Properties

Label 81.5.f.a.8.8
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.8
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.58910 + 0.632855i) q^{2} +(-2.55397 - 0.929568i) q^{4} +(-12.8585 - 15.3241i) q^{5} +(75.5885 - 27.5120i) q^{7} +(-59.0773 - 34.1083i) q^{8} +(-36.4523 - 63.1373i) q^{10} +(73.4332 - 87.5142i) q^{11} +(-36.1566 - 205.054i) q^{13} +(288.705 - 50.9066i) q^{14} +(-157.137 - 131.853i) q^{16} +(163.954 - 94.6591i) q^{17} +(-227.463 + 393.977i) q^{19} +(18.5953 + 51.0902i) q^{20} +(318.943 - 267.625i) q^{22} +(-216.433 + 594.644i) q^{23} +(39.0415 - 221.415i) q^{25} -758.841i q^{26} -218.625 q^{28} +(598.503 + 105.532i) q^{29} +(-320.106 - 116.509i) q^{31} +(221.047 + 263.433i) q^{32} +(648.354 - 235.981i) q^{34} +(-1393.55 - 804.566i) q^{35} +(551.400 + 955.053i) q^{37} +(-1065.72 + 1270.07i) q^{38} +(236.964 + 1343.89i) q^{40} +(894.918 - 157.798i) q^{41} +(-987.620 - 828.712i) q^{43} +(-268.896 + 155.247i) q^{44} +(-1153.12 + 1997.26i) q^{46} +(161.256 + 443.048i) q^{47} +(3117.44 - 2615.84i) q^{49} +(280.247 - 769.973i) q^{50} +(-98.2691 + 557.312i) q^{52} -293.218i q^{53} -2285.32 q^{55} +(-5403.95 - 952.863i) q^{56} +(2081.30 + 757.531i) q^{58} +(3379.85 + 4027.95i) q^{59} +(-2379.12 + 865.931i) q^{61} +(-1075.16 - 620.743i) q^{62} +(2267.66 + 3927.70i) q^{64} +(-2677.36 + 3190.75i) q^{65} +(933.925 + 5296.55i) q^{67} +(-506.726 + 89.3495i) q^{68} +(-4492.41 - 3769.58i) q^{70} +(4919.78 - 2840.43i) q^{71} +(1385.76 - 2400.21i) q^{73} +(1374.62 + 3776.73i) q^{74} +(947.162 - 794.763i) q^{76} +(3143.01 - 8635.36i) q^{77} +(1459.18 - 8275.44i) q^{79} +4103.41i q^{80} +3311.81 q^{82} +(6331.63 + 1116.44i) q^{83} +(-3558.77 - 1295.29i) q^{85} +(-3020.21 - 3599.35i) q^{86} +(-7323.20 + 2665.43i) q^{88} +(-6738.82 - 3890.66i) q^{89} +(-8374.46 - 14505.0i) q^{91} +(1105.52 - 1317.51i) q^{92} +(298.379 + 1692.19i) q^{94} +(8962.18 - 1580.27i) q^{95} +(8458.98 + 7097.93i) q^{97} +(12844.2 - 7415.62i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.58910 + 0.632855i 0.897274 + 0.158214i 0.603220 0.797575i \(-0.293884\pi\)
0.294054 + 0.955789i \(0.404995\pi\)
\(3\) 0 0
\(4\) −2.55397 0.929568i −0.159623 0.0580980i
\(5\) −12.8585 15.3241i −0.514339 0.612965i 0.444894 0.895583i \(-0.353241\pi\)
−0.959232 + 0.282618i \(0.908797\pi\)
\(6\) 0 0
\(7\) 75.5885 27.5120i 1.54262 0.561469i 0.575950 0.817485i \(-0.304632\pi\)
0.966672 + 0.256017i \(0.0824102\pi\)
\(8\) −59.0773 34.1083i −0.923083 0.532943i
\(9\) 0 0
\(10\) −36.4523 63.1373i −0.364523 0.631373i
\(11\) 73.4332 87.5142i 0.606886 0.723258i −0.371871 0.928285i \(-0.621284\pi\)
0.978756 + 0.205026i \(0.0657280\pi\)
\(12\) 0 0
\(13\) −36.1566 205.054i −0.213944 1.21334i −0.882729 0.469882i \(-0.844296\pi\)
0.668785 0.743456i \(-0.266815\pi\)
\(14\) 288.705 50.9066i 1.47299 0.259727i
\(15\) 0 0
\(16\) −157.137 131.853i −0.613814 0.515051i
\(17\) 163.954 94.6591i 0.567316 0.327540i −0.188760 0.982023i \(-0.560447\pi\)
0.756077 + 0.654483i \(0.227114\pi\)
\(18\) 0 0
\(19\) −227.463 + 393.977i −0.630091 + 1.09135i 0.357441 + 0.933936i \(0.383649\pi\)
−0.987533 + 0.157414i \(0.949684\pi\)
\(20\) 18.5953 + 51.0902i 0.0464882 + 0.127725i
\(21\) 0 0
\(22\) 318.943 267.625i 0.658972 0.552943i
\(23\) −216.433 + 594.644i −0.409135 + 1.12409i 0.548511 + 0.836143i \(0.315195\pi\)
−0.957646 + 0.287947i \(0.907027\pi\)
\(24\) 0 0
\(25\) 39.0415 221.415i 0.0624664 0.354264i
\(26\) 758.841i 1.12255i
\(27\) 0 0
\(28\) −218.625 −0.278858
\(29\) 598.503 + 105.532i 0.711657 + 0.125484i 0.517745 0.855535i \(-0.326771\pi\)
0.193911 + 0.981019i \(0.437883\pi\)
\(30\) 0 0
\(31\) −320.106 116.509i −0.333097 0.121237i 0.170057 0.985434i \(-0.445605\pi\)
−0.503154 + 0.864197i \(0.667827\pi\)
\(32\) 221.047 + 263.433i 0.215866 + 0.257259i
\(33\) 0 0
\(34\) 648.354 235.981i 0.560860 0.204136i
\(35\) −1393.55 804.566i −1.13759 0.656788i
\(36\) 0 0
\(37\) 551.400 + 955.053i 0.402776 + 0.697628i 0.994060 0.108835i \(-0.0347121\pi\)
−0.591284 + 0.806463i \(0.701379\pi\)
\(38\) −1065.72 + 1270.07i −0.738031 + 0.879551i
\(39\) 0 0
\(40\) 236.964 + 1343.89i 0.148102 + 0.839931i
\(41\) 894.918 157.798i 0.532372 0.0938716i 0.0990014 0.995087i \(-0.468435\pi\)
0.433371 + 0.901216i \(0.357324\pi\)
\(42\) 0 0
\(43\) −987.620 828.712i −0.534137 0.448194i 0.335390 0.942079i \(-0.391132\pi\)
−0.869527 + 0.493885i \(0.835576\pi\)
\(44\) −268.896 + 155.247i −0.138893 + 0.0801898i
\(45\) 0 0
\(46\) −1153.12 + 1997.26i −0.544953 + 0.943886i
\(47\) 161.256 + 443.048i 0.0729997 + 0.200565i 0.970826 0.239785i \(-0.0770768\pi\)
−0.897826 + 0.440349i \(0.854855\pi\)
\(48\) 0 0
\(49\) 3117.44 2615.84i 1.29839 1.08948i
\(50\) 280.247 769.973i 0.112099 0.307989i
\(51\) 0 0
\(52\) −98.2691 + 557.312i −0.0363421 + 0.206106i
\(53\) 293.218i 0.104385i −0.998637 0.0521927i \(-0.983379\pi\)
0.998637 0.0521927i \(-0.0166210\pi\)
\(54\) 0 0
\(55\) −2285.32 −0.755477
\(56\) −5403.95 952.863i −1.72320 0.303847i
\(57\) 0 0
\(58\) 2081.30 + 757.531i 0.618698 + 0.225188i
\(59\) 3379.85 + 4027.95i 0.970943 + 1.15713i 0.987557 + 0.157263i \(0.0502671\pi\)
−0.0166134 + 0.999862i \(0.505288\pi\)
\(60\) 0 0
\(61\) −2379.12 + 865.931i −0.639378 + 0.232714i −0.641308 0.767284i \(-0.721608\pi\)
0.00193010 + 0.999998i \(0.499386\pi\)
\(62\) −1075.16 620.743i −0.279698 0.161484i
\(63\) 0 0
\(64\) 2267.66 + 3927.70i 0.553628 + 0.958912i
\(65\) −2677.36 + 3190.75i −0.633694 + 0.755207i
\(66\) 0 0
\(67\) 933.925 + 5296.55i 0.208047 + 1.17990i 0.892572 + 0.450905i \(0.148899\pi\)
−0.684524 + 0.728990i \(0.739990\pi\)
\(68\) −506.726 + 89.3495i −0.109586 + 0.0193230i
\(69\) 0 0
\(70\) −4492.41 3769.58i −0.916818 0.769302i
\(71\) 4919.78 2840.43i 0.975952 0.563466i 0.0749067 0.997191i \(-0.476134\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(72\) 0 0
\(73\) 1385.76 2400.21i 0.260041 0.450404i −0.706211 0.708001i \(-0.749597\pi\)
0.966253 + 0.257597i \(0.0829305\pi\)
\(74\) 1374.62 + 3776.73i 0.251026 + 0.689689i
\(75\) 0 0
\(76\) 947.162 794.763i 0.163982 0.137598i
\(77\) 3143.01 8635.36i 0.530109 1.45646i
\(78\) 0 0
