Properties

Label 81.5.f.a.8.7
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.7
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.38785 + 0.421042i) q^{2} +(-9.51055 - 3.46156i) q^{4} +(12.2061 + 14.5467i) q^{5} +(-77.2633 + 28.1215i) q^{7} +(-54.8497 - 31.6675i) q^{8} +(23.0216 + 39.8746i) q^{10} +(-12.1711 + 14.5050i) q^{11} +(3.97248 + 22.5290i) q^{13} +(-196.333 + 34.6188i) q^{14} +(6.40988 + 5.37853i) q^{16} +(-324.171 + 187.160i) q^{17} +(-252.115 + 436.676i) q^{19} +(-65.7328 - 180.599i) q^{20} +(-35.1700 + 29.5112i) q^{22} +(244.422 - 671.544i) q^{23} +(45.9132 - 260.387i) q^{25} +55.4685i q^{26} +832.160 q^{28} +(361.455 + 63.7342i) q^{29} +(-812.225 - 295.626i) q^{31} +(664.416 + 791.820i) q^{32} +(-852.872 + 310.420i) q^{34} +(-1352.16 - 780.671i) q^{35} +(747.404 + 1294.54i) q^{37} +(-785.871 + 936.565i) q^{38} +(-208.845 - 1184.42i) q^{40} +(2056.90 - 362.687i) q^{41} +(-208.251 - 174.743i) q^{43} +(165.964 - 95.8194i) q^{44} +(866.390 - 1500.63i) q^{46} +(646.583 + 1776.47i) q^{47} +(3339.52 - 2802.19i) q^{49} +(219.267 - 602.432i) q^{50} +(40.2051 - 228.015i) q^{52} +1358.28i q^{53} -359.563 q^{55} +(5128.40 + 904.276i) q^{56} +(836.263 + 304.375i) q^{58} +(-3449.24 - 4110.64i) q^{59} +(-3419.70 + 1244.67i) q^{61} +(-1815.00 - 1047.89i) q^{62} +(1186.19 + 2054.55i) q^{64} +(-279.235 + 332.779i) q^{65} +(115.147 + 653.032i) q^{67} +(3730.90 - 657.859i) q^{68} +(-2900.06 - 2433.44i) q^{70} +(-293.218 + 169.289i) q^{71} +(-1836.71 + 3181.27i) q^{73} +(1239.63 + 3405.86i) q^{74} +(3909.33 - 3280.32i) q^{76} +(532.479 - 1462.98i) q^{77} +(-1361.74 + 7722.79i) q^{79} +158.894i q^{80} +5064.27 q^{82} +(-9503.58 - 1675.74i) q^{83} +(-6679.43 - 2431.11i) q^{85} +(-423.697 - 504.943i) q^{86} +(1126.92 - 410.165i) q^{88} +(-8338.67 - 4814.33i) q^{89} +(-940.478 - 1628.96i) q^{91} +(-4649.17 + 5540.67i) q^{92} +(795.971 + 4514.18i) q^{94} +(-9429.55 + 1662.68i) q^{95} +(-720.437 - 604.518i) q^{97} +(9154.10 - 5285.12i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38785 + 0.421042i 0.596962 + 0.105260i 0.463961 0.885856i \(-0.346428\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(3\) 0 0
\(4\) −9.51055 3.46156i −0.594409 0.216347i
\(5\) 12.2061 + 14.5467i 0.488245 + 0.581868i 0.952770 0.303692i \(-0.0982193\pi\)
−0.464525 + 0.885560i \(0.653775\pi\)
\(6\) 0 0
\(7\) −77.2633 + 28.1215i −1.57680 + 0.573909i −0.974505 0.224364i \(-0.927970\pi\)
−0.602296 + 0.798273i \(0.705747\pi\)
\(8\) −54.8497 31.6675i −0.857026 0.494804i
\(9\) 0 0
\(10\) 23.0216 + 39.8746i 0.230216 + 0.398746i
\(11\) −12.1711 + 14.5050i −0.100588 + 0.119876i −0.813990 0.580879i \(-0.802709\pi\)
0.713402 + 0.700755i \(0.247153\pi\)
\(12\) 0 0
\(13\) 3.97248 + 22.5290i 0.0235058 + 0.133308i 0.994302 0.106596i \(-0.0339952\pi\)
−0.970797 + 0.239904i \(0.922884\pi\)
\(14\) −196.333 + 34.6188i −1.00170 + 0.176627i
\(15\) 0 0
\(16\) 6.40988 + 5.37853i 0.0250386 + 0.0210099i
\(17\) −324.171 + 187.160i −1.12170 + 0.647612i −0.941834 0.336079i \(-0.890899\pi\)
−0.179864 + 0.983692i \(0.557566\pi\)
\(18\) 0 0
\(19\) −252.115 + 436.676i −0.698380 + 1.20963i 0.270648 + 0.962678i \(0.412762\pi\)
−0.969028 + 0.246951i \(0.920571\pi\)
\(20\) −65.7328 180.599i −0.164332 0.451498i
\(21\) 0 0
\(22\) −35.1700 + 29.5112i −0.0726653 + 0.0609735i
\(23\) 244.422 671.544i 0.462045 1.26946i −0.461899 0.886933i \(-0.652832\pi\)
0.923944 0.382527i \(-0.124946\pi\)
\(24\) 0 0
\(25\) 45.9132 260.387i 0.0734611 0.416619i
\(26\) 55.4685i 0.0820540i
\(27\) 0 0
\(28\) 832.160 1.06143
\(29\) 361.455 + 63.7342i 0.429791 + 0.0757838i 0.384359 0.923184i \(-0.374422\pi\)
0.0454321 + 0.998967i \(0.485534\pi\)
\(30\) 0 0
\(31\) −812.225 295.626i −0.845187 0.307623i −0.117111 0.993119i \(-0.537363\pi\)
−0.728077 + 0.685496i \(0.759585\pi\)
\(32\) 664.416 + 791.820i 0.648843 + 0.773262i
\(33\) 0 0
\(34\) −852.872 + 310.420i −0.737778 + 0.268529i
\(35\) −1352.16 780.671i −1.10381 0.637282i
\(36\) 0 0
\(37\) 747.404 + 1294.54i 0.545949 + 0.945612i 0.998547 + 0.0538968i \(0.0171642\pi\)
−0.452597 + 0.891715i \(0.649502\pi\)
\(38\) −785.871 + 936.565i −0.544232 + 0.648591i
\(39\) 0 0
\(40\) −208.845 1184.42i −0.130528 0.740262i
