2i 0.119104 0.675474i −0.865532 0.500854i \(-0.833019\pi\)
0.984636 0.174620i \(-0.0558697\pi\)
\(242\) 63407.3i 1.08270i
\(243\) 0 0
\(244\) 4497.63 0.0755447
\(245\) −13776.5 2429.16i −0.229512 0.0404691i
\(246\) 0 0
\(247\) 15061.1 + 5481.78i 0.246866 + 0.0898519i
\(248\) 13803.6 + 16450.5i 0.224435 + 0.267471i
\(249\) 0 0
\(250\) 96272.8 35040.4i 1.54036 0.560647i
\(251\) 55624.5 + 32114.8i 0.882915 + 0.509751i 0.871618 0.490185i \(-0.163071\pi\)
0.0112966 + 0.999936i \(0.496404\pi\)
\(252\) 0 0
\(253\) 6256.53 + 10836.6i 0.0977445 + 0.169298i
\(254\) 23855.2 28429.6i 0.369757 0.440659i
\(255\) 0 0
\(256\) 7312.37 + 41470.5i 0.111578 + 0.632790i
\(257\) 3054.16 538.531i 0.0462409 0.00815351i −0.150480 0.988613i \(-0.548082\pi\)
0.196721 + 0.980460i \(0.436971\pi\)
\(258\) 0 0
\(259\) 72462.6 + 60803.4i 1.08023 + 0.906417i
\(260\) 16159.7 9329.80i 0.239049 0.138015i
\(261\) 0 0
\(262\) 2806.49 4860.98i 0.0408847 0.0708144i
\(263\) −44238.4 121544.i −0.639570 1.75720i −0.653073 0.757295i \(-0.726520\pi\)
0.0135029 0.999909i \(-0.495702\pi\)
\(264\) 0 0
\(265\) 34726.3 29138.8i 0.494501 0.414935i
\(266\) −10353.8 + 28446.9i −0.146331 + 0.402042i
\(267\) 0 0
\(268\) −2809.25 + 15932.0i −0.0391130 + 0.221821i
\(269\) 10362.6i 0.143207i 0.997433 + 0.0716037i \(0.0228117\pi\)
−0.997433 + 0.0716037i \(0.977188\pi\)
\(270\) 0 0
\(271\) −42827.0 −0.583149 −0.291574 0.956548i \(-0.594179\pi\)
−0.291574 + 0.956548i \(0.594179\pi\)
\(272\) −128944. 22736.2i −1.74286 0.307313i
\(273\) 0 0
\(274\) 26719.3 + 9725.04i 0.355897 + 0.129536i
\(275\) −13399.8 15969.3i −0.177188 0.211164i
\(276\) 0 0
\(277\) −21952.1 + 7989.92i −0.286099 + 0.104132i −0.481084 0.876675i \(-0.659757\pi\)
0.194984 + 0.980806i \(0.437534\pi\)
\(278\) 104147. + 60129.4i 1.34759 + 0.778032i
\(279\) 0 0
\(280\) −60810.4 105327.i −0.775642 1.34345i
\(281\) −66242.6 + 78944.8i −0.838927 + 0.999795i 0.160990 + 0.986956i \(0.448531\pi\)
−0.999918 + 0.0128388i \(0.995913\pi\)
\(282\) 0 0
\(283\) −3530.34 20021.5i −0.0440802 0.249991i 0.954803 0.297239i \(-0.0960659\pi\)
−0.998883 + 0.0472483i \(0.984955\pi\)
\(284\) 19685.9 3471.16i 0.244072 0.0430365i
\(285\) 0 0
\(286\) −7392.94 6203.42i −0.0903827 0.0758401i
\(287\) 81785.1 47218.6i 0.992911 0.573257i
\(288\) 0 0
\(289\) 53104.2 91979.1i 0.635818 1.10127i
\(290\) 52716.8 + 144838.i 0.626835 + 1.72221i
\(291\) 0 0
\(292\) −9698.99 + 8138.42i −0.113752 + 0.0954497i
\(293\) −27201.9 + 74736.6i −0.316858 + 0.870559i 0.674370 + 0.738394i \(0.264415\pi\)
−0.991228 + 0.132166i \(0.957807\pi\)
\(294\) 0 0
\(295\) −2739.51 + 15536.6i −0.0314796 + 0.178530i
\(296\) 99395.5i 1.13444i
\(297\) 0 0
\(298\) 90312.6 1.01699
\(299\) 84789.0 + 14950.6i 0.948412 + 0.167231i
\(300\) 0 0
\(301\) −12935.4 4708.09i −0.142773 0.0519651i
\(302\) −71783.2 85547.9i −0.787062 0.937985i
\(303\) 0 0
\(304\) −36963.9 + 13453.7i −0.399973 + 0.145578i
\(305\) −45920.2 26512.1i −0.493633 0.284999i
\(306\) 0 0
\(307\) 10753.3 + 18625.2i 0.114094 + 0.197617i 0.917417 0.397926i \(-0.130270\pi\)
−0.803323 + 0.595544i \(0.796937\pi\)
\(308\) 2149.54 2561.72i 0.0226592 0.0270041i
\(309\) 0 0
\(310\) 12739.7 + 72250.6i 0.132567 + 0.751827i
\(311\) −90486.2 + 15955.2i −0.935539 + 0.164961i −0.620579 0.784144i \(-0.713102\pi\)
−0.314960 + 0.949105i \(0.601991\pi\)
\(312\) 0 0
\(313\) −45646.6 38302.0i −0.465929 0.390961i 0.379378 0.925242i \(-0.376138\pi\)
−0.845307 + 0.534281i \(0.820582\pi\)
\(314\) 18049.7 10421.0i 0.183068 0.105694i
\(315\) 0 0
\(316\) 18029.7 31228.4i 0.180557 0.312735i
\(317\) −16439.9 45168.1i −0.163599 0.449483i 0.830622 0.556836i \(-0.187985\pi\)
−0.994221 + 0.107353i \(0.965763\pi\)
\(318\) 0 0
\(319\) 11203.4 9400.73i 0.110095 0.0923805i
\(320\) 40711.5 111854.i 0.397573 1.09232i
\(321\) 0 0
\(322\) −28238.2 + 160147.i −0.272349 + 1.54457i
\(323\) 57000.4i 0.546352i
\(324\) 0 0
\(325\) −143436. −1.35797
\(326\) 94126.9 + 16597.1i 0.885683 + 0.156170i
\(327\) 0 0
\(328\) 93247.2 + 33939.2i 0.866739 + 0.315467i
\(329\) 3084.21 + 3675.62i 0.0284939 + 0.0339577i
\(330\) 0 0
\(331\) −66799.4 + 24313.0i −0.609701 + 0.221913i −0.628372 0.777913i \(-0.716279\pi\)
0.0186716 + 0.999826i \(0.494056\pi\)
\(332\) −14101.9 8141.76i −0.127939 0.0738655i
\(333\) 0 0
\(334\) −11459.7 19848.9i −0.102726 0.177927i
\(335\) 122596. 146105.i 1.09241 1.30189i
\(336\) 0 0