\(79\) 1459.18 8275.44i 0.233806 1.32598i −0.611308 0.791393i \(-0.709356\pi\)
0.845114 0.534587i \(-0.179533\pi\)
\(80\) 4103.41i 0.641158i
\(81\) 0 0
\(82\) 3311.81 0.492536
\(83\) 6331.63 + 1116.44i 0.919093 + 0.162061i 0.613129 0.789983i \(-0.289910\pi\)
0.305963 + 0.952043i \(0.401022\pi\)
\(84\) 0 0
\(85\) −3558.77 1295.29i −0.492563 0.179278i
\(86\) −3020.21 3599.35i −0.408357 0.486661i
\(87\) 0 0
\(88\) −7323.20 + 2665.43i −0.945661 + 0.344193i
\(89\) −6738.82 3890.66i −0.850753 0.491183i 0.0101517 0.999948i \(-0.496769\pi\)
−0.860905 + 0.508766i \(0.830102\pi\)
\(90\) 0 0
\(91\) −8374.46 14505.0i −1.01129 1.75160i
\(92\) 1105.52 1317.51i 0.130615 0.155661i
\(93\) 0 0
\(94\) 298.379 + 1692.19i 0.0337686 + 0.191511i
\(95\) 8962.18 1580.27i 0.993040 0.175100i
\(96\) 0 0
\(97\) 8458.98 + 7097.93i 0.899031 + 0.754377i 0.970001 0.243102i \(-0.0781649\pi\)
−0.0709696 + 0.997478i \(0.522609\pi\)
\(98\) 12844.2 7415.62i 1.33738 0.772139i
\(99\) 0 0
\(100\) −305.531 + 529.196i −0.0305531 + 0.0529196i
\(101\) −3965.48 10895.1i −0.388734 1.06804i −0.967572 0.252596i \(-0.918716\pi\)
0.578838 0.815443i \(-0.303506\pi\)
\(102\) 0 0
\(103\) 10494.0 8805.50i 0.989159 0.830003i 0.00371311 0.999993i \(-0.498818\pi\)
0.985446 + 0.169990i \(0.0543736\pi\)
\(104\) −4858.02 + 13347.3i −0.449151 + 1.23403i
\(105\) 0 0
\(106\) 185.565 1052.39i 0.0165152 0.0936623i
\(107\) 9783.48i 0.854527i 0.904127 + 0.427264i \(0.140522\pi\)
−0.904127 + 0.427264i \(0.859478\pi\)
\(108\) 0 0
\(109\) 5416.41 0.455888 0.227944 0.973674i \(-0.426800\pi\)
0.227944 + 0.973674i \(0.426800\pi\)
\(110\) −8202.23 1446.27i −0.677870 0.119527i
\(111\) 0 0
\(112\) −15505.2 5643.45i −1.23607 0.449892i
\(113\) −6637.56 7910.34i −0.519818 0.619495i 0.440719 0.897645i \(-0.354723\pi\)
−0.960538 + 0.278150i \(0.910279\pi\)
\(114\) 0 0
\(115\) 11895.4 4329.57i 0.899462 0.327377i
\(116\) −1430.46 825.876i −0.106306 0.0613760i
\(117\) 0 0
\(118\) 9581.52 + 16595.7i 0.688130 + 1.19188i
\(119\) 9788.81 11665.8i 0.691251 0.823801i
\(120\) 0 0
\(121\) 276.071 + 1565.67i 0.0188560 + 0.106938i
\(122\) −9086.92 + 1602.27i −0.610516 + 0.107650i
\(123\) 0 0
\(124\) 709.238 + 595.121i 0.0461263 + 0.0387045i
\(125\) −14722.6 + 8500.11i −0.942247 + 0.544007i
\(126\) 0 0
\(127\) −4578.46 + 7930.12i −0.283865 + 0.491668i −0.972333 0.233598i \(-0.924950\pi\)
0.688468 + 0.725266i \(0.258283\pi\)
\(128\) 3771.32 + 10361.6i 0.230183 + 0.632424i
\(129\) 0 0
\(130\) −11628.6 + 9757.54i −0.688082 + 0.577369i
\(131\) −7733.68 + 21248.1i −0.450654 + 1.23816i 0.481611 + 0.876385i \(0.340052\pi\)
−0.932265 + 0.361777i \(0.882170\pi\)
\(132\) 0 0
\(133\) −6354.49 + 36038.1i −0.359234 + 2.03732i
\(134\) 19600.9i 1.09161i
\(135\) 0 0
\(136\) −12914.7 −0.698240
\(137\) 23306.1 + 4109.50i 1.24173 + 0.218951i 0.755659 0.654965i \(-0.227317\pi\)
0.486076 + 0.873917i \(0.338428\pi\)
\(138\) 0 0
\(139\) −11956.2 4351.70i −0.618819 0.225232i 0.0135387 0.999908i \(-0.495690\pi\)
−0.632357 + 0.774677i \(0.717913\pi\)
\(140\) 2811.18 + 3350.23i 0.143428 + 0.170930i
\(141\) 0 0
\(142\) 19455.1 7081.09i 0.964845 0.351175i
\(143\) −20600.3 11893.6i −1.00740 0.581621i
\(144\) 0 0
\(145\) −6078.65 10528.5i −0.289115 0.500762i
\(146\) 6492.61 7737.59i 0.304588 0.362994i
\(147\) 0 0
\(148\) −520.471 2951.74i −0.0237615 0.134758i
\(149\) −28007.9 + 4938.55i −1.26156 + 0.222447i −0.764134 0.645058i \(-0.776833\pi\)
−0.497428 + 0.867505i \(0.665722\pi\)
\(150\) 0 0
\(151\) 23369.1 + 19609.0i 1.02492 + 0.860008i 0.990237 0.139391i \(-0.0445143\pi\)
0.0346800 + 0.999398i \(0.488959\pi\)
\(152\) 26875.8 15516.8i 1.16325 0.671605i
\(153\) 0 0
\(154\) 16745.5 29004.1i 0.706085 1.22297i
\(155\) 2330.67 + 6403.48i 0.0970104 + 0.266534i
\(156\) 0 0
\(157\) −33200.8 + 27858.8i −1.34695 + 1.13022i −0.367162 + 0.930157i \(0.619671\pi\)
−0.979783 + 0.200064i \(0.935885\pi\)
\(158\) 10474.3 28777.9i 0.419576 1.15278i
\(159\) 0 0
\(160\) 1194.56 6774.70i 0.0466626 0.264637i
\(161\) 50902.7i 1.96376i
\(162\) 0 0
\(163\) 2612.38 0.0983243 0.0491622 0.998791i \(-0.484345\pi\)
0.0491622 + 0.998791i \(0.484345\pi\)
\(164\) −2432.27 428.876i −0.0904326 0.0159457i
\(165\) 0 0
\(166\) 22018.3 + 8014.00i 0.799038 + 0.290826i
\(167\) −10495.0 12507.5i −0.376314 0.448474i 0.544333 0.838869i \(-0.316783\pi\)
−0.920647 + 0.390395i \(0.872338\pi\)
\(168\) 0 0
\(169\) −13901.4 + 5059.68i −0.486725 + 0.177153i
\(170\) −11953.0 6901.09i −0.413600 0.238792i
\(171\) 0 0
\(172\) 1752.01 + 3034.56i 0.0592214 + 0.102574i
\(173\) 1963.78 2340.34i 0.0656146 0.0781964i −0.732239 0.681048i \(-0.761524\pi\)
0.797853 + 0.602852i \(0.205969\pi\)
\(174\) 0 0
\(175\) −3140.48 17810.5i −0.102546 0.581569i
\(176\) −23078.1 + 4069.29i −0.745030 + 0.131369i
\(177\) 0 0
\(178\) −21724.0 18228.6i −0.685647 0.575326i
\(179\) 29485.4 17023.4i 0.920241 0.531302i 0.0365292 0.999333i \(-0.488370\pi\)
0.883712 + 0.468031i \(0.155036\pi\)
\(180\) 0 0
\(181\) 11868.0 20555.9i 0.362259 0.627451i −0.626073 0.779764i \(-0.715339\pi\)
0.988332 + 0.152313i \(0.0486722\pi\)
\(182\) −20877.2 57359.7i −0.630274 1.73166i
\(183\) 0 0
\(184\) 33068.6 27747.8i 0.976742 0.819583i
\(185\) 7545.19 20730.2i 0.220459 0.605705i
\(186\) 0 0
\(187\) 3755.67 21299.5i 0.107400 0.609096i
\(188\) 1281.43i 0.0362559i
\(189\) 0 0
\(190\) 33166.2 0.918732
\(191\) −8026.32 1415.26i −0.220014 0.0387944i 0.0625545 0.998042i \(-0.480075\pi\)
−0.282568 + 0.959247i \(0.591186\pi\)
\(192\) 0 0
\(193\) 13058.7 + 4752.99i 0.350580 + 0.127601i 0.511307 0.859398i \(-0.329162\pi\)
−0.160727 + 0.986999i \(0.551384\pi\)
\(194\) 25868.2 + 30828.5i 0.687325 + 0.819122i
\(195\) 0 0
\(196\) −10393.4 + 3782.90i −0.270550 + 0.0984721i
\(197\) −7299.39 4214.30i −0.188085 0.108591i 0.403001 0.915200i \(-0.367967\pi\)
−0.591086 + 0.806609i \(0.701301\pi\)
\(198\) 0 0
\(199\) −10447.1 18094.8i −0.263808 0.456929i 0.703443 0.710752i \(-0.251645\pi\)
−0.967251 + 0.253823i \(0.918312\pi\)
\(200\) −9858.57 + 11749.0i −0.246464 + 0.293725i
\(201\) 0 0
\(202\) −7337.49 41613.0i −0.179823 1.01983i
\(203\) 48143.4 8488.97i 1.16827 0.205998i
\(204\) 0 0
\(205\) −13925.4 11684.8i −0.331360 0.278044i