\(41\) 2056.90 362.687i 1.22362 0.215757i 0.475735 0.879589i \(-0.342182\pi\)
0.747882 + 0.663832i \(0.231071\pi\)
\(42\) 0 0
\(43\) −208.251 174.743i −0.112629 0.0945070i 0.584734 0.811225i \(-0.301199\pi\)
−0.697363 + 0.716718i \(0.745643\pi\)
\(44\) 165.964 95.8194i 0.0857253 0.0494935i
\(45\) 0 0
\(46\) 866.390 1500.63i 0.409447 0.709183i
\(47\) 646.583 + 1776.47i 0.292704 + 0.804197i 0.995669 + 0.0929724i \(0.0296368\pi\)
−0.702965 + 0.711224i \(0.748141\pi\)
\(48\) 0 0
\(49\) 3339.52 2802.19i 1.39089 1.16709i
\(50\) 219.267 602.432i 0.0877070 0.240973i
\(51\) 0 0
\(52\) 40.2051 228.015i 0.0148688 0.0843249i
\(53\) 1358.28i 0.483546i 0.970333 + 0.241773i \(0.0777289\pi\)
−0.970333 + 0.241773i \(0.922271\pi\)
\(54\) 0 0
\(55\) −359.563 −0.118864
\(56\) 5128.40 + 904.276i 1.63533 + 0.288353i
\(57\) 0 0
\(58\) 836.263 + 304.375i 0.248592 + 0.0904800i
\(59\) −3449.24 4110.64i −0.990875 1.18088i −0.983500 0.180906i \(-0.942097\pi\)
−0.00737489 0.999973i \(-0.502348\pi\)
\(60\) 0 0
\(61\) −3419.70 + 1244.67i −0.919026 + 0.334498i −0.757851 0.652428i \(-0.773751\pi\)
−0.161175 + 0.986926i \(0.551528\pi\)
\(62\) −1815.00 1047.89i −0.472164 0.272604i
\(63\) 0 0
\(64\) 1186.19 + 2054.55i 0.289598 + 0.501598i
\(65\) −279.235 + 332.779i −0.0660911 + 0.0787643i
\(66\) 0 0
\(67\) 115.147 + 653.032i 0.0256510 + 0.145474i 0.994943 0.100437i \(-0.0320241\pi\)
−0.969292 + 0.245911i \(0.920913\pi\)
\(68\) 3730.90 657.859i 0.806856 0.142271i
\(69\) 0 0
\(70\) −2900.06 2433.44i −0.591849 0.496620i
\(71\) −293.218 + 169.289i −0.0581666 + 0.0335825i −0.528801 0.848746i \(-0.677358\pi\)
0.470635 + 0.882328i \(0.344025\pi\)
\(72\) 0 0
\(73\) −1836.71 + 3181.27i −0.344663 + 0.596974i −0.985292 0.170876i \(-0.945340\pi\)
0.640630 + 0.767850i \(0.278673\pi\)
\(74\) 1239.63 + 3405.86i 0.226375 + 0.621961i
\(75\) 0 0
\(76\) 3909.33 3280.32i 0.676824 0.567922i
\(77\) 532.479 1462.98i 0.0898093 0.246749i
\(78\) 0 0
\(79\) −1361.74 + 7722.79i −0.218192 + 1.23743i 0.657089 + 0.753813i \(0.271788\pi\)
−0.875281 + 0.483615i \(0.839323\pi\)
\(80\) 158.894i 0.0248271i
\(81\) 0 0
\(82\) 5064.27 0.753163
\(83\) −9503.58 1675.74i −1.37953 0.243248i −0.565825 0.824526i \(-0.691442\pi\)
−0.813706 + 0.581277i \(0.802553\pi\)
\(84\) 0 0
\(85\) −6679.43 2431.11i −0.924488 0.336486i
\(86\) −423.697 504.943i −0.0572874 0.0682724i
\(87\) 0 0
\(88\) 1126.92 410.165i 0.145522 0.0529655i
\(89\) −8338.67 4814.33i −1.05273 0.607793i −0.129317 0.991603i \(-0.541278\pi\)
−0.923412 + 0.383810i \(0.874612\pi\)
\(90\) 0 0
\(91\) −940.478 1628.96i −0.113571 0.196710i
\(92\) −4649.17 + 5540.67i −0.549288 + 0.654616i
\(93\) 0 0
\(94\) 795.971 + 4514.18i 0.0900828 + 0.510885i
\(95\) −9429.55 + 1662.68i −1.04483 + 0.184231i
\(96\) 0 0
\(97\) −720.437 604.518i −0.0765689 0.0642489i 0.603700 0.797212i \(-0.293693\pi\)
−0.680269 + 0.732963i \(0.738137\pi\)
\(98\) 9154.10 5285.12i 0.953155 0.550304i
\(99\) 0 0
\(100\) −1338.00 + 2317.49i −0.133800 + 0.231749i
\(101\) −203.117 558.059i −0.0199115 0.0547063i 0.929339 0.369228i \(-0.120378\pi\)
−0.949250 + 0.314522i \(0.898156\pi\)
\(102\) 0 0
\(103\) −5740.67 + 4816.99i −0.541113 + 0.454048i −0.871918 0.489651i \(-0.837124\pi\)
0.330805 + 0.943699i \(0.392680\pi\)
\(104\) 495.549 1361.51i 0.0458163 0.125879i
\(105\) 0 0
\(106\) −571.893 + 3243.37i −0.0508983 + 0.288658i
\(107\) 17736.2i 1.54915i 0.632483 + 0.774574i \(0.282036\pi\)
−0.632483 + 0.774574i \(0.717964\pi\)
\(108\) 0 0
\(109\) −14519.8 −1.22211 −0.611053 0.791590i \(-0.709254\pi\)
−0.611053 + 0.791590i \(0.709254\pi\)
\(110\) −858.580 151.391i −0.0709570 0.0125116i
\(111\) 0 0
\(112\) −646.501 235.307i −0.0515386 0.0187585i
\(113\) 9751.79 + 11621.7i 0.763708 + 0.910152i 0.998076 0.0619961i \(-0.0197466\pi\)
−0.234368 + 0.972148i \(0.575302\pi\)
\(114\) 0 0
\(115\) 12752.2 4641.42i 0.964249 0.350958i
\(116\) −3217.01 1857.34i −0.239076 0.138031i
\(117\) 0 0
\(118\) −6505.50 11267.9i −0.467215 0.809239i
\(119\) 19783.3 23576.8i 1.39702 1.66491i
\(120\) 0 0
\(121\) 2480.12 + 14065.5i 0.169396 + 0.960692i
\(122\) −8689.76 + 1532.24i −0.583833 + 0.102945i
\(123\) 0 0
\(124\) 6701.38 + 5623.13i 0.435834 + 0.365708i
\(125\) 14626.5 8444.61i 0.936096 0.540455i