\(337\) 27724.6 + 157234.i 0.244121 + 1.38448i 0.822526 + 0.568728i \(0.192564\pi\)
−0.578405 + 0.815750i \(0.696325\pi\)
\(338\) 59113.2 10423.3i 0.517429 0.0912368i
\(339\) 0 0
\(340\) −50835.2 42655.8i −0.439751 0.368995i
\(341\) 6028.61 3480.62i 0.0518452 0.0299328i
\(342\) 0 0
\(343\) 54112.9 93726.2i 0.459952 0.796660i
\(344\) −4947.10 13592.1i −0.0418056 0.114860i
\(345\) 0 0
\(346\) −6708.32 + 5628.95i −0.0560353 + 0.0470192i
\(347\) −28075.2 + 77135.9i −0.233165 + 0.640616i −0.999999 0.00122960i \(-0.999609\pi\)
0.766834 + 0.641845i \(0.221831\pi\)
\(348\) 0 0
\(349\) 9101.46 51616.9i 0.0747240 0.423781i −0.924381 0.381472i \(-0.875417\pi\)
0.999105 0.0423093i \(-0.0134715\pi\)
\(350\) 270917.i 2.21156i
\(351\) 0 0
\(352\) 8045.98 0.0649372
\(353\) −118759. 20940.4i −0.953051 0.168049i −0.324560 0.945865i \(-0.605216\pi\)
−0.628491 + 0.777817i \(0.716327\pi\)
\(354\) 0 0
\(355\) −221452. 80601.9i −1.75721 0.639571i
\(356\) −30925.1 36855.1i −0.244012 0.290803i
\(357\) 0 0
\(358\) 196364. 71470.8i 1.53213 0.557651i
\(359\) 9051.70 + 5226.00i 0.0702330 + 0.0405491i 0.534705 0.845039i \(-0.320423\pi\)
−0.464472 + 0.885588i \(0.653756\pi\)
\(360\) 0 0
\(361\) 56598.2 + 98030.9i 0.434298 + 0.752227i
\(362\) −154544. + 184178.i −1.17933 + 1.40547i
\(363\) 0 0
\(364\) −3995.52 22659.7i −0.0301558 0.171022i
\(365\) 146999. 25919.9i 1.10339 0.194557i
\(366\) 0 0
\(367\) −109964. 92270.6i −0.816427 0.685064i 0.135705 0.990749i \(-0.456670\pi\)
−0.952133 + 0.305685i \(0.901114\pi\)
\(368\) −182996. + 105653.i −1.35128 + 0.780162i
\(369\) 0 0
\(370\) −169785. + 294077.i −1.24021 + 2.14811i
\(371\) −19118.6 52528.0i −0.138902 0.381631i
\(372\) 0 0
\(373\) 107946. 90577.5i 0.775870 0.651033i −0.166335 0.986069i \(-0.553193\pi\)
0.942205 + 0.335037i \(0.108749\pi\)
\(374\) −11738.8 + 32252.1i −0.0839229 + 0.230576i
\(375\) 0 0
\(376\) −875.494 + 4965.17i −0.00619266 + 0.0351203i
\(377\) 100628.i 0.708005i
\(378\) 0 0
\(379\) 10893.2 0.0758359 0.0379180 0.999281i \(-0.487927\pi\)
0.0379180 + 0.999281i \(0.487927\pi\)
\(380\) −19633.9 3461.98i −0.135968 0.0239749i
\(381\) 0 0
\(382\) −189877. 69109.6i −1.30121 0.473600i
\(383\) 24052.4 + 28664.5i 0.163969 + 0.195410i 0.841772 0.539833i \(-0.181513\pi\)
−0.677804 + 0.735243i \(0.737068\pi\)
\(384\) 0 0
\(385\) −37047.0 + 13484.0i −0.249938 + 0.0909699i
\(386\) 85329.6 + 49265.1i 0.572697 + 0.330647i
\(387\) 0 0
\(388\) −12516.3 21678.8i −0.0831402 0.144003i
\(389\) −9786.81 + 11663.5i −0.0646758 + 0.0770777i −0.797412 0.603435i \(-0.793798\pi\)
0.732736 + 0.680512i \(0.238243\pi\)
\(390\) 0 0
\(391\) −53170.0 301542.i −0.347787 1.97240i
\(392\) −17850.3 + 3147.48i −0.116164 + 0.0204829i
\(393\) 0 0
\(394\) −133345. 111890.i −0.858982 0.720772i
\(395\) −368163. + 212559.i −2.35964 + 1.36234i
\(396\) 0 0
\(397\) −112818. + 195407.i −0.715810 + 1.23982i 0.246836 + 0.969057i \(0.420609\pi\)
−0.962646 + 0.270762i \(0.912724\pi\)
\(398\) −38474.1 105707.i −0.242886 0.667324i
\(399\) 0 0
\(400\) 269670. 226280.i 1.68544 1.41425i
\(401\) 64345.7 176788.i 0.400157 1.09942i −0.562049 0.827104i \(-0.689987\pi\)
0.962207 0.272320i \(-0.0877908\pi\)
\(402\) 0 0
\(403\) 8317.29 47169.7i 0.0512120 0.290438i
\(404\) 13950.0i 0.0854697i
\(405\) 0 0
\(406\) 190063. 1.15304
\(407\) 31730.6 + 5594.96i 0.191553 + 0.0337760i
\(408\) 0 0
\(409\) 12257.3 + 4461.29i 0.0732738 + 0.0266695i 0.378397 0.925643i \(-0.376475\pi\)
−0.305123 + 0.952313i \(0.598698\pi\)
\(410\) 217912. + 259697.i 1.29632 + 1.54490i
\(411\) 0 0
\(412\) 28173.5 10254.3i 0.165977 0.0604106i
\(413\) 16847.5 + 9726.89i 0.0987721 + 0.0570261i
\(414\) 0 0
\(415\) 95986.0 + 166253.i 0.557329 + 0.965322i
\(416\) 35585.4 42409.0i 0.205629 0.245059i
\(417\) 0 0
\(418\) 1790.55 + 10154.7i 0.0102479 + 0.0581185i
\(419\) 281965. 49718.0i 1.60608 0.283195i 0.702522 0.711662i \(-0.252057\pi\)
0.903557 + 0.428467i \(0.140946\pi\)
\(420\) 0 0
\(421\) 222464. + 186669.i 1.25515 + 1.05319i 0.996181 + 0.0873075i \(0.0278263\pi\)
0.258966 + 0.965886i \(0.416618\pi\)
\(422\) −135948. + 78489.5i −0.763391 + 0.440744i
\(423\) 0 0
\(424\) 29368.5 50867.8i 0.163362 0.282951i
\(425\) 174468. + 479348.i 0.965915 + 2.65383i
\(426\) 0 0
\(427\) −50087.3 + 42028.3i −0.274709 + 0.230508i
\(428\) 15055.7 41365.3i 0.0821891 0.225813i
\(429\) 0 0
\(430\) 8580.90 48664.7i 0.0464083 0.263195i