\(206\) 43236.5 24962.6i 1.01886 0.588242i
\(207\) 0 0
\(208\) −21355.5 + 36988.9i −0.493610 + 0.854957i
\(209\) 17775.3 + 48837.2i 0.406934 + 1.11804i
\(210\) 0 0
\(211\) −59352.0 + 49802.2i −1.33312 + 1.11862i −0.349786 + 0.936830i \(0.613746\pi\)
−0.983337 + 0.181793i \(0.941810\pi\)
\(212\) −272.566 + 748.870i −0.00606458 + 0.0166623i
\(213\) 0 0
\(214\) −6191.52 + 35113.9i −0.135198 + 0.766745i
\(215\) 25790.4i 0.557931i
\(216\) 0 0
\(217\) −27401.7 −0.581914
\(218\) 19440.0 + 3427.80i 0.409057 + 0.0721277i
\(219\) 0 0
\(220\) 5836.63 + 2124.36i 0.120591 + 0.0438917i
\(221\) −25338.3 30197.0i −0.518791 0.618271i
\(222\) 0 0
\(223\) 11279.7 4105.47i 0.226823 0.0825568i −0.226109 0.974102i \(-0.572600\pi\)
0.452932 + 0.891545i \(0.350378\pi\)
\(224\) 23956.1 + 13831.1i 0.477442 + 0.275651i
\(225\) 0 0
\(226\) −18816.8 32591.6i −0.368407 0.638100i
\(227\) −16872.7 + 20108.1i −0.327441 + 0.390229i −0.904500 0.426474i \(-0.859756\pi\)
0.577059 + 0.816702i \(0.304200\pi\)
\(228\) 0 0
\(229\) 10216.5 + 57940.6i 0.194819 + 1.10487i 0.912676 + 0.408683i \(0.134012\pi\)
−0.717858 + 0.696190i \(0.754877\pi\)
\(230\) 45433.7 8011.19i 0.858860 0.151440i
\(231\) 0 0
\(232\) −31758.5 26648.5i −0.590043 0.495105i
\(233\) −38277.1 + 22099.3i −0.705062 + 0.407068i −0.809230 0.587492i \(-0.800115\pi\)
0.104168 + 0.994560i \(0.466782\pi\)
\(234\) 0 0
\(235\) 4715.81 8168.03i 0.0853927 0.147905i
\(236\) −4887.78 13429.1i −0.0877582 0.241114i
\(237\) 0 0
\(238\) 42515.8 35675.0i 0.750578 0.629810i
\(239\) 9592.71 26355.7i 0.167937 0.461402i −0.826965 0.562254i \(-0.809934\pi\)
0.994901 + 0.100852i \(0.0321567\pi\)
\(240\) 0 0
\(241\) 12199.4 69186.4i 0.210042 1.19121i −0.679264 0.733894i \(-0.737701\pi\)
0.889306 0.457312i \(-0.151188\pi\)
\(242\) 5794.07i 0.0989357i
\(243\) 0 0
\(244\) 6881.15 0.115580
\(245\) −80171.0 14136.3i −1.33563 0.235507i
\(246\) 0 0
\(247\) 89011.0 + 32397.3i 1.45898 + 0.531026i
\(248\) 14937.1 + 17801.3i 0.242864 + 0.289434i
\(249\) 0 0
\(250\) −58220.2 + 21190.4i −0.931524 + 0.339047i
\(251\) −98020.2 56592.0i −1.55585 0.898272i −0.997646 0.0685690i \(-0.978157\pi\)
−0.558206 0.829703i \(-0.688510\pi\)
\(252\) 0 0
\(253\) 36146.5 + 62607.5i 0.564709 + 0.978105i
\(254\) −21451.1 + 25564.5i −0.332493 + 0.396250i
\(255\) 0 0
\(256\) −5622.56 31887.1i −0.0857934 0.486559i
\(257\) 14639.9 2581.41i 0.221652 0.0390832i −0.0617192 0.998094i \(-0.519658\pi\)
0.283371 + 0.959010i \(0.408547\pi\)
\(258\) 0 0
\(259\) 67954.9 + 57020.9i 1.01303 + 0.850031i
\(260\) 9803.91 5660.29i 0.145028 0.0837321i
\(261\) 0 0
\(262\) −41203.9 + 71367.2i −0.600255 + 1.03967i
\(263\) 31408.8 + 86295.1i 0.454088 + 1.24760i 0.929822 + 0.368008i \(0.119960\pi\)
−0.475734 + 0.879589i \(0.657818\pi\)
\(264\) 0 0
\(265\) −4493.31 + 3770.34i −0.0639845 + 0.0536894i
\(266\) −45613.8 + 125323.i −0.644663 + 1.77120i
\(267\) 0 0
\(268\) 2538.29 14395.4i 0.0353404 0.200426i
\(269\) 96636.1i 1.33547i −0.744398 0.667736i \(-0.767264\pi\)
0.744398 0.667736i \(-0.232736\pi\)
\(270\) 0 0
\(271\) 12128.1 0.165140 0.0825701 0.996585i \(-0.473687\pi\)
0.0825701 + 0.996585i \(0.473687\pi\)
\(272\) −38244.3 6743.51i −0.516927 0.0911482i
\(273\) 0 0
\(274\) 81047.2 + 29498.8i 1.07954 + 0.392919i
\(275\) −16510.0 19675.9i −0.218315 0.260177i
\(276\) 0 0
\(277\) −34773.7 + 12656.6i −0.453201 + 0.164952i −0.558527 0.829486i \(-0.688633\pi\)
0.105327 + 0.994438i \(0.466411\pi\)
\(278\) −40158.0 23185.2i −0.519615 0.300000i
\(279\) 0 0
\(280\) 54884.8 + 95063.2i 0.700061 + 1.21254i
\(281\) −15897.6 + 18946.0i −0.201335 + 0.239941i −0.857259 0.514885i \(-0.827835\pi\)
0.655924 + 0.754827i \(0.272279\pi\)
\(282\) 0 0
\(283\) −13223.6 74994.8i −0.165111 0.936393i −0.948950 0.315428i \(-0.897852\pi\)
0.783838 0.620965i \(-0.213259\pi\)
\(284\) −15205.3 + 2681.11i −0.188521 + 0.0332413i
\(285\) 0 0
\(286\) −66409.4 55724.1i −0.811891 0.681257i
\(287\) 63304.1 36548.7i 0.768543 0.443719i
\(288\) 0 0
\(289\) −23839.8 + 41291.8i −0.285435 + 0.494388i
\(290\) −15153.8 41634.8i −0.180188 0.495063i
\(291\) 0 0
\(292\) −5770.34 + 4841.89i −0.0676762 + 0.0567870i
\(293\) −11979.5 + 32913.3i −0.139541 + 0.383386i −0.989703 0.143135i \(-0.954282\pi\)
0.850162 + 0.526521i \(0.176504\pi\)
\(294\) 0 0
\(295\) 18265.1 103587.i 0.209884 1.19031i
\(296\) 75229.3i 0.858626i
\(297\) 0 0
\(298\) −103649. −1.16716
\(299\) 129760. + 22880.1i 1.45143 + 0.255927i
\(300\) 0 0
\(301\) −97452.2 35469.7i −1.07562 0.391493i
\(302\) 71464.5 + 85168.0i 0.783567 + 0.933819i
\(303\) 0 0
\(304\) 87689.9 31916.5i 0.948861 0.345357i
\(305\) 43861.5 + 25323.5i 0.471503 + 0.272222i
\(306\) 0 0
\(307\) −9364.32 16219.5i −0.0993572 0.172092i 0.812062 0.583572i \(-0.198345\pi\)
−0.911419 + 0.411480i \(0.865012\pi\)
\(308\) −16054.3 + 19132.8i −0.169235 + 0.201686i
\(309\) 0 0
\(310\) 4312.55 + 24457.7i 0.0448756 + 0.254502i
\(311\) 47860.6 8439.12i 0.494832 0.0872522i 0.0793371 0.996848i \(-0.474720\pi\)
0.415495 + 0.909596i \(0.363609\pi\)
\(312\) 0 0
\(313\) 34100.2 + 28613.5i 0.348071 + 0.292066i 0.800015 0.599980i \(-0.204825\pi\)
−0.451944 + 0.892046i \(0.649269\pi\)
\(314\) −136792. + 78976.7i −1.38740 + 0.801013i
\(315\) 0 0
\(316\) −11419.3 + 19778.8i −0.114358 + 0.198073i
\(317\) −21930.6 60253.9i −0.218239 0.599607i 0.781465 0.623950i \(-0.214473\pi\)
−0.999704 + 0.0243426i \(0.992251\pi\)
\(318\) 0 0
\(319\) 53185.6 44628.0i 0.522652 0.438557i
\(320\) 31030.0 85254.2i 0.303027 0.832560i
\(321\) 0 0
\(322\) −32214.0 + 182695.i −0.310694 + 1.76203i
\(323\) 86125.8i 0.825521i
\(324\) 0 0
\(325\) −46813.7 −0.443207
\(326\) 9376.08 + 1653.26i 0.0882239 + 0.0155563i
\(327\) 0 0
\(328\) −58251.6 21201.8i −0.541452 0.197072i
\(329\) 24378.2 + 29052.8i 0.225222 + 0.268409i
\(330\) 0 0
\(331\) 38407.2 13979.1i 0.350555 0.127592i −0.160740 0.986997i \(-0.551388\pi\)
0.511295 + 0.859405i \(0.329166\pi\)
\(332\) −15133.0 8737.03i −0.137293 0.0792661i
\(333\) 0 0
\(334\) −29752.3 51532.4i −0.266703 0.461942i
\(335\) 69156.2 82417.1i 0.616228 0.734392i
\(336\) 0 0
\(337\) 6145.73 + 34854.2i 0.0541145 + 0.306899i 0.999837 0.0180778i \(-0.00575467\pi\)