\(126\) 0 0
\(127\) 5848.51 10129.9i 0.362608 0.628056i −0.625781 0.779999i \(-0.715220\pi\)
0.988389 + 0.151943i \(0.0485530\pi\)
\(128\) −3689.05 10135.6i −0.225162 0.618627i
\(129\) 0 0
\(130\) −806.884 + 677.056i −0.0477446 + 0.0400625i
\(131\) −2357.00 + 6475.80i −0.137346 + 0.377355i −0.989229 0.146377i \(-0.953239\pi\)
0.851883 + 0.523733i \(0.175461\pi\)
\(132\) 0 0
\(133\) 7199.24 40828.9i 0.406990 2.30815i
\(134\) 1607.82i 0.0895424i
\(135\) 0 0
\(136\) 23707.5 1.28176
\(137\) 3706.15 + 653.494i 0.197461 + 0.0348177i 0.271504 0.962437i \(-0.412479\pi\)
−0.0740428 + 0.997255i \(0.523590\pi\)
\(138\) 0 0
\(139\) 6554.72 + 2385.72i 0.339254 + 0.123478i 0.506028 0.862517i \(-0.331113\pi\)
−0.166775 + 0.985995i \(0.553335\pi\)
\(140\) 10157.5 + 12105.2i 0.518238 + 0.617612i
\(141\) 0 0
\(142\) −771.437 + 280.780i −0.0382581 + 0.0139248i
\(143\) −375.133 216.583i −0.0183448 0.0105914i
\(144\) 0 0
\(145\) 3484.84 + 6035.92i 0.165747 + 0.287083i
\(146\) −5725.23 + 6823.06i −0.268588 + 0.320091i
\(147\) 0 0
\(148\) −2627.09 14899.0i −0.119937 0.680195i
\(149\) 13414.1 2365.27i 0.604213 0.106539i 0.136831 0.990594i \(-0.456308\pi\)
0.467382 + 0.884055i \(0.345197\pi\)
\(150\) 0 0
\(151\) 15756.0 + 13220.9i 0.691024 + 0.579838i 0.919204 0.393781i \(-0.128833\pi\)
−0.228180 + 0.973619i \(0.573278\pi\)
\(152\) 27656.9 15967.7i 1.19706 0.691123i
\(153\) 0 0
\(154\) 1887.45 3269.16i 0.0795856 0.137846i
\(155\) −5613.75 15423.6i −0.233663 0.641983i
\(156\) 0 0
\(157\) −2951.50 + 2476.60i −0.119741 + 0.100475i −0.700692 0.713464i \(-0.747125\pi\)
0.580951 + 0.813939i \(0.302681\pi\)
\(158\) −6503.24 + 17867.5i −0.260505 + 0.715731i
\(159\) 0 0
\(160\) −3408.42 + 19330.1i −0.133141 + 0.755083i
\(161\) 58759.2i 2.26686i
\(162\) 0 0
\(163\) −42714.3 −1.60767 −0.803837 0.594850i \(-0.797212\pi\)
−0.803837 + 0.594850i \(0.797212\pi\)
\(164\) −20817.7 3670.72i −0.774007 0.136478i
\(165\) 0 0
\(166\) −21987.5 8002.81i −0.797922 0.290420i
\(167\) −28608.0 34093.7i −1.02578 1.22248i −0.974638 0.223788i \(-0.928158\pi\)
−0.0511437 0.998691i \(-0.516287\pi\)
\(168\) 0 0
\(169\) 26346.8 9589.45i 0.922474 0.335753i
\(170\) −14925.9 8617.44i −0.516465 0.298181i
\(171\) 0 0
\(172\) 1375.70 + 2382.78i 0.0465014 + 0.0805428i
\(173\) −2355.49 + 2807.17i −0.0787027 + 0.0937942i −0.803959 0.594685i \(-0.797277\pi\)
0.725256 + 0.688479i \(0.241721\pi\)
\(174\) 0 0
\(175\) 3775.07 + 21409.5i 0.123268 + 0.699085i
\(176\) −156.031 + 27.5125i −0.00503716 + 0.000888187i
\(177\) 0 0
\(178\) −17884.4 15006.8i −0.564462 0.473640i
\(179\) 24985.1 14425.1i 0.779784 0.450209i −0.0565697 0.998399i \(-0.518016\pi\)
0.836354 + 0.548190i \(0.184683\pi\)
\(180\) 0 0
\(181\) −914.224 + 1583.48i −0.0279059 + 0.0483344i −0.879641 0.475638i \(-0.842217\pi\)
0.851735 + 0.523972i \(0.175551\pi\)
\(182\) −1559.86 4285.68i −0.0470915 0.129383i
\(183\) 0 0
\(184\) −34672.6 + 29093.7i −1.02412 + 0.859337i
\(185\) −9708.41 + 26673.6i −0.283664 + 0.779361i
\(186\) 0 0
\(187\) 1230.77 6980.04i 0.0351960 0.199607i
\(188\) 19133.4i 0.541348i
\(189\) 0 0
\(190\) −23216.4 −0.643113
\(191\) 31338.3 + 5525.79i 0.859032 + 0.151470i 0.585778 0.810472i \(-0.300789\pi\)
0.273254 + 0.961942i \(0.411900\pi\)
\(192\) 0 0
\(193\) 59142.4 + 21526.1i 1.58776 + 0.577897i 0.976873 0.213822i \(-0.0685911\pi\)
0.610886 + 0.791718i \(0.290813\pi\)
\(194\) −1465.77 1746.83i −0.0389458 0.0464138i
\(195\) 0 0
\(196\) −41460.6 + 15090.4i −1.07925 + 0.392816i
\(197\) −10958.0 6326.62i −0.282358 0.163019i 0.352133 0.935950i \(-0.385457\pi\)
−0.634490 + 0.772931i \(0.718790\pi\)
\(198\) 0 0
\(199\) −24460.7 42367.2i −0.617679 1.06985i −0.989908 0.141710i \(-0.954740\pi\)
0.372229 0.928141i \(-0.378593\pi\)
\(200\) −10764.1 + 12828.2i −0.269103 + 0.320704i
\(201\) 0 0
\(202\) −250.046 1418.08i −0.00612797 0.0347535i
\(203\) −29719.5 + 5240.34i −0.721189 + 0.127165i
\(204\) 0 0
\(205\) 30382.7 + 25494.1i 0.722967 + 0.606641i
\(206\) −15736.0 + 9085.18i −0.370817 + 0.214091i
\(207\) 0 0
\(208\) −95.7100 + 165.775i −0.00221223 + 0.00383170i
\(209\) −3265.46 8971.78i −0.0747570 0.205393i
\(210\) 0 0
\(211\) −761.167 + 638.695i −0.0170968 + 0.0143459i −0.651296 0.758824i \(-0.725774\pi\)