\(431\) 227489.i 1.22463i −0.790612 0.612317i \(-0.790237\pi\)
0.790612 0.612317i \(-0.209763\pi\)
\(432\) 0 0
\(433\) 70235.0 0.374608 0.187304 0.982302i \(-0.440025\pi\)
0.187304 + 0.982302i \(0.440025\pi\)
\(434\) 89092.7 + 15709.4i 0.473001 + 0.0834029i
\(435\) 0 0
\(436\) 73754.9 + 26844.6i 0.387988 + 0.141216i
\(437\) −59130.0 70468.3i −0.309631 0.369004i
\(438\) 0 0
\(439\) 51104.1 18600.4i 0.265172 0.0965146i −0.206013 0.978549i \(-0.566049\pi\)
0.471184 + 0.882035i \(0.343827\pi\)
\(440\) −35876.1 20713.1i −0.185310 0.106989i
\(441\) 0 0
\(442\) 118077. + 204516.i 0.604397 + 1.04685i
\(443\) 55328.2 65937.6i 0.281929 0.335989i −0.606432 0.795135i \(-0.707400\pi\)
0.888361 + 0.459146i \(0.151844\pi\)
\(444\) 0 0
\(445\) 98492.7 + 558580.i 0.497375 + 2.82075i
\(446\) −288329. + 50840.2i −1.44950 + 0.255586i
\(447\) 0 0
\(448\) −112440. 94348.1i −0.560226 0.470086i
\(449\) 218166. 125958.i 1.08217 0.624788i 0.150685 0.988582i \(-0.451852\pi\)
0.931480 + 0.363793i \(0.118519\pi\)
\(450\) 0 0
\(451\) 16083.5 27857.4i 0.0790728 0.136958i
\(452\) −623.334 1712.60i −0.00305101 0.00838259i
\(453\) 0 0
\(454\) 4899.59 4111.24i 0.0237710 0.0199463i
\(455\) −92777.8 + 254905.i −0.448148 + 1.23128i
\(456\) 0 0
\(457\) 23424.5 132847.i 0.112160 0.636090i −0.875957 0.482388i \(-0.839769\pi\)
0.988117 0.153702i \(-0.0491195\pi\)
\(458\) 247374.i 1.17930i
\(459\) 0 0
\(460\) −107096. −0.506124
\(461\) 114630. + 20212.4i 0.539382 + 0.0951077i 0.436701 0.899607i \(-0.356147\pi\)
0.102681 + 0.994714i \(0.467258\pi\)
\(462\) 0 0
\(463\) 174719. + 63592.5i 0.815038 + 0.296650i 0.715703 0.698405i \(-0.246106\pi\)
0.0993347 + 0.995054i \(0.468329\pi\)
\(464\) 158748. + 189189.i 0.737348 + 0.878737i
\(465\) 0 0
\(466\) −280411. + 102061.i −1.29129 + 0.469990i
\(467\) 85090.9 + 49127.3i 0.390166 + 0.225262i 0.682232 0.731136i \(-0.261009\pi\)
−0.292066 + 0.956398i \(0.594343\pi\)
\(468\) 0 0
\(469\) −117593. 203677.i −0.534607 0.925967i
\(470\) −11071.7 + 13194.7i −0.0501208 + 0.0597317i
\(471\) 0 0
\(472\) 3549.61 + 20130.8i 0.0159330 + 0.0903603i
\(473\) −4617.54 + 814.197i −0.0206390 + 0.00363921i
\(474\) 0 0
\(475\) 117398. + 98509.0i 0.520326 + 0.436605i
\(476\) −70866.6 + 40914.9i −0.312772 + 0.180579i
\(477\) 0 0
\(478\) 125073. 216633.i 0.547404 0.948132i
\(479\) −19047.2 52331.7i −0.0830156 0.228083i 0.891239 0.453534i \(-0.149837\pi\)
−0.974255 + 0.225450i \(0.927615\pi\)
\(480\) 0 0
\(481\) 169827. 142501.i 0.734033 0.615927i
\(482\) 60313.4 165710.i 0.259609 0.713270i
\(483\) 0 0
\(484\) −8941.61 + 50710.4i −0.0381702 + 0.216474i
\(485\) 295117.i 1.25462i
\(486\) 0 0
\(487\) −97946.7 −0.412983 −0.206491 0.978448i \(-0.566205\pi\)
−0.206491 + 0.978448i \(0.566205\pi\)
\(488\) −67660.0 11930.3i −0.284114 0.0500969i
\(489\) 0 0
\(490\) −58189.2 21179.1i −0.242354 0.0882096i
\(491\) −301734. 359593.i −1.25159 1.49158i −0.800775 0.598965i \(-0.795579\pi\)
−0.450812 0.892619i \(-0.648866\pi\)
\(492\) 0 0
\(493\) −336289. + 122399.i −1.38363 + 0.503599i
\(494\) 61442.8 + 35474.0i 0.251777 + 0.145364i
\(495\) 0 0
\(496\) 58776.5 + 101804.i 0.238913 + 0.413810i
\(497\) −186794. + 222612.i −0.756221 + 0.901230i
\(498\) 0 0
\(499\) −44740.9 253738.i −0.179681 1.01902i −0.932600 0.360911i \(-0.882466\pi\)
0.752919 0.658113i \(-0.228645\pi\)
\(500\) 81936.1 14447.5i 0.327744 0.0577902i
\(501\) 0 0
\(502\) 217801. + 182757.i 0.864277 + 0.725214i
\(503\) 16024.7 9251.85i 0.0633364 0.0365673i −0.467997 0.883730i \(-0.655024\pi\)
0.531334 + 0.847163i \(0.321691\pi\)
\(504\) 0 0
\(505\) 82230.8 142428.i 0.322442 0.558486i
\(506\) 18944.6 + 52049.9i 0.0739920 + 0.203291i
\(507\) 0 0
\(508\) 23087.5 19372.7i 0.0894641 0.0750693i
\(509\) 71499.4 196443.i 0.275973 0.758230i −0.721836 0.692065i \(-0.756701\pi\)
0.997809 0.0661652i \(-0.0210764\pi\)
\(510\) 0 0
\(511\) 31962.0 181265.i 0.122403 0.694181i
\(512\) 128233.i 0.489170i
\(513\) 0 0
\(514\) 13728.1 0.0519619
\(515\) −348094. 61378.4i −1.31245 0.231420i
\(516\) 0 0
\(517\) 1535.78 + 558.978i 0.00574577 + 0.00209129i
\(518\) 269152. + 320763.i 1.00309 + 1.19543i
\(519\) 0 0
\(520\) −267846. + 97487.9i −0.990554 + 0.360532i
\(521\) 162542. + 93843.8i 0.598812 + 0.345724i 0.768574 0.639761i \(-0.220967\pi\)
−0.169762 + 0.985485i \(0.554300\pi\)
\(522\) 0 0
\(523\) −153569. 265990.i −0.561436 0.972436i −0.997371 0.0724581i \(-0.976916\pi\)