−0.945722 + 0.324977i \(0.894644\pi\)
\(338\) −53095.4 + 9362.15i −0.464754 + 0.0819487i
\(339\) 0 0
\(340\) 7884.93 + 6616.24i 0.0682087 + 0.0572339i
\(341\) −33702.6 + 19458.2i −0.289838 + 0.167338i
\(342\) 0 0
\(343\) 67107.8 116234.i 0.570407 0.987973i
\(344\) 30080.0 + 82644.1i 0.254191 + 0.698385i
\(345\) 0 0
\(346\) 8529.29 7156.93i 0.0712460 0.0597825i
\(347\) 47338.2 130061.i 0.393145 1.08016i −0.572412 0.819966i \(-0.693992\pi\)
0.965557 0.260191i \(-0.0837857\pi\)
\(348\) 0 0
\(349\) 29.9066 169.609i 0.000245537 0.00139251i −0.984685 0.174344i \(-0.944219\pi\)
0.984930 + 0.172952i \(0.0553305\pi\)
\(350\) 65911.3i 0.538051i
\(351\) 0 0
\(352\) 39286.3 0.317071
\(353\) −83193.1 14669.2i −0.667633 0.117722i −0.170449 0.985367i \(-0.554522\pi\)
−0.497185 + 0.867645i \(0.665633\pi\)
\(354\) 0 0
\(355\) −106788. 38867.6i −0.847355 0.308412i
\(356\) 13594.1 + 16200.8i 0.107263 + 0.127831i
\(357\) 0 0
\(358\) 116600. 42438.7i 0.909768 0.331128i
\(359\) 190874. + 110201.i 1.48101 + 0.855060i 0.999768 0.0215290i \(-0.00685342\pi\)
0.481239 + 0.876589i \(0.340187\pi\)
\(360\) 0 0
\(361\) −38318.3 66369.2i −0.294030 0.509275i
\(362\) 55604.2 66266.5i 0.424317 0.505681i
\(363\) 0 0
\(364\) 7904.73 + 44829.9i 0.0596601 + 0.338349i
\(365\) −54599.8 + 9627.42i −0.409831 + 0.0722643i
\(366\) 0 0
\(367\) −115293. 96742.6i −0.855996 0.718266i 0.105105 0.994461i \(-0.466482\pi\)
−0.961102 + 0.276195i \(0.910926\pi\)
\(368\) 112415. 64902.9i 0.830098 0.479257i
\(369\) 0 0
\(370\) 40199.7 69627.9i 0.293643 0.508604i
\(371\) −8067.01 22163.9i −0.0586091 0.161027i
\(372\) 0 0
\(373\) 95850.7 80428.3i 0.688934 0.578084i −0.229668 0.973269i \(-0.573764\pi\)
0.918602 + 0.395185i \(0.129319\pi\)
\(374\) 26958.9 74069.1i 0.192734 0.529534i
\(375\) 0 0
\(376\) 5585.03 31674.3i 0.0395048 0.224043i
\(377\) 126541.i 0.890327i
\(378\) 0 0
\(379\) 168468. 1.17284 0.586419 0.810008i \(-0.300537\pi\)
0.586419 + 0.810008i \(0.300537\pi\)
\(380\) −24358.1 4294.99i −0.168685 0.0297437i
\(381\) 0 0
\(382\) −27911.6 10159.0i −0.191275 0.0696184i
\(383\) −100371. 119618.i −0.684245 0.815452i 0.306402 0.951902i \(-0.400875\pi\)
−0.990647 + 0.136451i \(0.956431\pi\)
\(384\) 0 0
\(385\) −172744. + 62873.6i −1.16542 + 0.424176i
\(386\) 43861.1 + 25323.2i 0.294378 + 0.169959i
\(387\) 0 0
\(388\) −15006.0 25991.1i −0.0996783 0.172648i
\(389\) −3006.53 + 3583.04i −0.0198686 + 0.0236784i −0.775887 0.630872i \(-0.782697\pi\)
0.756019 + 0.654550i \(0.227142\pi\)
\(390\) 0 0
\(391\) 20803.4 + 117982.i 0.136076 + 0.771723i
\(392\) −273392. + 48206.4i −1.77915 + 0.313713i
\(393\) 0 0
\(394\) −23531.2 19745.0i −0.151583 0.127193i
\(395\) −145577. + 84048.8i −0.933035 + 0.538688i
\(396\) 0 0
\(397\) 16900.1 29271.7i 0.107228 0.185724i −0.807418 0.589979i \(-0.799136\pi\)
0.914646 + 0.404255i \(0.132469\pi\)
\(398\) −26044.1 71555.6i −0.164416 0.451728i
\(399\) 0 0
\(400\) −35329.1 + 29644.7i −0.220807 + 0.185279i
\(401\) −56821.5 + 156116.i −0.353366 + 0.970864i 0.627915 + 0.778282i \(0.283908\pi\)
−0.981281 + 0.192582i \(0.938314\pi\)
\(402\) 0 0
\(403\) −12316.7 + 69851.7i −0.0758378 + 0.430097i
\(404\) 31511.8i 0.193068i
\(405\) 0 0
\(406\) 178163. 1.08085
\(407\) 124072. + 21877.2i 0.749004 + 0.132070i
\(408\) 0 0
\(409\) −118234. 43033.6i −0.706798 0.257254i −0.0364877 0.999334i \(-0.511617\pi\)
−0.670311 + 0.742080i \(0.733839\pi\)
\(410\) −42584.8 50750.6i −0.253330 0.301907i
\(411\) 0 0
\(412\) −34986.6 + 12734.1i −0.206114 + 0.0750194i
\(413\) 366295. + 211480.i 2.14749 + 1.23985i
\(414\) 0 0
\(415\) −64306.6 111382.i −0.373387 0.646726i
\(416\) 46025.8 54851.4i 0.265959 0.316957i
\(417\) 0 0
\(418\) 32890.4 + 186531.i 0.188242 + 1.06757i
\(419\) 284781. 50214.6i 1.62212 0.286023i 0.712565 0.701607i \(-0.247534\pi\)
0.909555 + 0.415583i \(0.136422\pi\)
\(420\) 0 0
\(421\) 162213. + 136113.i 0.915210 + 0.767952i 0.973103 0.230371i \(-0.0739938\pi\)
−0.0578932 + 0.998323i \(0.518438\pi\)
\(422\) −244538. + 141184.i −1.37316 + 0.792793i
\(423\) 0 0
\(424\) −10001.2 + 17322.6i −0.0556314 + 0.0963564i
\(425\) −14557.9 39997.6i −0.0805976 0.221440i
\(426\) 0 0
\(427\) −156011. + 130909.i −0.855656 + 0.717981i
\(428\) 9094.41 24986.7i 0.0496463 0.136402i
\(429\) 0 0
\(430\) −16321.6 + 92564.2i −0.0882724 + 0.500617i
\(431\) 1455.79i 0.00783688i 0.999992 + 0.00391844i \(0.00124728\pi\)
−0.999992 + 0.00391844i \(0.998753\pi\)
\(432\) 0 0
\(433\) −85562.0 −0.456357 −0.228179 0.973619i \(-0.573277\pi\)
−0.228179 + 0.973619i \(0.573277\pi\)
\(434\) −98347.5 17341.3i −0.522136 0.0920667i
\(435\) 0 0
\(436\) −13833.3 5034.92i −0.0727702 0.0264862i
\(437\) −185046. 220529.i −0.968983 1.15479i
\(438\) 0 0
\(439\) 65703.4 23914.1i 0.340925 0.124087i −0.165883 0.986145i \(-0.553047\pi\)
0.506808 + 0.862059i \(0.330825\pi\)
\(440\) 135010. + 77948.3i 0.697368 + 0.402626i
\(441\) 0 0
\(442\) −71831.2 124415.i −0.367679 0.636839i
\(443\) −201497. + 240135.i −1.02674 + 1.22363i −0.0523843 + 0.998627i \(0.516682\pi\)
−0.974359 + 0.224998i \(0.927762\pi\)
\(444\) 0 0
\(445\) 27029.9 + 153294.i 0.136498 + 0.774116i
\(446\) 43082.0 7596.52i 0.216584 0.0381896i
\(447\) 0 0
\(448\) 279468. + 234501.i 1.39244 + 1.16839i
\(449\) −249646. + 144133.i −1.23832 + 0.714943i −0.968750 0.248039i \(-0.920214\pi\)
−0.269567 + 0.962982i \(0.586880\pi\)
\(450\) 0 0
\(451\) 51907.0 89905.6i 0.255196 0.442012i
\(452\) 9598.92 + 26372.8i 0.0469835 + 0.129086i
\(453\) 0 0
\(454\) −73283.3 + 61492.0i −0.355544 + 0.298337i
\(455\) −114594. + 314843.i −0.553525 + 1.52080i
\(456\) 0 0
\(457\) −9696.26 + 54990.2i −0.0464271 + 0.263301i −0.999182 0.0404389i \(-0.987124\pi\)
0.952755 + 0.303740i \(0.0982355\pi\)
\(458\) 214420.i 1.02220i
\(459\) 0 0
\(460\) −34405.1 −0.162595
\(461\) 125241. + 22083.3i 0.589309 + 0.103911i 0.460348 0.887739i \(-0.347725\pi\)
0.128961 + 0.991650i \(0.458836\pi\)
\(462\) 0 0
\(463\) 100428. + 36552.9i 0.468483 + 0.170514i 0.565465 0.824772i \(-0.308697\pi\)
−0.0969821 + 0.995286i \(0.530919\pi\)
\(464\) −80131.9 95497.5i −0.372194 0.443564i
\(465\) 0 0