0.634199 + 0.773170i \(0.281330\pi\)
\(212\) 4701.77 12918.0i 0.104614 0.287424i
\(213\) 0 0
\(214\) −7467.68 + 42351.3i −0.163064 + 0.924782i
\(215\) 5162.31i 0.111678i
\(216\) 0 0
\(217\) 71068.6 1.50924
\(218\) −34671.1 6113.46i −0.729550 0.128639i
\(219\) 0 0
\(220\) 3419.64 + 1244.65i 0.0706537 + 0.0257158i
\(221\) −5504.29 6559.76i −0.112698 0.134309i
\(222\) 0 0
\(223\) −35902.3 + 13067.4i −0.721959 + 0.262772i −0.676757 0.736206i \(-0.736615\pi\)
−0.0452019 + 0.998978i \(0.514393\pi\)
\(224\) −73602.1 42494.2i −1.46688 0.846903i
\(225\) 0 0
\(226\) 18392.5 + 31856.8i 0.360101 + 0.623714i
\(227\) −36022.2 + 42929.6i −0.699067 + 0.833115i −0.992420 0.122889i \(-0.960784\pi\)
0.293354 + 0.956004i \(0.405229\pi\)
\(228\) 0 0
\(229\) −12331.2 69933.5i −0.235143 1.33356i −0.842311 0.538991i \(-0.818806\pi\)
0.607168 0.794573i \(-0.292305\pi\)
\(230\) 32404.5 5713.79i 0.612562 0.108011i
\(231\) 0 0
\(232\) −17807.4 14942.1i −0.330844 0.277611i
\(233\) 46280.4 26720.0i 0.852482 0.492180i −0.00900578 0.999959i \(-0.502867\pi\)
0.861487 + 0.507779i \(0.169533\pi\)
\(234\) 0 0
\(235\) −17949.5 + 31089.5i −0.325025 + 0.562960i
\(236\) 18574.9 + 51034.2i 0.333505 + 0.916299i
\(237\) 0 0
\(238\) 57166.2 47968.1i 1.00922 0.846835i
\(239\) 28076.0 77138.3i 0.491519 1.35044i −0.407771 0.913084i \(-0.633694\pi\)
0.899290 0.437353i \(-0.144084\pi\)
\(240\) 0 0
\(241\) −3589.80 + 20358.8i −0.0618068 + 0.350524i 0.938184 + 0.346138i \(0.112507\pi\)
−0.999990 + 0.00438571i \(0.998604\pi\)
\(242\) 34630.5i 0.591327i
\(243\) 0 0
\(244\) 36831.7 0.618645
\(245\) 81525.3 + 14375.1i 1.35819 + 0.239485i
\(246\) 0 0
\(247\) −10839.4 3945.23i −0.177669 0.0646663i
\(248\) 35188.5 + 41936.1i 0.572134 + 0.681843i
\(249\) 0 0
\(250\) 38481.4 14006.1i 0.615702 0.224097i
\(251\) 6936.85 + 4004.99i 0.110107 + 0.0635703i 0.554042 0.832489i \(-0.313085\pi\)
−0.443935 + 0.896059i \(0.646418\pi\)
\(252\) 0 0
\(253\) 6765.85 + 11718.8i 0.105702 + 0.183080i
\(254\) 18230.5 21726.2i 0.282573 0.336757i
\(255\) 0 0
\(256\) −11132.8 63137.0i −0.169872 0.963394i
\(257\) 3393.10 598.295i 0.0513725 0.00905836i −0.147903 0.989002i \(-0.547252\pi\)
0.199275 + 0.979944i \(0.436141\pi\)
\(258\) 0 0
\(259\) −94151.4 79002.4i −1.40355 1.17772i
\(260\) 3807.61 2198.32i 0.0563256 0.0325196i
\(261\) 0 0
\(262\) −8354.73 + 14470.8i −0.121711 + 0.210810i
\(263\) 15704.1 + 43146.7i 0.227040 + 0.623786i 0.999942 0.0107384i \(-0.00341822\pi\)
−0.772903 + 0.634524i \(0.781196\pi\)
\(264\) 0 0
\(265\) −19758.5 + 16579.4i −0.281360 + 0.236089i
\(266\) 34381.3 94462.0i 0.485914 1.33504i
\(267\) 0 0
\(268\) 1165.40 6609.28i 0.0162257 0.0920206i
\(269\) 95674.1i 1.32218i 0.750308 + 0.661089i \(0.229905\pi\)
−0.750308 + 0.661089i \(0.770095\pi\)
\(270\) 0 0
\(271\) −40434.9 −0.550577 −0.275288 0.961362i \(-0.588773\pi\)
−0.275288 + 0.961362i \(0.588773\pi\)
\(272\) −3084.54 543.887i −0.0416920 0.00735142i
\(273\) 0 0
\(274\) 8574.56 + 3120.89i 0.114212 + 0.0415697i
\(275\) 3218.09 + 3835.18i 0.0425533 + 0.0507131i
\(276\) 0 0
\(277\) 12974.0 4722.16i 0.169089 0.0615433i −0.256089 0.966653i \(-0.582434\pi\)
0.425178 + 0.905110i \(0.360212\pi\)
\(278\) 14647.2 + 8456.55i 0.189524 + 0.109422i
\(279\) 0 0
\(280\) 49443.7 + 85639.1i 0.630660 + 1.09233i
\(281\) 46388.8 55284.1i 0.587490 0.700144i −0.387631 0.921815i \(-0.626707\pi\)
0.975122 + 0.221671i \(0.0711510\pi\)
\(282\) 0 0
\(283\) 2691.63 + 15265.0i 0.0336080 + 0.190601i 0.996990 0.0775329i \(-0.0247043\pi\)
−0.963382 + 0.268134i \(0.913593\pi\)
\(284\) 3374.67 595.045i 0.0418403 0.00737757i
\(285\) 0 0
\(286\) −804.570 675.115i −0.00983630 0.00825364i
\(287\) −148723. + 85865.5i −1.80558 + 1.04245i
\(288\) 0 0
\(289\) 28297.2 49012.2i 0.338803 0.586824i
\(290\) 5779.89 + 15880.1i 0.0687264 + 0.188824i
\(291\) 0 0
\(292\) 28480.3 23897.8i 0.334024 0.280280i
\(293\) −19803.3 + 54409.2i −0.230676 + 0.633778i −0.999987 0.00509703i \(-0.998378\pi\)
0.769311 + 0.638875i \(0.220600\pi\)
\(294\) 0 0
\(295\) 17694.4 100350.i 0.203326 1.15312i
\(296\) 94673.6i 1.08055i
\(297\) 0 0
\(298\) 33026.8 0.371906
\(299\) 16100.2 + 2838.90i 0.180090 + 0.0317547i
\(300\) 0 0