0.435935 0.899978i \(-0.356418\pi\)
\(524\) 2930.00 3491.83i 0.0106710 0.0127172i
\(525\) 0 0
\(526\) −99423.4 563858.i −0.359350 2.03797i
\(527\) −167753. + 29579.4i −0.604018 + 0.106505i
\(528\) 0 0
\(529\) −164170. 137755.i −0.586655 0.492262i
\(530\) 173782. 100333.i 0.618663 0.357185i
\(531\) 0 0
\(532\) −12292.1 + 21290.5i −0.0434312 + 0.0752250i
\(533\) −75698.4 207980.i −0.266460 0.732094i
\(534\) 0 0
\(535\) −397552. + 333586.i −1.38895 + 1.16547i
\(536\) 84521.8 232222.i 0.294198 0.808301i
\(537\) 0 0
\(538\) −7965.46 + 45174.4i −0.0275199 + 0.156073i
\(539\) 5875.61i 0.0202244i
\(540\) 0 0
\(541\) −221911. −0.758201 −0.379101 0.925355i \(-0.623767\pi\)
−0.379101 + 0.925355i \(0.623767\pi\)
\(542\) −186698. 32919.9i −0.635538 0.112062i
\(543\) 0 0
\(544\) −185011. 67338.6i −0.625173 0.227544i
\(545\) −594788. 708841.i −2.00249 2.38647i
\(546\) 0 0
\(547\) 329388. 119887.i 1.10086 0.400681i 0.273229 0.961949i \(-0.411908\pi\)
0.827634 + 0.561268i \(0.189686\pi\)
\(548\) 19997.5 + 11545.6i 0.0665910 + 0.0384463i
\(549\) 0 0
\(550\) −46139.4 79915.9i −0.152527 0.264185i
\(551\) −69109.6 + 82361.6i −0.227633 + 0.271282i
\(552\) 0 0
\(553\) 91029.1 + 516252.i 0.297667 + 1.68815i
\(554\) −101839. + 17956.9i −0.331813 + 0.0585075i
\(555\) 0 0
\(556\) 74813.0 + 62775.6i 0.242007 + 0.203068i
\(557\) −388091. + 224064.i −1.25090 + 0.722208i −0.971289 0.237905i \(-0.923539\pi\)
−0.279613 + 0.960113i \(0.590206\pi\)
\(558\) 0 0
\(559\) −16130.7 + 27939.3i −0.0516215 + 0.0894111i
\(560\) −227702. 625605.i −0.726090 1.99491i
\(561\) 0 0
\(562\) −349457. + 293229.i −1.10642 + 0.928400i
\(563\) −190646. + 523794.i −0.601464 + 1.65251i 0.146844 + 0.989160i \(0.453088\pi\)
−0.748309 + 0.663350i \(0.769134\pi\)
\(564\) 0 0
\(565\) −3731.04 + 21159.8i −0.0116878 + 0.0662848i
\(566\) 89994.6i 0.280921i
\(567\) 0 0
\(568\) −305352. −0.946464
\(569\) 310611. + 54769.1i 0.959383 + 0.169165i 0.631347 0.775500i \(-0.282502\pi\)
0.328036 + 0.944665i \(0.393613\pi\)
\(570\) 0 0
\(571\) 304743. + 110917.i 0.934676 + 0.340194i 0.764061 0.645143i \(-0.223202\pi\)
0.170615 + 0.985338i \(0.445425\pi\)
\(572\) −5037.76 6003.76i −0.0153973 0.0183498i
\(573\) 0 0
\(574\) 392826. 142977.i 1.19227 0.433952i
\(575\) 712948. + 411621.i 2.15636 + 1.24498i
\(576\) 0 0
\(577\) −238820. 413649.i −0.717330 1.24245i −0.962054 0.272860i \(-0.912030\pi\)
0.244723 0.969593i \(-0.421303\pi\)
\(578\) 302201. 360150.i 0.904567 1.07802i
\(579\) 0 0
\(580\) 21735.7 + 123269.i 0.0646127 + 0.366437i
\(581\) 233126. 41106.3i 0.690618 0.121775i
\(582\) 0 0
\(583\) −14585.7 12238.8i −0.0429130 0.0360083i
\(584\) 167494. 96702.9i 0.491105 0.283540i
\(585\) 0 0
\(586\) −176031. + 304894.i −0.512617 + 0.887879i
\(587\) 103294. + 283799.i 0.299779 + 0.823635i 0.994536 + 0.104391i \(0.0332893\pi\)
−0.694758 + 0.719244i \(0.744488\pi\)
\(588\) 0 0
\(589\) −39202.8 + 32895.1i −0.113002 + 0.0948201i
\(590\) −23885.0 + 65623.5i −0.0686154 + 0.188519i
\(591\) 0 0
\(592\) −94480.9 + 535828.i −0.269588 + 1.52891i
\(593\) 6608.51i 0.0187929i 0.999956 + 0.00939645i \(0.00299103\pi\)
−0.999956 + 0.00939645i \(0.997009\pi\)
\(594\) 0 0
\(595\) 964719. 2.72500
\(596\) 72228.0 + 12735.8i 0.203336 + 0.0358535i
\(597\) 0 0
\(598\) 358133. + 130350.i 1.00148 + 0.364509i
\(599\) 203927. + 243031.i 0.568356 + 0.677341i 0.971293 0.237887i \(-0.0764549\pi\)
−0.402936 + 0.915228i \(0.632010\pi\)
\(600\) 0 0
\(601\) 616277. 224306.i 1.70619 0.621002i 0.709682 0.704522i \(-0.248839\pi\)
0.996506 + 0.0835209i \(0.0266165\pi\)
\(602\) −52770.8 30467.3i −0.145613 0.0840699i
\(603\) 0 0
\(604\) −45345.2 78540.3i −0.124296 0.215287i
\(605\) 390214. 465039.i 1.06608 1.27051i
\(606\) 0 0
\(607\) −30799.0 174670.i −0.0835910 0.474068i −0.997652 0.0684907i \(-0.978182\pi\)
0.914061 0.405577i \(-0.132929\pi\)
\(608\) −58251.5 + 10271.3i −0.157580 + 0.0277855i
\(609\) 0 0
\(610\) −179803. 150873.i −0.483213 0.405464i
\(611\) 9738.65 5622.61i 0.0260865 0.0150611i
\(612\) 0 0
\(613\) 142754. 247258.i 0.379899 0.658004i −0.611148 0.791516i \(-0.709292\pi\)
0.991047 + 0.133512i \(0.0426254\pi\)
\(614\) 32560.7 + 89459.7i 0.0863687 + 0.237296i
\(615\) 0 0
\(616\) −39131.7 + 32835.4i −0.103126 + 0.0865329i
\(617\) −145072. + 398581.i −0.381076 + 1.04700i 0.589828 + 0.807529i \(0.299196\pi\)
−0.970904 + 0.239469i \(0.923026\pi\)
\(618\) 0 0