\(466\) −151366. + 55092.7i −0.697038 + 0.253701i
\(467\) −319824. 184650.i −1.46648 0.846674i −0.467185 0.884159i \(-0.654732\pi\)
−0.999297 + 0.0374855i \(0.988065\pi\)
\(468\) 0 0
\(469\) 216312. + 374664.i 0.983412 + 1.70332i
\(470\) 22094.7 26331.4i 0.100021 0.119201i
\(471\) 0 0
\(472\) −62286.1 353242.i −0.279581 1.58558i
\(473\) −145048. + 25575.9i −0.648321 + 0.114316i
\(474\) 0 0
\(475\) 78352.1 + 65745.2i 0.347267 + 0.291392i
\(476\) −35844.5 + 20694.8i −0.158201 + 0.0913373i
\(477\) 0 0
\(478\) 51108.5 88522.5i 0.223685 0.387434i
\(479\) −68595.4 188464.i −0.298968 0.821406i −0.994673 0.103079i \(-0.967130\pi\)
0.695706 0.718327i \(-0.255092\pi\)
\(480\) 0 0
\(481\) 175901. 147598.i 0.760288 0.637957i
\(482\) 87569.9 240596.i 0.376930 1.03561i
\(483\) 0 0
\(484\) 750.326 4255.31i 0.00320302 0.0181652i
\(485\) 220895.i 0.939080i
\(486\) 0 0
\(487\) −355215. −1.49773 −0.748865 0.662722i \(-0.769401\pi\)
−0.748865 + 0.662722i \(0.769401\pi\)
\(488\) 170088. + 29991.1i 0.714223 + 0.125937i
\(489\) 0 0
\(490\) −278795. 101473.i −1.16116 0.422629i
\(491\) 218986. + 260977.i 0.908349 + 1.08253i 0.996261 + 0.0863997i \(0.0275362\pi\)
−0.0879117 + 0.996128i \(0.528019\pi\)
\(492\) 0 0
\(493\) 108117. 39351.3i 0.444836 0.161907i
\(494\) 298966. + 172608.i 1.22509 + 0.707307i
\(495\) 0 0
\(496\) 34938.3 + 60514.8i 0.142016 + 0.245979i
\(497\) 293733. 350057.i 1.18916 1.41718i
\(498\) 0 0
\(499\) −24501.9 138957.i −0.0984006 0.558058i −0.993652 0.112496i \(-0.964115\pi\)
0.895252 0.445561i \(-0.146996\pi\)
\(500\) 45502.5 8023.32i 0.182010 0.0320933i
\(501\) 0 0
\(502\) −315990. 265147.i −1.25391 1.05215i
\(503\) 368754. 212900.i 1.45747 0.841473i 0.458588 0.888649i \(-0.348356\pi\)
0.998887 + 0.0471760i \(0.0150222\pi\)
\(504\) 0 0
\(505\) −115967. + 200861.i −0.454729 + 0.787614i
\(506\) 90111.7 + 247580.i 0.351949 + 0.966973i
\(507\) 0 0
\(508\) 19064.8 15997.3i 0.0738763 0.0619896i
\(509\) −119089. + 327195.i −0.459661 + 1.26291i 0.466078 + 0.884743i \(0.345667\pi\)
−0.925739 + 0.378164i \(0.876556\pi\)
\(510\) 0 0
\(511\) 38713.1 219553.i 0.148257 0.840809i
\(512\) 294430.i 1.12316i
\(513\) 0 0
\(514\) 54177.6 0.205066
\(515\) −269873. 47585.9i −1.01753 0.179417i
\(516\) 0 0
\(517\) 50614.6 + 18422.2i 0.189363 + 0.0689224i
\(518\) 207811. + 247659.i 0.774477 + 0.922986i
\(519\) 0 0
\(520\) 267002. 97180.9i 0.987435 0.359397i
\(521\) −190108. 109759.i −0.700365 0.404356i 0.107119 0.994246i \(-0.465838\pi\)
−0.807483 + 0.589891i \(0.799171\pi\)
\(522\) 0 0
\(523\) −58738.0 101737.i −0.214741 0.371943i 0.738451 0.674307i \(-0.235557\pi\)
−0.953193 + 0.302364i \(0.902224\pi\)
\(524\) 39503.1 47078.0i 0.143870 0.171457i
\(525\) 0 0
\(526\) 58117.1 + 329599.i 0.210055 + 1.19128i
\(527\) −63511.5 + 11198.8i −0.228681 + 0.0403227i
\(528\) 0 0
\(529\) −92387.4 77522.2i −0.330143 0.277022i
\(530\) −18513.0 + 10688.5i −0.0659061 + 0.0380509i
\(531\) 0 0
\(532\) 49729.0 86133.2i 0.175706 0.304332i
\(533\) −64714.3 177801.i −0.227796 0.625864i
\(534\) 0 0
\(535\) 149923. 125801.i 0.523795 0.439516i
\(536\) 125483. 344761.i 0.436771 1.20002i
\(537\) 0 0
\(538\) 61156.6 346836.i 0.211290 1.19828i
\(539\) 464910.i 1.60026i
\(540\) 0 0
\(541\) 421114. 1.43882 0.719408 0.694588i \(-0.244413\pi\)
0.719408 + 0.694588i \(0.244413\pi\)
\(542\) 43528.8 + 7675.30i 0.148176 + 0.0261274i
\(543\) 0 0
\(544\) 61177.9 + 22266.9i 0.206727 + 0.0752424i
\(545\) −69646.7 83001.7i −0.234481 0.279444i
\(546\) 0 0
\(547\) −301567. + 109761.i −1.00788 + 0.366839i −0.792619 0.609718i \(-0.791283\pi\)
−0.215262 + 0.976556i \(0.569061\pi\)
\(548\) −55703.0 32160.2i −0.185489 0.107092i
\(549\) 0 0
\(550\) −46804.2 81067.2i −0.154725 0.267991i
\(551\) −177715. + 211792.i −0.585356 + 0.697600i
\(552\) 0 0
\(553\) −117376. 665673.i −0.383822 2.17676i
\(554\) −132816. + 23419.0i −0.432743 + 0.0763043i
\(555\) 0 0
\(556\) 26490.5 + 22228.2i 0.0856922 + 0.0719043i
\(557\) −246377. + 142246.i −0.794127 + 0.458489i −0.841413 0.540392i \(-0.818276\pi\)
0.0472867 + 0.998881i \(0.484943\pi\)
\(558\) 0 0
\(559\) −134222. + 232479.i −0.429536 + 0.743978i
\(560\) 112893. + 310170.i 0.359990 + 0.989064i
\(561\) 0 0
\(562\) −69048.1 + 57938.2i −0.218614 + 0.183439i
\(563\) 58933.8 161919.i 0.185929 0.510836i −0.811349 0.584561i \(-0.801267\pi\)
0.997279 + 0.0737253i \(0.0234888\pi\)
\(564\) 0 0
\(565\) −35870.1 + 203430.i −0.112366 + 0.637261i
\(566\) 277532.i 0.866324i
\(567\) 0 0
\(568\) −387530. −1.20118
\(569\) 148034. + 26102.4i 0.457232 + 0.0806224i 0.397520 0.917593i \(-0.369871\pi\)
0.0597116 + 0.998216i \(0.480982\pi\)
\(570\) 0 0
\(571\) 362690. + 132008.i 1.11241 + 0.404883i 0.831876 0.554962i \(-0.187267\pi\)
0.280531 + 0.959845i \(0.409489\pi\)
\(572\) 41556.5 + 49525.1i 0.127013 + 0.151368i
\(573\) 0 0
\(574\) 250335. 91114.4i 0.759796 0.276543i
\(575\) 123213. + 71137.3i 0.372668 + 0.215160i
\(576\) 0 0
\(577\) 12415.1 + 21503.6i 0.0372906 + 0.0645892i 0.884068 0.467358i \(-0.154794\pi\)
−0.846778 + 0.531947i \(0.821461\pi\)
\(578\) −111695. + 133113.i −0.334332 + 0.398442i
\(579\) 0 0
\(580\) 5737.68 + 32540.0i 0.0170561 + 0.0967302i
\(581\) 509314. 89805.7i 1.50880 0.266043i
\(582\) 0 0
\(583\) −25660.8 21532.0i −0.0754975 0.0633499i
\(584\) −163734. + 94531.8i −0.480079 + 0.277174i
\(585\) 0 0
\(586\) −63824.8 + 110548.i −0.185864 + 0.321925i
\(587\) 66760.6 + 183423.i 0.193751 + 0.532327i 0.998085 0.0618503i \(-0.0197001\pi\)
−0.804334 + 0.594177i \(0.797478\pi\)
\(588\) 0 0
\(589\) 118714. 99613.1i 0.342194 0.287135i
\(590\) 131111. 360223.i 0.376646 1.03483i
\(591\) 0 0
\(592\) 39281.7 222778.i 0.112085 0.635665i
\(593\) 421811.i 1.19952i 0.800179 + 0.599761i \(0.204738\pi\)
−0.800179 + 0.599761i \(0.795262\pi\)
\(594\) 0 0
\(595\) −304638. −0.860498
\(596\) 76122.1 + 13422.4i 0.214298 + 0.0377865i
\(597\) 0 0
\(598\) 451240. + 164238.i 1.26184 + 0.459273i
\(599\) 308462. + 367610.i 0.859701 + 1.02455i 0.999410 + 0.0343593i \(0.0109391\pi\)
−0.139708 + 0.990193i \(0.544616\pi\)
\(600\) 0 0
\(601\) −489106. + 178020.i −1.35411 + 0.492856i −0.914228 0.405199i \(-0.867202\pi\)
−0.439882 + 0.898055i \(0.644980\pi\)