\(301\) 21004.2 + 7644.91i 0.231832 + 0.0843800i
\(302\) 32056.5 + 38203.4i 0.351481 + 0.418879i
\(303\) 0 0
\(304\) −3964.70 + 1443.03i −0.0429006 + 0.0156145i
\(305\) −59847.1 34552.7i −0.643344 0.371435i
\(306\) 0 0
\(307\) 43342.8 + 75072.0i 0.459876 + 0.796528i 0.998954 0.0457275i \(-0.0145606\pi\)
−0.539078 + 0.842256i \(0.681227\pi\)
\(308\) −10128.3 + 12070.5i −0.106767 + 0.127240i
\(309\) 0 0
\(310\) −6910.77 39192.9i −0.0719123 0.407835i
\(311\) 75920.0 13386.7i 0.784938 0.138406i 0.233206 0.972427i \(-0.425078\pi\)
0.551732 + 0.834022i \(0.313967\pi\)
\(312\) 0 0
\(313\) 52397.2 + 43966.5i 0.534834 + 0.448779i 0.869767 0.493463i \(-0.164269\pi\)
−0.334933 + 0.942242i \(0.608714\pi\)
\(314\) −8090.47 + 4671.03i −0.0820568 + 0.0473755i
\(315\) 0 0
\(316\) 39683.7 68734.3i 0.397410 0.688334i
\(317\) 395.853 + 1087.60i 0.00393927 + 0.0108231i 0.941647 0.336603i \(-0.109278\pi\)
−0.937707 + 0.347426i \(0.887056\pi\)
\(318\) 0 0
\(319\) −5323.78 + 4467.18i −0.0523165 + 0.0438987i
\(320\) −15408.1 + 42333.3i −0.150469 + 0.413411i
\(321\) 0 0
\(322\) −24740.1 + 140308.i −0.238610 + 1.35323i
\(323\) 188743.i 1.80912i
\(324\) 0 0
\(325\) 6048.65 0.0572654
\(326\) −101995. 17984.5i −0.959720 0.169224i
\(327\) 0 0
\(328\) −124306. 45243.5i −1.15543 0.420542i
\(329\) −99914.2 119073.i −0.923071 1.10007i
\(330\) 0 0
\(331\) −145207. + 52851.1i −1.32535 + 0.482389i −0.905170 0.425050i \(-0.860257\pi\)
−0.420184 + 0.907439i \(0.638034\pi\)
\(332\) 84583.6 + 48834.4i 0.767379 + 0.443047i
\(333\) 0 0
\(334\) −53956.7 93455.7i −0.483674 0.837747i
\(335\) −8093.97 + 9646.01i −0.0721227 + 0.0859525i
\(336\) 0 0
\(337\) 20509.3 + 116314.i 0.180589 + 1.02417i 0.931493 + 0.363760i \(0.118507\pi\)
−0.750903 + 0.660412i \(0.770382\pi\)
\(338\) 66949.6 11805.0i 0.586023 0.103332i
\(339\) 0 0
\(340\) 55109.6 + 46242.4i 0.476727 + 0.400021i
\(341\) 14173.8 8183.22i 0.121892 0.0703745i
\(342\) 0 0
\(343\) −80513.1 + 139453.i −0.684350 + 1.18533i
\(344\) 5888.82 + 16179.4i 0.0497636 + 0.136724i
\(345\) 0 0
\(346\) −6806.49 + 5711.32i −0.0568553 + 0.0477073i
\(347\) −43643.0 + 119908.i −0.362456 + 0.995839i 0.615702 + 0.787979i \(0.288872\pi\)
−0.978158 + 0.207861i \(0.933350\pi\)
\(348\) 0 0
\(349\) 7928.22 44963.2i 0.0650916 0.369153i −0.934810 0.355147i \(-0.884431\pi\)
0.999902 0.0140053i \(-0.00445818\pi\)
\(350\) 52712.0i 0.430302i
\(351\) 0 0
\(352\) −19572.0 −0.157961
\(353\) −102037. 17991.9i −0.818857 0.144387i −0.251499 0.967858i \(-0.580923\pi\)
−0.567358 + 0.823471i \(0.692035\pi\)
\(354\) 0 0
\(355\) −6041.66 2198.98i −0.0479402 0.0174488i
\(356\) 62640.2 + 74651.7i 0.494257 + 0.589033i
\(357\) 0 0
\(358\) 65734.1 23925.2i 0.512890 0.186677i
\(359\) 13349.0 + 7707.06i 0.103576 + 0.0597998i 0.550893 0.834576i \(-0.314287\pi\)
−0.447317 + 0.894375i \(0.647620\pi\)
\(360\) 0 0
\(361\) −61963.6 107324.i −0.475469 0.823537i
\(362\) −2849.74 + 3396.19i −0.0217464 + 0.0259164i
\(363\) 0 0
\(364\) 3305.74 + 18747.8i 0.0249497 + 0.141497i
\(365\) −68696.2 + 12113.0i −0.515640 + 0.0909213i
\(366\) 0 0
\(367\) 34366.4 + 28836.8i 0.255154 + 0.214099i 0.761388 0.648297i \(-0.224518\pi\)
−0.506234 + 0.862396i \(0.668963\pi\)
\(368\) 5178.63 2989.88i 0.0382401 0.0220780i
\(369\) 0 0
\(370\) −34412.9 + 59604.9i −0.251373 + 0.435390i
\(371\) −38196.9 104945.i −0.277511 0.762456i
\(372\) 0 0
\(373\) −63541.7 + 53317.8i −0.456711 + 0.383226i −0.841919 0.539604i \(-0.818574\pi\)
0.385208 + 0.922830i \(0.374130\pi\)
\(374\) 5877.78 16149.1i 0.0420214 0.115453i
\(375\) 0 0
\(376\) 20791.5 117914.i 0.147065 0.834049i
\(377\) 8396.41i 0.0590760i
\(378\) 0 0
\(379\) −100679. −0.700905 −0.350453 0.936581i \(-0.613972\pi\)
−0.350453 + 0.936581i \(0.613972\pi\)
\(380\) 95435.7 + 16827.9i 0.660912 + 0.116537i
\(381\) 0 0
\(382\) 72504.5 + 26389.5i 0.496865 + 0.180844i
\(383\) −168356. 200639.i −1.14771 1.36779i −0.918984 0.394294i \(-0.870989\pi\)
−0.228723 0.973491i \(-0.573455\pi\)
\(384\) 0 0
\(385\) 27781.0 10111.5i 0.187424 0.0682169i
\(386\) 132160. + 76302.4i 0.887001 + 0.512110i
\(387\) 0 0
\(388\) 4759.18 + 8243.13i 0.0316132 + 0.0547556i
\(389\) 11245.3 13401.7i 0.0743145 0.0885646i −0.727606 0.685995i \(-0.759367\pi\)