\(619\) −76502.9 + 433869.i −0.199662 + 1.13234i 0.705958 + 0.708253i \(0.250517\pi\)
−0.905621 + 0.424089i \(0.860595\pi\)
\(620\) 59579.4i 0.154993i
\(621\) 0 0
\(622\) −406726. −1.05129
\(623\) 688789. + 121452.i 1.77464 + 0.312917i
\(624\) 0 0
\(625\) −233918. 85139.3i −0.598831 0.217957i
\(626\) −169548. 202059.i −0.432657 0.515621i
\(627\) 0 0
\(628\) 15904.9 5788.92i 0.0403286 0.0146784i
\(629\) −682796. 394212.i −1.72580 0.996389i
\(630\) 0 0
\(631\) 281259. + 487155.i 0.706395 + 1.22351i 0.966186 + 0.257847i \(0.0830129\pi\)
−0.259791 + 0.965665i \(0.583654\pi\)
\(632\) −354066. + 421959.i −0.886441 + 1.05642i
\(633\) 0 0
\(634\) −36947.7 209541.i −0.0919197 0.521303i
\(635\) −349916. + 61699.6i −0.867793 + 0.153015i
\(636\) 0 0
\(637\) 30969.4 + 25986.4i 0.0763226 + 0.0640423i
\(638\) 56065.4 32369.4i 0.137738 0.0795231i
\(639\) 0 0
\(640\) 416705. 721754.i 1.01735 1.76209i
\(641\) 71507.0 + 196464.i 0.174033 + 0.478153i 0.995788 0.0916893i \(-0.0292267\pi\)
−0.821754 + 0.569842i \(0.807004\pi\)
\(642\) 0 0
\(643\) −595606. + 499773.i −1.44058 + 1.20879i −0.501469 + 0.865176i \(0.667207\pi\)
−0.939111 + 0.343614i \(0.888349\pi\)
\(644\) −45167.4 + 124096.i −0.108906 + 0.299218i
\(645\) 0 0
\(646\) 43814.6 248485.i 0.104991 0.595436i
\(647\) 293080.i 0.700127i 0.936726 + 0.350064i \(0.113840\pi\)
−0.936726 + 0.350064i \(0.886160\pi\)
\(648\) 0 0
\(649\) 6626.29 0.0157319
\(650\) −625286. 110255.i −1.47997 0.260958i
\(651\) 0 0
\(652\) 72938.1 + 26547.3i 0.171577 + 0.0624489i
\(653\) 378601. + 451199.i 0.887883 + 1.05814i 0.997936 + 0.0642116i \(0.0204533\pi\)
−0.110054 + 0.993926i \(0.535102\pi\)
\(654\) 0 0
\(655\) −50498.1 + 18379.8i −0.117704 + 0.0428409i
\(656\) 470422. + 271598.i 1.09315 + 0.631131i
\(657\) 0 0
\(658\) 10619.8 + 18394.1i 0.0245282 + 0.0424840i
\(659\) 23676.2 28216.2i 0.0545183 0.0649723i −0.738096 0.674696i \(-0.764275\pi\)
0.792614 + 0.609723i \(0.208719\pi\)
\(660\) 0 0
\(661\) −90962.5 515874.i −0.208190 1.18070i −0.892341 0.451363i \(-0.850938\pi\)
0.684151 0.729341i \(-0.260173\pi\)
\(662\) −309891. + 54642.1i −0.707120 + 0.124684i
\(663\) 0 0
\(664\) 190546. + 159887.i 0.432178 + 0.362641i
\(665\) 251001. 144915.i 0.567586 0.327696i
\(666\) 0 0
\(667\) −288775. + 500173.i −0.649094 + 1.12426i
\(668\) −6365.94 17490.3i −0.0142662 0.0391962i
\(669\) 0 0
\(670\) 646747. 542685.i 1.44074 1.20892i
\(671\) −7617.15 + 20927.9i −0.0169179 + 0.0464817i
\(672\) 0 0
\(673\) 102301. 580177.i 0.225865 1.28095i −0.635159 0.772381i \(-0.719065\pi\)
0.861024 0.508564i \(-0.169823\pi\)
\(674\) 706749.i 1.55577i
\(675\) 0 0
\(676\) 48746.0 0.106671
\(677\) 6860.36 + 1209.67i 0.0149682 + 0.00263930i 0.181127 0.983460i \(-0.442025\pi\)
−0.166159 + 0.986099i \(0.553137\pi\)
\(678\) 0 0
\(679\) 341964. + 124465.i 0.741722 + 0.269965i
\(680\) 651591. + 776536.i 1.40915 + 1.67936i
\(681\) 0 0
\(682\) 28956.3 10539.2i 0.0622550 0.0226590i
\(683\) −641155. 370171.i −1.37443 0.793525i −0.382944 0.923771i \(-0.625090\pi\)
−0.991482 + 0.130246i \(0.958423\pi\)
\(684\) 0 0
\(685\) −136115. 235758.i −0.290084 0.502441i
\(686\) 307942. 366991.i 0.654365 0.779842i
\(687\) 0 0
\(688\) −13749.2 77975.4i −0.0290469 0.164733i
\(689\) −129017. + 22749.3i −0.271775 + 0.0479213i
\(690\) 0 0
\(691\) 252655. + 212003.i 0.529142 + 0.444003i 0.867805 0.496905i \(-0.165530\pi\)
−0.338663 + 0.940908i \(0.609975\pi\)
\(692\) −6158.81 + 3555.79i −0.0128613 + 0.00742547i
\(693\) 0 0
\(694\) −181682. + 314682.i −0.377218 + 0.653361i
\(695\) −393790. 1.08193e6i −0.815258 2.23990i
\(696\) 0 0
\(697\) −602972. + 505954.i −1.24117 + 1.04147i
\(698\) 79352.9 218020.i 0.162874 0.447493i
\(699\) 0 0
\(700\) 38204.3 216667.i 0.0779679 0.442178i
\(701\) 74351.8i 0.151306i −0.997134 0.0756529i \(-0.975896\pi\)
0.997134 0.0756529i \(-0.0241041\pi\)
\(702\) 0 0
\(703\) −236866. −0.479284
\(704\) −49236.1 8681.66i −0.0993433 0.0175169i
\(705\) 0 0
\(706\) −501615. 182573.i −1.00638 0.366292i
\(707\) −130356. 155353.i −0.260792 0.310799i
\(708\) 0 0
\(709\) 716949. 260948.i 1.42625 0.519112i 0.490395 0.871500i \(-0.336852\pi\)
0.935854 + 0.352388i \(0.114630\pi\)
\(710\) −903431. 521596.i −1.79217 1.03471i
\(711\) 0 0
\(712\) 367461. + 636461.i 0.724855 + 1.25549i
\(713\) −176705. + 210589.i −0.347592 + 0.414245i
\(714\) 0 0
\(715\) 16044.6 + 90993.6i 0.0313847 + 0.177991i
\(716\) 167122. 29468.2i 0.325993 0.0574814i