\(602\) −327318. 188977.i −0.903186 0.521455i
\(603\) 0 0
\(604\) −41456.1 71804.1i −0.113636 0.196823i
\(605\) 20442.7 24362.7i 0.0558507 0.0665603i
\(606\) 0 0
\(607\) 51395.7 + 291480.i 0.139492 + 0.791099i 0.971626 + 0.236524i \(0.0760081\pi\)
−0.832134 + 0.554575i \(0.812881\pi\)
\(608\) −154067. + 27166.1i −0.416775 + 0.0734886i
\(609\) 0 0
\(610\) 141397. + 118646.i 0.379998 + 0.318856i
\(611\) 85018.3 49085.4i 0.227735 0.131483i
\(612\) 0 0
\(613\) −226603. + 392488.i −0.603038 + 1.04449i 0.389321 + 0.921102i \(0.372710\pi\)
−0.992358 + 0.123390i \(0.960624\pi\)
\(614\) −23344.9 64139.5i −0.0619234 0.170133i
\(615\) 0 0
\(616\) −480218. + 402951.i −1.26554 + 1.06192i
\(617\) −183856. + 505140.i −0.482956 + 1.32691i 0.423991 + 0.905666i \(0.360629\pi\)
−0.906947 + 0.421244i \(0.861594\pi\)
\(618\) 0 0
\(619\) −12278.3 + 69633.5i −0.0320447 + 0.181734i −0.996629 0.0820403i \(-0.973856\pi\)
0.964584 + 0.263775i \(0.0849675\pi\)
\(620\) 18520.8i 0.0481810i
\(621\) 0 0
\(622\) 177117. 0.457804
\(623\) −616416. 108691.i −1.58817 0.280038i
\(624\) 0 0
\(625\) 187522. + 68252.4i 0.480056 + 0.174726i
\(626\) 104281. + 124277.i 0.266106 + 0.317133i
\(627\) 0 0
\(628\) 110691. 40288.1i 0.280667 0.102154i
\(629\) 180809. + 104390.i 0.457003 + 0.263851i
\(630\) 0 0
\(631\) 205642. + 356183.i 0.516481 + 0.894571i 0.999817 + 0.0191360i \(0.00609154\pi\)
−0.483336 + 0.875435i \(0.660575\pi\)
\(632\) −368466. + 439121.i −0.922493 + 1.09938i
\(633\) 0 0
\(634\) −40579.2 230136.i −0.100954 0.572540i
\(635\) 180394. 31808.4i 0.447378 0.0788849i
\(636\) 0 0
\(637\) −649105. 544664.i −1.59969 1.34230i
\(638\) 219131. 126515.i 0.538348 0.310815i
\(639\) 0 0
\(640\) 110289. 191027.i 0.269261 0.466374i
\(641\) −112303. 308550.i −0.273323 0.750948i −0.998080 0.0619434i \(-0.980270\pi\)
0.724757 0.689005i \(-0.241952\pi\)
\(642\) 0 0
\(643\) −217884. + 182826.i −0.526990 + 0.442197i −0.867061 0.498203i \(-0.833994\pi\)
0.340070 + 0.940400i \(0.389549\pi\)
\(644\) 47317.5 130004.i 0.114091 0.313462i
\(645\) 0 0
\(646\) −54505.1 + 309114.i −0.130609 + 0.740719i
\(647\) 338284.i 0.808114i 0.914734 + 0.404057i \(0.132400\pi\)
−0.914734 + 0.404057i \(0.867600\pi\)
\(648\) 0 0
\(649\) 600697. 1.42615
\(650\) −168019. 29626.3i −0.397678 0.0701214i
\(651\) 0 0
\(652\) −6671.93 2428.38i −0.0156948 0.00571245i
\(653\) −410668. 489416.i −0.963086 1.14776i −0.988973 0.148096i \(-0.952686\pi\)
0.0258872 0.999665i \(-0.491759\pi\)
\(654\) 0 0
\(655\) 425052. 154706.i 0.990739 0.360600i
\(656\) −161430. 93201.9i −0.375126 0.216579i
\(657\) 0 0
\(658\) 69109.6 + 119701.i 0.159620 + 0.276469i
\(659\) −306063. + 364752.i −0.704759 + 0.839899i −0.993056 0.117642i \(-0.962466\pi\)
0.288297 + 0.957541i \(0.406911\pi\)
\(660\) 0 0
\(661\) −56228.4 318887.i −0.128692 0.729851i −0.979046 0.203639i \(-0.934723\pi\)
0.850354 0.526212i \(-0.176388\pi\)
\(662\) 146694. 25866.1i 0.334731 0.0590221i
\(663\) 0 0
\(664\) −335976. 281917.i −0.762030 0.639419i
\(665\) 633961. 366018.i 1.43357 0.827673i
\(666\) 0 0
\(667\) −192290. + 333056.i −0.432220 + 0.748626i
\(668\) 15177.4 + 41699.6i 0.0340130 + 0.0934499i
\(669\) 0 0
\(670\) 300366. 252037.i 0.669116 0.561455i
\(671\) −98925.4 + 271795.i −0.219717 + 0.603666i
\(672\) 0 0
\(673\) −68023.9 + 385783.i −0.150187 + 0.851751i 0.812869 + 0.582447i \(0.197905\pi\)
−0.963055 + 0.269304i \(0.913206\pi\)
\(674\) 128984.i 0.283934i
\(675\) 0 0
\(676\) 40206.9 0.0879848
\(677\) −301876. 53228.9i −0.658645 0.116137i −0.165671 0.986181i \(-0.552979\pi\)
−0.492974 + 0.870044i \(0.664090\pi\)
\(678\) 0 0
\(679\) 834680. + 303799.i 1.81042 + 0.658940i
\(680\) 166063. + 197906.i 0.359132 + 0.427997i
\(681\) 0 0
\(682\) −133276. + 48508.6i −0.286539 + 0.104292i
\(683\) −399708. 230772.i −0.856844 0.494699i 0.00611018 0.999981i \(-0.498055\pi\)
−0.862954 + 0.505282i \(0.831388\pi\)
\(684\) 0 0
\(685\) −236707. 409988.i −0.504463 0.873755i
\(686\) 314416. 374706.i 0.668122 0.796237i
\(687\) 0 0
\(688\) 45922.9 + 260442.i 0.0970180 + 0.550216i
\(689\) −60125.6 + 10601.8i −0.126655 + 0.0223326i
\(690\) 0 0
\(691\) 52014.2 + 43645.1i 0.108935 + 0.0914071i 0.695628 0.718402i \(-0.255126\pi\)
−0.586693 + 0.809809i \(0.699571\pi\)
\(692\) −7190.94 + 4151.69i −0.0150167 + 0.00866987i
\(693\) 0 0
\(694\) 252211. 436842.i 0.523655 0.906997i
\(695\) 87052.4 + 239174.i 0.180223 + 0.495160i
\(696\) 0 0
\(697\) 131789. 110584.i 0.271277 0.227628i
\(698\) 214.676 589.816i 0.000440628 0.00121061i
\(699\) 0 0
\(700\) −8535.44 + 48406.9i −0.0174193 + 0.0987895i
\(701\) 124351.i 0.253054i 0.991963 + 0.126527i \(0.0403830\pi\)
−0.991963 + 0.126527i \(0.959617\pi\)
\(702\) 0 0
\(703\) −501692. −1.01514
\(704\) 510251. + 89971.1i 1.02953 + 0.181534i
\(705\) 0 0
\(706\) −289305. 105298.i −0.580425 0.211257i
\(707\) −599489. 714443.i −1.19934 1.42932i
\(708\) 0 0
\(709\) −243010. + 88448.3i −0.483427 + 0.175953i −0.572225 0.820097i \(-0.693920\pi\)
0.0887980 + 0.996050i \(0.471697\pi\)
\(710\) −358675. 207081.i −0.711515 0.410793i
\(711\) 0 0
\(712\) 265408. + 459699.i 0.523544 + 0.906805i
\(713\) 138563. 165133.i 0.272563 0.324828i
\(714\) 0 0
\(715\) 82629.3 + 468614.i 0.161630 + 0.916649i
\(716\) −91129.3 + 16068.6i −0.177759 + 0.0313437i
\(717\) 0 0
\(718\) 615323. + 516317.i 1.19359 + 1.00154i
\(719\) −360037. + 207867.i −0.696449 + 0.402095i −0.806023 0.591884i \(-0.798384\pi\)
0.109575 + 0.993979i \(0.465051\pi\)
\(720\) 0 0
\(721\) 550968. 954304.i 1.05988 1.83576i
\(722\) −95525.9 262455.i −0.183251 0.503479i
\(723\) 0 0
\(724\) −49418.5 + 41467.1i −0.0942785 + 0.0791091i
\(725\) 46732.9 128398.i 0.0889092 0.244276i
\(726\) 0 0
\(727\) 50277.5 285138.i 0.0951271 0.539493i −0.899581 0.436754i \(-0.856128\pi\)
0.994708 0.102739i \(-0.0327607\pi\)
\(728\) 1.14256e6i 2.15583i
\(729\) 0 0
\(730\) −202057. −0.379164
\(731\) −240370. 42383.7i −0.449826 0.0793165i
\(732\) 0 0
\(733\) −617196. 224641.i −1.14872 0.418101i −0.303666 0.952778i \(-0.598211\pi\)
−0.845056 + 0.534678i \(0.820433\pi\)
\(734\) −352575. 420182.i −0.654424 0.779912i
\(735\) 0 0