0.801921 + 0.597430i \(0.203812\pi\)
\(390\) 0 0
\(391\) 46451.7 + 263441.i 0.303842 + 1.72318i
\(392\) −271910. + 47945.0i −1.76951 + 0.312012i
\(393\) 0 0
\(394\) −23502.3 19720.8i −0.151397 0.127037i
\(395\) −128963. + 74456.7i −0.826552 + 0.477210i
\(396\) 0 0
\(397\) 70984.4 122949.i 0.450383 0.780086i −0.548027 0.836461i \(-0.684621\pi\)
0.998410 + 0.0563749i \(0.0179542\pi\)
\(398\) −40570.0 111465.i −0.256118 0.703677i
\(399\) 0 0
\(400\) 1694.80 1422.10i 0.0105925 0.00888814i
\(401\) −42422.3 + 116554.i −0.263818 + 0.724835i 0.735083 + 0.677977i \(0.237143\pi\)
−0.998902 + 0.0468583i \(0.985079\pi\)
\(402\) 0 0
\(403\) 3433.62 19473.0i 0.0211418 0.119901i
\(404\) 6010.55i 0.0368257i
\(405\) 0 0
\(406\) −73171.9 −0.443907
\(407\) −27874.1 4914.96i −0.168272 0.0296709i
\(408\) 0 0
\(409\) −96207.7 35016.7i −0.575126 0.209329i 0.0380487 0.999276i \(-0.487886\pi\)
−0.613175 + 0.789947i \(0.710108\pi\)
\(410\) 61815.1 + 73668.4i 0.367728 + 0.438241i
\(411\) 0 0
\(412\) 71271.2 25940.6i 0.419875 0.152822i
\(413\) 382097. + 220604.i 2.24013 + 1.29334i
\(414\) 0 0
\(415\) −91625.6 158700.i −0.532011 0.921470i
\(416\) −15199.6 + 18114.1i −0.0878303 + 0.104672i
\(417\) 0 0
\(418\) −4019.92 22798.1i −0.0230073 0.130481i
\(419\) 95379.9 16818.0i 0.543286 0.0957960i 0.104732 0.994501i \(-0.466602\pi\)
0.438555 + 0.898704i \(0.355491\pi\)
\(420\) 0 0
\(421\) 99854.5 + 83787.9i 0.563382 + 0.472734i 0.879442 0.476005i \(-0.157916\pi\)
−0.316060 + 0.948739i \(0.602360\pi\)
\(422\) −2086.47 + 1204.62i −0.0117162 + 0.00676435i
\(423\) 0 0
\(424\) 43013.3 74501.2i 0.239261 0.414412i
\(425\) 33850.3 + 93002.8i 0.187406 + 0.514895i
\(426\) 0 0
\(427\) 229215. 192334.i 1.25715 1.05487i
\(428\) 61394.8 168681.i 0.335154 0.920828i
\(429\) 0 0
\(430\) 2173.55 12326.8i 0.0117553 0.0666674i
\(431\) 304036.i 1.63671i −0.574716 0.818353i \(-0.694887\pi\)
0.574716 0.818353i \(-0.305113\pi\)
\(432\) 0 0
\(433\) 160667. 0.856942 0.428471 0.903555i \(-0.359052\pi\)
0.428471 + 0.903555i \(0.359052\pi\)
\(434\) 169701. + 29922.9i 0.900958 + 0.158863i
\(435\) 0 0
\(436\) 138092. + 50261.2i 0.726431 + 0.264399i
\(437\) 231625. + 276040.i 1.21289 + 1.44547i
\(438\) 0 0
\(439\) 180640. 65747.7i 0.937315 0.341155i 0.172210 0.985060i \(-0.444909\pi\)
0.765105 + 0.643905i \(0.222687\pi\)
\(440\) 19721.9 + 11386.4i 0.101869 + 0.0588142i
\(441\) 0 0
\(442\) −10381.5 17981.2i −0.0531391 0.0920397i
\(443\) 41099.0 48979.9i 0.209423 0.249580i −0.651100 0.758992i \(-0.725692\pi\)
0.860523 + 0.509411i \(0.170137\pi\)
\(444\) 0 0
\(445\) −31750.2 180064.i −0.160334 0.909302i
\(446\) −91231.1 + 16086.5i −0.458641 + 0.0808708i
\(447\) 0 0
\(448\) −149426. 125383.i −0.744510 0.624718i
\(449\) 287754. 166135.i 1.42734 0.824076i 0.430432 0.902623i \(-0.358361\pi\)
0.996910 + 0.0785468i \(0.0250280\pi\)
\(450\) 0 0
\(451\) −19774.0 + 34249.6i −0.0972170 + 0.168385i
\(452\) −52515.6 144285.i −0.257046 0.706229i
\(453\) 0 0
\(454\) −104091. + 87342.4i −0.505010 + 0.423754i
\(455\) 12216.3 33564.1i 0.0590090 0.162126i
\(456\) 0 0
\(457\) −50765.6 + 287906.i −0.243073 + 1.37854i 0.581852 + 0.813295i \(0.302328\pi\)
−0.824925 + 0.565242i \(0.808783\pi\)
\(458\) 172182.i 0.820838i
\(459\) 0 0
\(460\) −137347. −0.649088
\(461\) −183042. 32275.2i −0.861288 0.151868i −0.274479 0.961593i \(-0.588505\pi\)
−0.586810 + 0.809725i \(0.699616\pi\)
\(462\) 0 0
\(463\) −251130. 91403.8i −1.17148 0.426385i −0.318297 0.947991i \(-0.603111\pi\)
−0.853187 + 0.521606i \(0.825333\pi\)
\(464\) 1974.08 + 2352.62i 0.00916916 + 0.0109274i
\(465\) 0 0
\(466\) 121761. 44317.3i 0.560706 0.204080i
\(467\) 132387. + 76433.9i 0.607034 + 0.350471i 0.771804 0.635861i \(-0.219355\pi\)
−0.164770 + 0.986332i \(0.552688\pi\)
\(468\) 0 0
\(469\) −27260.9 47217.3i −0.123935 0.214662i
\(470\) −55950.7 + 66679.4i −0.253285 + 0.301853i
\(471\) 0 0
\(472\) 59015.9 + 334696.i 0.264902 + 1.50233i
\(473\) 5069.31 893.856i 0.0226583 0.00399526i
\(474\) 0 0
\(475\) 102129. + 85696.7i 0.452651 + 0.379819i
\(476\) −269762. + 155747.i −1.19060 + 0.687394i
\(477\) 0 0
\(478\) 99519.7 172373.i 0.435565 0.754421i
\(479\) −37629.5 103386.i −0.164005 0.450600i 0.830281 0.557344i \(-0.188180\pi\)