\(717\) 0 0
\(718\) 35442.5 + 29739.8i 0.0687504 + 0.0576884i
\(719\) 493734. 285058.i 0.955071 0.551410i 0.0604184 0.998173i \(-0.480757\pi\)
0.894653 + 0.446763i \(0.147423\pi\)
\(720\) 0 0
\(721\) −217929. + 377465.i −0.419223 + 0.726116i
\(722\) 171378. + 470857.i 0.328761 + 0.903264i
\(723\) 0 0
\(724\) −149570. + 125504.i −0.285343 + 0.239431i
\(725\) 329086. 904157.i 0.626085 1.72016i
\(726\) 0 0
\(727\) −94602.0 + 536514.i −0.178991 + 1.01511i 0.754445 + 0.656364i \(0.227906\pi\)
−0.933436 + 0.358745i \(0.883205\pi\)
\(728\) 351479.i 0.663189i
\(729\) 0 0
\(730\) 660744. 1.23990
\(731\) 112991. + 19923.4i 0.211451 + 0.0372845i
\(732\) 0 0
\(733\) −166933. 60758.7i −0.310695 0.113084i 0.181966 0.983305i \(-0.441754\pi\)
−0.492662 + 0.870221i \(0.663976\pi\)
\(734\) −408445. 486766.i −0.758126 0.903500i
\(735\) 0 0
\(736\) −298580. + 108674.i −0.551194 + 0.200618i
\(737\) −69375.8 40054.1i −0.127724 0.0737415i
\(738\) 0 0
\(739\) −146564. 253856.i −0.268372 0.464835i 0.700069 0.714075i \(-0.253152\pi\)
−0.968442 + 0.249240i \(0.919819\pi\)
\(740\) −177257. + 211247.i −0.323698 + 0.385768i
\(741\) 0 0
\(742\) −42968.1 243684.i −0.0780438 0.442608i
\(743\) 850263. 149924.i 1.54019 0.271578i 0.661861 0.749626i \(-0.269767\pi\)
0.878334 + 0.478048i \(0.158656\pi\)
\(744\) 0 0
\(745\) −662366. 555791.i −1.19340 1.00138i
\(746\) 540199. 311884.i 0.970681 0.560423i
\(747\) 0 0
\(748\) −13936.3 + 24138.4i −0.0249083 + 0.0431425i
\(749\) 218873. + 601349.i 0.390147 + 1.07192i
\(750\) 0 0
\(751\) 754773. 633330.i 1.33825 1.12292i 0.356175 0.934419i \(-0.384081\pi\)
0.982072 0.188504i \(-0.0603638\pi\)
\(752\) −9439.34 + 25934.4i −0.0166919 + 0.0458606i
\(753\) 0 0
\(754\) 77349.9 438673.i 0.136056 0.771611i
\(755\) 1.06918e6i 1.87568i
\(756\) 0 0
\(757\) −935246. −1.63205 −0.816026 0.578015i \(-0.803827\pi\)
−0.816026 + 0.578015i \(0.803827\pi\)
\(758\) 47487.1 + 8373.26i 0.0826489 + 0.0145732i
\(759\) 0 0
\(760\) 286178. + 104160.i 0.495461 + 0.180333i
\(761\) −273977. 326513.i −0.473092 0.563809i 0.475742 0.879585i \(-0.342180\pi\)
−0.948834 + 0.315776i \(0.897735\pi\)
\(762\) 0 0
\(763\) −1.07221e6 + 390254.i −1.84176 + 0.670345i
\(764\) −142110. 82047.1i −0.243465 0.140565i
\(765\) 0 0
\(766\) 82819.3 + 143447.i 0.141148 + 0.244475i
\(767\) 29306.4 34926.1i 0.0498164 0.0593689i
\(768\) 0 0
\(769\) 88202.4 + 500221.i 0.149152 + 0.845880i 0.963940 + 0.266121i \(0.0857422\pi\)
−0.814788 + 0.579759i \(0.803147\pi\)
\(770\) −171866. + 30304.6i −0.289873 + 0.0511125i
\(771\) 0 0
\(772\) 61295.6 + 51433.1i 0.102848 + 0.0862995i
\(773\) −762508. + 440234.i −1.27610 + 0.736758i −0.976129 0.217190i \(-0.930311\pi\)
−0.299972 + 0.953948i \(0.596977\pi\)
\(774\) 0 0
\(775\) 228992. 396626.i 0.381256 0.660355i
\(776\) 130784. + 359325.i 0.217185 + 0.596711i
\(777\) 0 0
\(778\) −51629.6 + 43322.3i −0.0852981 + 0.0715736i
\(779\) −80879.5 + 222215.i −0.133280 + 0.366183i
\(780\) 0 0
\(781\) −17188.2 + 97479.3i −0.0281792 + 0.159812i
\(782\) 1.35540e6i 2.21643i
\(783\) 0 0
\(784\) −99220.2 −0.161424
\(785\) −196511. 34650.2i −0.318895 0.0562298i
\(786\) 0 0
\(787\) 412868. + 150272.i 0.666595 + 0.242621i 0.653081 0.757288i \(-0.273476\pi\)
0.0135137 + 0.999909i \(0.495698\pi\)
\(788\) −90864.9 108289.i −0.146334 0.174394i
\(789\) 0 0
\(790\) −1.76834e6 + 643623.i −2.83342 + 1.03128i
\(791\) 22945.1 + 13247.4i 0.0366722 + 0.0211727i
\(792\) 0 0
\(793\) 76618.9 + 132708.i 0.121840 + 0.211033i
\(794\) −642018. + 765127.i −1.01837 + 1.21365i
\(795\) 0 0
\(796\) −15863.3 89965.2i −0.0250361 0.141987i
\(797\) 1.14147e6 201273.i 1.79701 0.316861i 0.827415 0.561590i \(-0.189810\pi\)
0.969591 + 0.244730i \(0.0786992\pi\)
\(798\) 0 0
\(799\) −30635.9 25706.6i −0.0479885 0.0402671i
\(800\) 458430. 264675.i 0.716298 0.413555i
\(801\) 0 0
\(802\) 416398. 721222.i 0.647381 1.12130i
\(803\) −21442.8 58913.6i −0.0332545 0.0913660i
\(804\) 0 0
\(805\) 1.19266e6 1.00076e6i 1.84046 1.54433i
\(806\) 72516.0 199236.i 0.111626 0.306689i
\(807\) 0 0
\(808\) 37003.4 209857.i 0.0566786 0.321440i
\(809\) 847337.i 1.29467i −0.762206 0.647335i \(-0.775884\pi\)
0.762206 0.647335i \(-0.224116\pi\)
\(810\) 0 0
\(811\) −333614. −0.507227 −0.253613 0.967306i \(-0.581619\pi\)
−0.253613 + 0.967306i \(0.581619\pi\)
\(812\) 152004. + 26802.4i 0.230539 + 0.0406502i
\(813\) 0 0