\(736\) −204491. + 74428.5i −0.377501 + 0.137399i
\(737\) 532105. + 307211.i 0.979630 + 0.565590i
\(738\) 0 0
\(739\) −255257. 442119.i −0.467401 0.809562i 0.531906 0.846804i \(-0.321476\pi\)
−0.999306 + 0.0372420i \(0.988143\pi\)
\(740\) −38540.4 + 45930.6i −0.0703805 + 0.0838762i
\(741\) 0 0
\(742\) −14926.7 84653.7i −0.0271117 0.153758i
\(743\) 576592. 101669.i 1.04446 0.184166i 0.375007 0.927022i \(-0.377640\pi\)
0.669451 + 0.742856i \(0.266529\pi\)
\(744\) 0 0
\(745\) 435818. + 365695.i 0.785222 + 0.658880i
\(746\) 394917. 228005.i 0.709624 0.409701i
\(747\) 0 0
\(748\) −29391.2 + 50907.0i −0.0525308 + 0.0909859i
\(749\) 269163. + 739519.i 0.479790 + 1.31821i
\(750\) 0 0
\(751\) −748006. + 627652.i −1.32625 + 1.11286i −0.341311 + 0.939950i \(0.610871\pi\)
−0.984938 + 0.172905i \(0.944685\pi\)
\(752\) 33078.0 90881.1i 0.0584930 0.160708i
\(753\) 0 0
\(754\) 80082.2 454169.i 0.140862 0.798868i
\(755\) 610254.i 1.07057i
\(756\) 0 0
\(757\) 644723. 1.12507 0.562537 0.826772i \(-0.309825\pi\)
0.562537 + 0.826772i \(0.309825\pi\)
\(758\) 604647. + 106616.i 1.05236 + 0.185559i
\(759\) 0 0
\(760\) −583363. 212327.i −1.00998 0.367601i
\(761\) 619111. + 737828.i 1.06905 + 1.27405i 0.959997 + 0.280012i \(0.0903384\pi\)
0.109056 + 0.994036i \(0.465217\pi\)
\(762\) 0 0
\(763\) 409418. 149016.i 0.703263 0.255967i
\(764\) 19183.4 + 11075.5i 0.0328654 + 0.0189748i
\(765\) 0 0
\(766\) −284542. 492840.i −0.484940 0.839941i
\(767\) 703745. 838690.i 1.19626 1.42564i
\(768\) 0 0
\(769\) −79070.3 448430.i −0.133709 0.758302i −0.975750 0.218888i \(-0.929757\pi\)
0.842041 0.539414i \(-0.181354\pi\)
\(770\) −659784. + 116338.i −1.11281 + 0.196218i
\(771\) 0 0
\(772\) −28933.4 24278.0i −0.0485472 0.0407360i
\(773\) 841371. 485766.i 1.40808 0.812957i 0.412880 0.910785i \(-0.364523\pi\)
0.995203 + 0.0978280i \(0.0311895\pi\)
\(774\) 0 0
\(775\) −38294.3 + 66327.7i −0.0637574 + 0.110431i
\(776\) −257636. 707849.i −0.427841 1.17548i
\(777\) 0 0
\(778\) −13058.3 + 10957.2i −0.0215738 + 0.0181026i
\(779\) −141392. + 388470.i −0.232996 + 0.640152i
\(780\) 0 0
\(781\) 112696. 639133.i 0.184760 1.04783i
\(782\) 436614.i 0.713976i
\(783\) 0 0
\(784\) −834770. −1.35811
\(785\) 853824. + 150552.i 1.38557 + 0.244314i
\(786\) 0 0
\(787\) −1.06229e6 386642.i −1.71512 0.624251i −0.717717 0.696335i \(-0.754813\pi\)
−0.997399 + 0.0720836i \(0.977035\pi\)
\(788\) 14724.9 + 17548.5i 0.0237138 + 0.0282610i
\(789\) 0 0
\(790\) −575680. + 209530.i −0.922416 + 0.335732i
\(791\) −719352. 415318.i −1.14971 0.663786i
\(792\) 0 0
\(793\) 263584. + 456540.i 0.419153 + 0.725994i
\(794\) 79180.7 94363.9i 0.125597 0.149680i
\(795\) 0 0
\(796\) 9861.06 + 55924.9i 0.0155632 + 0.0882630i
\(797\) −169413. + 29872.1i −0.266704 + 0.0470272i −0.305401 0.952224i \(-0.598791\pi\)
0.0386966 + 0.999251i \(0.487679\pi\)
\(798\) 0 0
\(799\) 68377.2 + 57375.3i 0.107107 + 0.0898734i
\(800\) 66958.1 38658.3i 0.104622 0.0604036i
\(801\) 0 0
\(802\) −302737. + 524355.i −0.470670 + 0.815224i
\(803\) −108291. 297528.i −0.167943 0.461421i
\(804\) 0 0
\(805\) 780039. 654531.i 1.20372 1.01004i
\(806\) −88411.9 + 242910.i −0.136095 + 0.373917i
\(807\) 0 0
\(808\) −137342. + 778907.i −0.210369 + 1.19306i
\(809\) 1.07946e6i 1.64933i 0.565621 + 0.824666i \(0.308637\pi\)
−0.565621 + 0.824666i \(0.691363\pi\)
\(810\) 0 0
\(811\) −113522. −0.172599 −0.0862995 0.996269i \(-0.527504\pi\)
−0.0862995 + 0.996269i \(0.527504\pi\)
\(812\) −130848. 23072.0i −0.198451 0.0349923i
\(813\) 0 0
\(814\) 431461. + 157039.i 0.651167 + 0.237005i
\(815\) −33591.2 40032.4i −0.0505720 0.0602694i
\(816\) 0 0
\(817\) 551140. 200599.i 0.825692 0.300527i
\(818\) −397119. 229277.i −0.593491 0.342652i
\(819\) 0 0
\(820\) 24703.2 + 42787.2i 0.0367388 + 0.0636335i
\(821\) 336695. 401258.i 0.499517 0.595301i −0.456094 0.889932i \(-0.650752\pi\)
0.955611 + 0.294630i \(0.0951964\pi\)
\(822\) 0 0
\(823\) −108163. 613424.i −0.159691 0.905652i −0.954371 0.298624i \(-0.903472\pi\)
0.794680 0.607028i \(-0.207639\pi\)
\(824\) −920298. + 162273.i −1.35542 + 0.238997i
\(825\) 0 0
\(826\) 1.18083e6 + 990835.i 1.73072 + 1.45225i
\(827\) −80950.5 + 46736.8i −0.118361 + 0.0683357i −0.558012 0.829833i \(-0.688436\pi\)
0.439651 + 0.898169i \(0.355102\pi\)
\(828\) 0 0
\(829\) −92504.3 + 160222.i −0.134602 + 0.233138i −0.925446 0.378881i \(-0.876309\pi\)
0.790843 + 0.612019i \(0.209642\pi\)
\(830\) −160314. 440459.i −0.232710 0.639365i
\(831\) 0 0
\(832\) 723401. 607006.i 1.04504 0.876892i
\(833\) 263504. 723973.i 0.379750 1.04335i
\(834\) 0 0
\(835\) −56716.4 + 321654.i −0.0813458 + 0.461335i
\(836\) 141252.i 0.202108i
\(837\) 0 0
\(838\) 1.05389e6 1.50074
\(839\) 345551. + 60930.0i 0.490895 + 0.0865580i 0.413616 0.910451i \(-0.364266\pi\)
0.0772790 + 0.997010i \(0.475377\pi\)
\(840\) 0 0
\(841\) −317558. 115582.i −0.448984 0.163417i
\(842\) 496058. + 591178.i 0.699694 + 0.833862i
\(843\) 0 0
\(844\) 197878. 72021.5i 0.277787 0.101106i
\(845\) 256285. + 147966.i 0.358930 + 0.207229i
\(846\) 0 0
\(847\) 63942.5 + 110752.i 0.0891298 + 0.154377i
\(848\) −38661.8 + 46075.3i −0.0537638 + 0.0640732i
\(849\) 0 0
\(850\) −26937.2 152768.i −0.0372833 0.211444i
\(851\) −687257. + 121182.i −0.948987 + 0.167332i
\(852\) 0 0
\(853\) −875689. 734790.i −1.20352 1.00987i −0.999523 0.0308968i \(-0.990164\pi\)
−0.203993 0.978972i \(-0.565392\pi\)
\(854\) −642785. + 371112.i −0.881353 + 0.508849i
\(855\) 0 0
\(856\) 333698. 577982.i 0.455414 0.788800i
\(857\) −174673. 479909.i −0.237828 0.653428i −0.999982 0.00603135i \(-0.998080\pi\)
0.762154 0.647396i \(-0.224142\pi\)
\(858\) 0 0
\(859\) −632238. + 530511.i −0.856830 + 0.718965i −0.961283 0.275564i \(-0.911135\pi\)
0.104453 + 0.994530i \(0.466691\pi\)
\(860\) 23973.9 65867.8i 0.0324147 0.0890587i
\(861\) 0 0
\(862\) −921.302 + 5224.96i −0.00123990 + 0.00703183i
\(863\) 314595.i 0.422406i −0.977442 0.211203i \(-0.932262\pi\)
0.977442 0.211203i \(-0.0677381\pi\)
\(864\) 0 0
\(865\) −61114.9 −0.0816798
\(866\) −307090. 54148.3i −0.409478 0.0722020i
\(867\) 0 0
\(868\) 69983.1 + 25471.8i 0.0928868 + 0.0338080i
\(869\) −617066. 735391.i −0.817132 0.973820i
\(870\) 0 0