−0.994287 + 0.106744i \(0.965957\pi\)
\(480\) 0 0
\(481\) −26195.8 + 21980.9i −0.113225 + 0.0950067i
\(482\) −17143.8 + 47102.2i −0.0737926 + 0.202743i
\(483\) 0 0
\(484\) 25101.1 142356.i 0.107153 0.607692i
\(485\) 17858.8i 0.0759223i
\(486\) 0 0
\(487\) −4352.56 −0.0183521 −0.00917607 0.999958i \(-0.502921\pi\)
−0.00917607 + 0.999958i \(0.502921\pi\)
\(488\) 226985. + 40023.5i 0.953140 + 0.168064i
\(489\) 0 0
\(490\) 188617. + 68651.1i 0.785578 + 0.285927i
\(491\) 97014.0 + 115617.i 0.402413 + 0.479577i 0.928754 0.370697i \(-0.120881\pi\)
−0.526341 + 0.850273i \(0.676437\pi\)
\(492\) 0 0
\(493\) −129101. + 46989.1i −0.531174 + 0.193332i
\(494\) −24221.8 13984.4i −0.0992549 0.0573048i
\(495\) 0 0
\(496\) −3616.23 6263.50i −0.0146992 0.0254597i
\(497\) 17894.3 21325.6i 0.0724439 0.0863353i
\(498\) 0 0
\(499\) −18988.5 107689.i −0.0762585 0.432484i −0.998903 0.0468315i \(-0.985088\pi\)
0.922644 0.385652i \(-0.126024\pi\)
\(500\) −168337. + 29682.4i −0.673350 + 0.118730i
\(501\) 0 0
\(502\) 14877.9 + 12484.0i 0.0590382 + 0.0495390i
\(503\) −393566. + 227226.i −1.55554 + 0.898093i −0.557868 + 0.829929i \(0.688381\pi\)
−0.997674 + 0.0681634i \(0.978286\pi\)
\(504\) 0 0
\(505\) 5638.65 9766.43i 0.0221102 0.0382960i
\(506\) 11221.7 + 30831.4i 0.0438286 + 0.120418i
\(507\) 0 0
\(508\) −90687.8 + 76096.1i −0.351416 + 0.294873i
\(509\) −58931.4 + 161913.i −0.227463 + 0.624950i −0.999949 0.0100821i \(-0.996791\pi\)
0.772486 + 0.635032i \(0.219013\pi\)
\(510\) 0 0
\(511\) 52447.9 297447.i 0.200857 1.13911i
\(512\) 17128.3i 0.0653394i
\(513\) 0 0
\(514\) 8354.11 0.0316209
\(515\) −140143. 24710.9i −0.528392 0.0931697i
\(516\) 0 0
\(517\) −33637.4 12243.0i −0.125846 0.0458043i
\(518\) −191556. 228287.i −0.713898 0.850790i
\(519\) 0 0
\(520\) 25854.2 9410.16i 0.0956146 0.0348009i
\(521\) −151269. 87335.5i −0.557283 0.321748i 0.194771 0.980849i \(-0.437604\pi\)
−0.752054 + 0.659101i \(0.770937\pi\)
\(522\) 0 0
\(523\) 251302. + 435267.i 0.918739 + 1.59130i 0.801333 + 0.598218i \(0.204124\pi\)
0.117405 + 0.993084i \(0.462542\pi\)
\(524\) 44832.7 53429.5i 0.163280 0.194589i
\(525\) 0 0
\(526\) 19332.4 + 109640.i 0.0698739 + 0.396275i
\(527\) 318629. 56182.8i 1.14726 0.202294i
\(528\) 0 0
\(529\) −176859. 148402.i −0.631996 0.530308i
\(530\) −54160.9 + 31269.8i −0.192812 + 0.111320i
\(531\) 0 0
\(532\) −209800. + 363385.i −0.741281 + 1.28394i
\(533\) 16342.0 + 44899.2i 0.0575241 + 0.158046i
\(534\) 0 0
\(535\) −258003. + 216490.i −0.901400 + 0.756364i
\(536\) 14364.1 39465.0i 0.0499975 0.137367i
\(537\) 0 0
\(538\) −40282.8 + 228455.i −0.139173 + 0.789289i
\(539\) 82545.6i 0.284130i
\(540\) 0 0
\(541\) −86003.6 −0.293847 −0.146924 0.989148i \(-0.546937\pi\)
−0.146924 + 0.989148i \(0.546937\pi\)
\(542\) −96552.4 17024.8i −0.328673 0.0579540i
\(543\) 0 0
\(544\) −363581. 132333.i −1.22858 0.447166i
\(545\) −177231. 211216.i −0.596687 0.711104i
\(546\) 0 0
\(547\) −62458.5 + 22733.0i −0.208745 + 0.0759771i −0.444277 0.895890i \(-0.646539\pi\)
0.235531 + 0.971867i \(0.424317\pi\)
\(548\) −32985.4 19044.1i −0.109840 0.0634161i
\(549\) 0 0
\(550\) 6069.55 + 10512.8i 0.0200646 + 0.0347529i
\(551\) −118959. + 141770.i −0.391828 + 0.466962i
\(552\) 0 0
\(553\) −111965. 634982.i −0.366126 2.07640i
\(554\) 32968.2 5813.18i 0.107418 0.0189406i
\(555\) 0 0
\(556\) −54080.6 45379.1i −0.174941 0.146793i
\(557\) −243428. + 140543.i −0.784620 + 0.453001i −0.838065 0.545570i \(-0.816313\pi\)
0.0534450 + 0.998571i \(0.482980\pi\)
\(558\) 0 0
\(559\) 3109.53 5385.86i 0.00995110 0.0172358i
\(560\) −4468.33 12276.6i −0.0142485 0.0391475i
\(561\) 0 0
\(562\) 134046. 112478.i 0.424407 0.356119i
\(563\) 41094.6 112907.i 0.129649 0.356207i −0.857836 0.513924i \(-0.828191\pi\)
0.987484 + 0.157717i \(0.0504135\pi\)
\(564\) 0 0
\(565\) −50026.2 + 283713.i −0.156711 + 0.888755i
\(566\) 37583.8i 0.117319i
\(567\) 0 0
\(568\) 21443.9 0.0664671
\(569\) −71198.7 12554.2i −0.219911 0.0387763i 0.0626069 0.998038i \(-0.480059\pi\)
−0.282518 + 0.959262i \(0.591170\pi\)
\(570\) 0 0
\(571\) 430443. + 156669.i 1.32021 + 0.480518i 0.903526 0.428532i \(-0.140969\pi\)
0.416686 + 0.909050i \(0.363191\pi\)