\(814\) 134024. + 48780.8i 0.202271 + 0.0736208i
\(815\) −588201. 700990.i −0.885545 1.05535i
\(816\) 0 0
\(817\) 32390.8 11789.3i 0.0485264 0.0176622i
\(818\) 50004.7 + 28870.2i 0.0747315 + 0.0431463i
\(819\) 0 0
\(820\) 137654. + 238424.i 0.204721 + 0.354587i
\(821\) 162567. 193740.i 0.241183 0.287430i −0.631851 0.775090i \(-0.717705\pi\)
0.873034 + 0.487659i \(0.162149\pi\)
\(822\) 0 0
\(823\) −37672.7 213652.i −0.0556195 0.315434i 0.944287 0.329124i \(-0.106753\pi\)
−0.999906 + 0.0136899i \(0.995642\pi\)
\(824\) −451029. + 79528.5i −0.664278 + 0.117130i
\(825\) 0 0
\(826\) 65967.3 + 55353.1i 0.0966871 + 0.0811301i
\(827\) 993568. 573637.i 1.45274 0.838737i 0.454099 0.890951i \(-0.349961\pi\)
0.998636 + 0.0522142i \(0.0166279\pi\)
\(828\) 0 0
\(829\) −380977. + 659872.i −0.554357 + 0.960175i 0.443596 + 0.896227i \(0.353703\pi\)
−0.997953 + 0.0639483i \(0.979631\pi\)
\(830\) 290643. + 798535.i 0.421895 + 1.15915i
\(831\) 0 0
\(832\) −263519. + 221118.i −0.380684 + 0.319432i
\(833\) 49174.3 135105.i 0.0708677 0.194707i
\(834\) 0 0
\(835\) −38104.0 + 216099.i −0.0546510 + 0.309941i
\(836\) 8373.78i 0.0119814i
\(837\) 0 0
\(838\) 1.26740e6 1.80479
\(839\) −1.02198e6 180202.i −1.45183 0.255997i −0.608570 0.793500i \(-0.708257\pi\)
−0.843262 + 0.537503i \(0.819368\pi\)
\(840\) 0 0
\(841\) −30310.2 11032.0i −0.0428545 0.0155978i
\(842\) 826310. + 984758.i 1.16552 + 1.38901i
\(843\) 0 0
\(844\) −119794. + 43601.3i −0.168170 + 0.0612089i
\(845\) −497691. 287342.i −0.697022 0.402426i
\(846\) 0 0
\(847\) −374288. 648286.i −0.521722 0.903649i
\(848\) 206674. 246305.i 0.287405 0.342516i
\(849\) 0 0
\(850\) 392108. + 2.22376e6i 0.542710 + 3.07786i
\(851\) −1.25307e6 + 220949.i −1.73027 + 0.305094i
\(852\) 0 0
\(853\) −253262. 212512.i −0.348075 0.292069i 0.451942 0.892047i \(-0.350732\pi\)
−0.800016 + 0.599978i \(0.795176\pi\)
\(854\) −250654. + 144715.i −0.343684 + 0.198426i
\(855\) 0 0
\(856\) −336215. + 582341.i −0.458849 + 0.794749i
\(857\) −23438.6 64397.1i −0.0319132 0.0876808i 0.922713 0.385488i \(-0.125967\pi\)
−0.954626 + 0.297807i \(0.903745\pi\)
\(858\) 0 0
\(859\) 526478. 441768.i 0.713500 0.598698i −0.212078 0.977253i \(-0.568023\pi\)
0.925579 + 0.378555i \(0.123579\pi\)
\(860\) 13725.3 37709.8i 0.0185577 0.0509868i
\(861\) 0 0
\(862\) 174865. 991707.i 0.235336 1.33465i
\(863\) 334665.i 0.449354i 0.974433 + 0.224677i \(0.0721327\pi\)
−0.974433 + 0.224677i \(0.927867\pi\)
\(864\) 0 0
\(865\) 83840.8 0.112053
\(866\) 306179. + 53987.6i 0.408263 + 0.0719877i
\(867\) 0 0
\(868\) 69037.1 + 25127.4i 0.0916311 + 0.0333510i
\(869\) 114774. + 136783.i 0.151986 + 0.181130i
\(870\) 0 0
\(871\) −517950. + 188518.i −0.682734 + 0.248495i
\(872\) −1.03832e6 599476.i −1.36553 0.788386i
\(873\) 0 0
\(874\) −203601. 352648.i −0.266537 0.461656i
\(875\) −777467. + 926549.i −1.01547 + 1.21019i
\(876\) 0 0
\(877\) −188474. 1.06889e6i −0.245049 1.38974i −0.820379 0.571820i \(-0.806238\pi\)
0.575331 0.817921i \(-0.304873\pi\)
\(878\) 237079. 41803.4i 0.307541 0.0542278i
\(879\) 0 0
\(880\) −173714. 145764.i −0.224321 0.188228i
\(881\) −349088. + 201546.i −0.449763 + 0.259671i −0.707730 0.706483i \(-0.750281\pi\)
0.257967 + 0.966154i \(0.416947\pi\)
\(882\) 0 0
\(883\) 462964. 801877.i 0.593780 1.02846i −0.399937 0.916543i \(-0.630968\pi\)
0.993718 0.111915i \(-0.0356986\pi\)
\(884\) 65592.6 + 180214.i 0.0839363 + 0.230613i
\(885\) 0 0
\(886\) 291880. 244916.i 0.371823 0.311997i
\(887\) −117658. + 323263.i −0.149546 + 0.410873i −0.991734 0.128310i \(-0.959045\pi\)
0.842188 + 0.539183i \(0.181267\pi\)
\(888\) 0 0
\(889\) −76082.2 + 431483.i −0.0962674 + 0.545960i
\(890\) 2.51076e6i 3.16975i
\(891\) 0 0
\(892\) −237763. −0.298823
\(893\) −11832.4 2086.36i −0.0148378 0.00261630i
\(894\) 0 0
\(895\) −1.88000e6 684265.i −2.34700 0.854237i
\(896\) −660582. 787251.i −0.822831 0.980612i
\(897\) 0 0
\(898\) 1.04788e6 381398.i 1.29945 0.472961i
\(899\) 278255. + 160651.i 0.344290 + 0.198776i
\(900\) 0 0
\(901\) 232957. + 403493.i 0.286963 + 0.497034i
\(902\) 91526.8 109077.i 0.112496 0.134067i
\(903\) 0 0
\(904\) 4834.33 + 27416.9i 0.00591561 + 0.0335491i
\(905\) 2.26690e6 399715.i 2.76780 0.488037i
\(906\) 0 0
\(907\) 673004. + 564718.i 0.818094 + 0.686462i 0.952525 0.304461i \(-0.0984762\pi\)
−0.134431 + 0.990923i \(0.542921\pi\)
\(908\) 4498.24 2597.06i 0.00545596 0.00315000i
\(909\) 0 0