\(871\) 1.05231e6 383010.i 1.38710 0.504864i
\(872\) −319987. 184745.i −0.420823 0.242962i
\(873\) 0 0
\(874\) −524584. 908607.i −0.686740 1.18947i
\(875\) −879005. + 1.04756e6i −1.14809 + 1.36824i
\(876\) 0 0
\(877\) 189340. + 1.07380e6i 0.246175 + 1.39613i 0.817749 + 0.575575i \(0.195222\pi\)
−0.571575 + 0.820550i \(0.693667\pi\)
\(878\) 250950. 44249.3i 0.325536 0.0574007i
\(879\) 0 0
\(880\) 359107. + 301326.i 0.463723 + 0.389109i
\(881\) 705767. 407475.i 0.909304 0.524987i 0.0290971 0.999577i \(-0.490737\pi\)
0.880207 + 0.474589i \(0.157403\pi\)
\(882\) 0 0
\(883\) 290090. 502451.i 0.372059 0.644425i −0.617823 0.786317i \(-0.711985\pi\)
0.989882 + 0.141892i \(0.0453187\pi\)
\(884\) 36643.0 + 100676.i 0.0468907 + 0.128831i
\(885\) 0 0
\(886\) −875164. + 734350.i −1.11486 + 0.935483i
\(887\) 149005. 409387.i 0.189388 0.520340i −0.808264 0.588820i \(-0.799593\pi\)
0.997652 + 0.0684799i \(0.0218149\pi\)
\(888\) 0 0
\(889\) −127905. + 725388.i −0.161840 + 0.917840i
\(890\) 567294.i 0.716190i
\(891\) 0 0
\(892\) −32624.3 −0.0410025
\(893\) −211231. 37245.7i −0.264883 0.0467060i
\(894\) 0 0
\(895\) −640007. 232943.i −0.798985 0.290807i
\(896\) 570137. + 679463.i 0.710172 + 0.846350i
\(897\) 0 0
\(898\) −987219. + 359318.i −1.22422 + 0.445581i
\(899\) −179289. 103513.i −0.221837 0.128078i
\(900\) 0 0
\(901\) −27755.8 48074.4i −0.0341904 0.0592195i
\(902\) 243197. 289830.i 0.298913 0.356230i
\(903\) 0 0
\(904\) 122321. + 693718.i 0.149680 + 0.848879i
\(905\) −467605. + 82451.5i −0.570929 + 0.100670i
\(906\) 0 0
\(907\) 435560. + 365478.i 0.529460 + 0.444270i 0.867915 0.496713i \(-0.165460\pi\)
−0.338455 + 0.940983i \(0.609904\pi\)
\(908\) 61784.2 35671.1i 0.0749386 0.0432658i
\(909\) 0 0
\(910\) −610538. + 1.05748e6i −0.737275 + 1.27700i
\(911\) 335275. + 921160.i 0.403984 + 1.10994i 0.960301 + 0.278967i \(0.0899919\pi\)
−0.556317 + 0.830970i \(0.687786\pi\)
\(912\) 0 0
\(913\) 562656. 472124.i 0.674996 0.566389i
\(914\) −69601.6 + 191229.i −0.0833157 + 0.228908i
\(915\) 0 0
\(916\) 27767.2 157475.i 0.0330933 0.187682i
\(917\) 1.81888e6i 2.16304i
\(918\) 0 0
\(919\) 930154. 1.10135 0.550673 0.834721i \(-0.314371\pi\)
0.550673 + 0.834721i \(0.314371\pi\)
\(920\) −850422. 149952.i −1.00475 0.177165i
\(921\) 0 0
\(922\) 435525. + 158518.i 0.512332 + 0.186474i
\(923\) −760325. 906120.i −0.892475 1.06361i
\(924\) 0 0
\(925\) 232991. 84801.7i 0.272305 0.0991109i
\(926\) 337314. + 194748.i 0.393380 + 0.227118i
\(927\) 0 0
\(928\) 104496. + 180993.i 0.121340 + 0.210168i
\(929\) 485187. 578223.i 0.562183 0.669983i −0.407824 0.913060i \(-0.633712\pi\)
0.970007 + 0.243077i \(0.0781569\pi\)
\(930\) 0 0
\(931\) 321481. + 1.82321e6i 0.370899 + 2.10347i
\(932\) 118301. 20859.7i 0.136194 0.0240147i
\(933\) 0 0
\(934\) −1.03102e6 865130.i −1.18188 0.991716i
\(935\) −374688. + 216326.i −0.428594 + 0.247449i
\(936\) 0 0
\(937\) −14627.9 + 25336.2i −0.0166610 + 0.0288577i −0.874236 0.485502i \(-0.838637\pi\)
0.857575 + 0.514359i \(0.171970\pi\)
\(938\) 539258. + 1.48160e6i 0.612902 + 1.68393i
\(939\) 0 0
\(940\) −19636.8 + 16477.2i −0.0222236 + 0.0186478i
\(941\) −444219. + 1.22048e6i −0.501670 + 1.37833i 0.387974 + 0.921670i \(0.373175\pi\)
−0.889643 + 0.456656i \(0.849047\pi\)
\(942\) 0 0
\(943\) −99855.7 + 566310.i −0.112292 + 0.636840i
\(944\) 1.07858e6i 1.21035i
\(945\) 0 0
\(946\) −536778. −0.599808
\(947\) 1.23922e6 + 218507.i 1.38181 + 0.243650i 0.814647 0.579958i \(-0.196931\pi\)
0.567160 + 0.823607i \(0.308042\pi\)
\(948\) 0 0
\(949\) −542277. 197373.i −0.602127 0.219156i
\(950\) 239606. + 285551.i 0.265492 + 0.316401i
\(951\) 0 0
\(952\) −976199. + 355307.i −1.07712 + 0.392040i
\(953\) −556515. 321304.i −0.612761 0.353778i 0.161284 0.986908i \(-0.448436\pi\)
−0.774045 + 0.633130i \(0.781770\pi\)
\(954\) 0 0
\(955\) 81518.7 + 141194.i 0.0893820 + 0.154814i
\(956\) −48998.9 + 58394.6i −0.0536131 + 0.0638936i
\(957\) 0 0
\(958\) −126925. 719828.i −0.138298 0.784328i
\(959\) 1.87473e6 330566.i 2.03846 0.359436i
\(960\) 0 0
\(961\) −618565. 519037.i −0.669789 0.562020i
\(962\) 724734. 418425.i 0.783120 0.452135i
\(963\) 0 0
\(964\) −95470.5 + 165360.i −0.102734 + 0.177941i
\(965\) −95079.9 261230.i −0.102102 0.280523i
\(966\) 0 0
\(967\) 903515. 758139.i 0.966234 0.810766i −0.0157221 0.999876i \(-0.505005\pi\)
0.981956 + 0.189110i \(0.0605603\pi\)
\(968\) 37093.0 101912.i 0.0395860 0.108762i
\(969\) 0 0
\(970\) 139794. 792814.i 0.148575 0.842612i
\(971\) 423403.i 0.449072i −0.974466 0.224536i \(-0.927913\pi\)
0.974466 0.224536i \(-0.0720866\pi\)
\(972\) 0 0
\(973\) −1.02347e6 −1.08106
\(974\) −1.27490e6 224800.i −1.34387 0.236961i
\(975\) 0 0
\(976\) 488023. + 177626.i 0.512319 + 0.186469i
\(977\) −619524. 738320.i −0.649037 0.773492i 0.336732 0.941601i \(-0.390678\pi\)
−0.985768 + 0.168109i \(0.946234\pi\)
\(978\) 0 0
\(979\) −835341. + 304039.i −0.871562 + 0.317223i
\(980\) 191613. + 110628.i 0.199514 + 0.115190i
\(981\) 0 0
\(982\) 620800. + 1.07526e6i 0.643767 + 1.11504i
\(983\) −994517. + 1.18522e6i −1.02921 + 1.22657i −0.0555777 + 0.998454i \(0.517700\pi\)
−0.973635 + 0.228113i \(0.926744\pi\)
\(984\) 0 0
\(985\) 29278.4 + 166046.i 0.0301769 + 0.171142i
\(986\) 412946. 72813.4i 0.424755 0.0748958i
\(987\) 0 0
\(988\) −197216. 165484.i −0.202035 0.169528i
\(989\) 706541. 407922.i 0.722345 0.417046i
\(990\) 0 0
\(991\) 668136. 1.15725e6i 0.680327 1.17836i −0.294554 0.955635i \(-0.595171\pi\)
0.974881 0.222726i \(-0.0714955\pi\)
\(992\) −40066.0 110081.i −0.0407149 0.111863i
\(993\) 0 0
\(994\) 1.27577e6 1.07050e6i 1.29122 1.08346i
\(995\) −142954. + 392764.i −0.144395 + 0.396721i
\(996\) 0 0
\(997\) 71152.1 403524.i 0.0715809 0.405956i −0.927872 0.372898i \(-0.878364\pi\)
0.999453 0.0330581i \(-0.0105246\pi\)
\(998\) 514236.i 0.516299i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.8 66
3.2 odd 2 27.5.f.a.2.4 66
27.13 even 9 27.5.f.a.14.4 yes 66
27.14 odd 18 inner 81.5.f.a.71.8 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.4 66 3.2 odd 2
27.5.f.a.14.4 yes 66 27.13 even 9
81.5.f.a.8.8 66 1.1 even 1 trivial
81.5.f.a.71.8 66 27.14 odd 18 inner