\(910\) −600390. + 1.03991e6i −0.725021 + 1.25577i
\(911\) 31529.1 + 86625.5i 0.0379905 + 0.104378i 0.957237 0.289303i \(-0.0934236\pi\)
−0.919247 + 0.393681i \(0.871201\pi\)
\(912\) 0 0
\(913\) 61767.4 51829.0i 0.0740999 0.0621772i
\(914\) 204231. 561120.i 0.244472 0.671682i
\(915\) 0 0
\(916\) 34884.4 197839.i 0.0415758 0.235788i
\(917\) 66265.9i 0.0788046i
\(918\) 0 0
\(919\) 1.07969e6 1.27840 0.639200 0.769040i \(-0.279266\pi\)
0.639200 + 0.769040i \(0.279266\pi\)
\(920\) 1.61109e6 + 284079.i 1.90347 + 0.335633i
\(921\) 0 0
\(922\) 484176. + 176226.i 0.569563 + 0.207304i
\(923\) 437777. + 521723.i 0.513866 + 0.612402i
\(924\) 0 0
\(925\) 1.99194e6 725007.i 2.32805 0.847342i
\(926\) 712780. + 411523.i 0.831253 + 0.479924i
\(927\) 0 0
\(928\) 185684. + 321615.i 0.215615 + 0.373456i
\(929\) 455255. 542551.i 0.527501 0.628651i −0.434837 0.900509i \(-0.643194\pi\)
0.962337 + 0.271859i \(0.0876383\pi\)
\(930\) 0 0
\(931\) −7500.67 42538.4i −0.00865368 0.0490775i
\(932\) −238653. + 42080.9i −0.274748 + 0.0484455i
\(933\) 0 0
\(934\) 333179. + 279570.i 0.381930 + 0.320477i
\(935\) 284576. 164300.i 0.325518 0.187938i
\(936\) 0 0
\(937\) −231874. + 401617.i −0.264102 + 0.457439i −0.967328 0.253528i \(-0.918409\pi\)
0.703226 + 0.710967i \(0.251742\pi\)
\(938\) −356068. 978288.i −0.404694 1.11189i
\(939\) 0 0
\(940\) −10715.4 + 8991.25i −0.0121269 + 0.0101757i
\(941\) −523629. + 1.43866e6i −0.591350 + 1.62472i 0.176651 + 0.984274i \(0.443474\pi\)
−0.768001 + 0.640448i \(0.778749\pi\)
\(942\) 0 0
\(943\) −220585. + 1.25100e6i −0.248058 + 1.40680i
\(944\) 111897.i 0.125566i
\(945\) 0 0
\(946\) −20755.3 −0.0231925
\(947\) −520059. 91700.5i −0.579900 0.102252i −0.123999 0.992282i \(-0.539572\pi\)
−0.455901 + 0.890030i \(0.650683\pi\)
\(948\) 0 0
\(949\) −405360. 147539.i −0.450099 0.163823i
\(950\) 436060. + 519677.i 0.483169 + 0.575819i
\(951\) 0 0
\(952\) 1.17461e6 427523.i 1.29605 0.471722i
\(953\) −754093. 435376.i −0.830308 0.479379i 0.0236499 0.999720i \(-0.492471\pi\)
−0.853958 + 0.520342i \(0.825805\pi\)
\(954\) 0 0
\(955\) 967281. + 1.67538e6i 1.06059 + 1.83699i
\(956\) 130577. 155616.i 0.142874 0.170270i
\(957\) 0 0
\(958\) −42807.5 242773.i −0.0466433 0.264527i
\(959\) −330589. + 58291.7i −0.359460 + 0.0633825i
\(960\) 0 0
\(961\) −590304. 495324.i −0.639188 0.536342i
\(962\) 849871. 490673.i 0.918339 0.530203i
\(963\) 0 0
\(964\) 71604.2 124022.i 0.0770521 0.133458i
\(965\) −322639. 886443.i −0.346467 0.951910i
\(966\) 0 0
\(967\) 333747. 280047.i 0.356915 0.299487i −0.446645 0.894711i \(-0.647381\pi\)
0.803560 + 0.595224i \(0.202937\pi\)
\(968\) 269026. 739142.i 0.287107 0.788819i
\(969\) 0 0
\(970\) −226848. + 1.28652e6i −0.241097 + 1.36733i
\(971\) 921697.i 0.977574i 0.872403 + 0.488787i \(0.162560\pi\)
−0.872403 + 0.488787i \(0.837440\pi\)
\(972\) 0 0
\(973\) −1.41976e6 −1.49964
\(974\) −426984. 75288.8i −0.450084 0.0793620i
\(975\) 0 0
\(976\) −353406. 128629.i −0.371000 0.135033i
\(977\) 578976. + 689997.i 0.606557 + 0.722866i 0.978697 0.205311i \(-0.0658204\pi\)
−0.372140 + 0.928176i \(0.621376\pi\)
\(978\) 0 0
\(979\) 223866. 81480.4i 0.233573 0.0850135i
\(980\) −43550.5 25143.9i −0.0453462 0.0261807i
\(981\) 0 0
\(982\) −1.03896e6 1.79953e6i −1.07739 1.86610i
\(983\) 387453. 461748.i 0.400970 0.477857i −0.527346 0.849651i \(-0.676813\pi\)
0.928315 + 0.371794i \(0.121257\pi\)
\(984\) 0 0
\(985\) 289394. + 1.64123e6i 0.298275 + 1.69160i
\(986\) −1.56009e6 + 275086.i −1.60471 + 0.282953i
\(987\) 0 0
\(988\) 44136.7 + 37035.1i 0.0452154 + 0.0379402i
\(989\) 160356. 92581.6i 0.163943 0.0946525i
\(990\) 0 0
\(991\) 503873. 872734.i 0.513067 0.888658i −0.486818 0.873503i \(-0.661843\pi\)
0.999885 0.0151546i \(-0.00482405\pi\)
\(992\) 60457.4 + 166105.i 0.0614364 + 0.168795i
\(993\) 0 0
\(994\) −985414. + 826861.i −0.997347 + 0.836873i
\(995\) −368353. + 1.01204e6i −0.372065 + 1.02224i
\(996\) 0 0
\(997\) 152374. 864154.i 0.153292 0.869363i −0.807039 0.590499i \(-0.798931\pi\)
0.960331 0.278864i \(-0.0899578\pi\)
\(998\) 1.14053e6i 1.14510i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.9 66
3.2 odd 2 27.5.f.a.2.3 66
27.13 even 9 27.5.f.a.14.3 yes 66
27.14 odd 18 inner 81.5.f.a.71.9 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.3 66 3.2 odd 2
27.5.f.a.14.3 yes 66 27.13 even 9
81.5.f.a.8.9 66 1.1 even 1 trivial
81.5.f.a.71.9 66 27.14 odd 18 inner