\(572\) 2818.01 + 3358.37i 0.00861292 + 0.0102645i
\(573\) 0 0
\(574\) −391282. + 142415.i −1.18759 + 0.432247i
\(575\) −163639. 94477.0i −0.494938 0.285753i
\(576\) 0 0
\(577\) 212881. + 368721.i 0.639419 + 1.10751i 0.985561 + 0.169323i \(0.0541582\pi\)
−0.346142 + 0.938182i \(0.612508\pi\)
\(578\) 88205.5 105119.i 0.264022 0.314649i
\(579\) 0 0
\(580\) −12249.1 69467.9i −0.0364122 0.206504i
\(581\) 781402. 137782.i 2.31485 0.408170i
\(582\) 0 0
\(583\) −19701.9 16531.8i −0.0579656 0.0486389i
\(584\) 201486. 116328.i 0.590770 0.341081i
\(585\) 0 0
\(586\) −70195.8 + 121583.i −0.204417 + 0.354060i
\(587\) 219405. + 602810.i 0.636752 + 1.74946i 0.661695 + 0.749773i \(0.269837\pi\)
−0.0249434 + 0.999689i \(0.507941\pi\)
\(588\) 0 0
\(589\) 333867. 280148.i 0.962372 0.807526i
\(590\) 84503.1 232170.i 0.242755 0.666965i
\(591\) 0 0
\(592\) −2171.96 + 12317.8i −0.00619738 + 0.0351471i
\(593\) 446419.i 1.26950i −0.772717 0.634751i \(-0.781103\pi\)
0.772717 0.634751i \(-0.218897\pi\)
\(594\) 0 0
\(595\) 584441. 1.65085
\(596\) −135763. 23938.7i −0.382199 0.0673920i
\(597\) 0 0
\(598\) 37249.5 + 13557.7i 0.104164 + 0.0379127i
\(599\) −139535. 166291.i −0.388893 0.463464i 0.535707 0.844404i \(-0.320045\pi\)
−0.924600 + 0.380939i \(0.875601\pi\)
\(600\) 0 0
\(601\) −197079. + 71730.7i −0.545620 + 0.198590i −0.600100 0.799925i \(-0.704872\pi\)
0.0544792 + 0.998515i \(0.482650\pi\)
\(602\) 46936.0 + 27098.5i 0.129513 + 0.0747744i
\(603\) 0 0
\(604\) −104084. 180278.i −0.285305 0.494162i
\(605\) −174334. + 207763.i −0.476289 + 0.567619i
\(606\) 0 0
\(607\) −37744.8 214061.i −0.102442 0.580980i −0.992211 0.124568i \(-0.960246\pi\)
0.889769 0.456412i \(-0.150866\pi\)
\(608\) −513278. + 90504.8i −1.38850 + 0.244830i
\(609\) 0 0
\(610\) −128357. 107705.i −0.344954 0.289451i
\(611\) −37453.7 + 21623.9i −0.100326 + 0.0579230i
\(612\) 0 0
\(613\) −11519.4 + 19952.2i −0.0306555 + 0.0530969i −0.880946 0.473217i \(-0.843093\pi\)
0.850291 + 0.526313i \(0.176426\pi\)
\(614\) 71887.6 + 197510.i 0.190685 + 0.523903i
\(615\) 0 0
\(616\) −75535.0 + 63381.4i −0.199061 + 0.167032i
\(617\) −124106. + 340979.i −0.326004 + 0.895689i 0.663108 + 0.748524i \(0.269237\pi\)
−0.989112 + 0.147165i \(0.952985\pi\)
\(618\) 0 0
\(619\) 2171.69 12316.3i 0.00566783 0.0321439i −0.981843 0.189697i \(-0.939249\pi\)
0.987511 + 0.157553i \(0.0503605\pi\)
\(620\) 166120.i 0.432153i
\(621\) 0 0
\(622\) 186922. 0.483147
\(623\) 779659. + 137475.i 2.00876 + 0.354199i
\(624\) 0 0
\(625\) 146088. + 53171.6i 0.373985 + 0.136119i
\(626\) 106605. + 127047.i 0.272037 + 0.324201i
\(627\) 0 0
\(628\) 36643.2 13337.0i 0.0929125 0.0338174i
\(629\) −484573. 279768.i −1.22478 0.707127i
\(630\) 0 0
\(631\) −189340. 327946.i −0.475535 0.823651i 0.524072 0.851674i \(-0.324412\pi\)
−0.999607 + 0.0280228i \(0.991079\pi\)
\(632\) 319252. 380470.i 0.799281 0.952546i
\(633\) 0 0
\(634\) 487.313 + 2763.69i 0.00121235 + 0.00687560i
\(635\) 218745. 38570.6i 0.542488 0.0956552i
\(636\) 0 0
\(637\) 76396.9 + 64104.6i 0.188277 + 0.157983i
\(638\) −14593.2 + 8425.41i −0.0358517 + 0.0206990i
\(639\) 0 0
\(640\) 102410. 177380.i 0.250025 0.433057i
\(641\) −67858.5 186440.i −0.165154 0.453756i 0.829316 0.558780i \(-0.188730\pi\)
−0.994470 + 0.105024i \(0.966508\pi\)
\(642\) 0 0
\(643\) 266563. 223673.i 0.644729 0.540992i −0.260737 0.965410i \(-0.583966\pi\)
0.905466 + 0.424418i \(0.139521\pi\)
\(644\) 203398. 558832.i 0.490428 1.34744i
\(645\) 0 0
\(646\) 79468.9 450690.i 0.190429 1.07997i
\(647\) 574716.i 1.37292i 0.727168 + 0.686460i \(0.240836\pi\)
−0.727168 + 0.686460i \(0.759164\pi\)
\(648\) 0 0
\(649\) 101606. 0.241229
\(650\) 14443.3 + 2546.74i 0.0341852 + 0.00602778i
\(651\) 0 0
\(652\) 406236. + 147858.i 0.955616 + 0.347816i
\(653\) 33785.8 + 40264.4i 0.0792334 + 0.0944266i 0.804205 0.594352i \(-0.202592\pi\)
−0.724971 + 0.688779i \(0.758147\pi\)
\(654\) 0 0
\(655\) −122971. + 44757.9i −0.286630 + 0.104325i
\(656\) 15135.2 + 8738.31i 0.0351707 + 0.0203058i
\(657\) 0 0
\(658\) −188445. 326396.i −0.435244 0.753865i
\(659\) 50719.7 60445.4i 0.116790 0.139185i −0.704482 0.709722i \(-0.748820\pi\)
0.821272 + 0.570537i \(0.193265\pi\)
\(660\) 0 0
\(661\) −19123.0 108452.i −0.0437676 0.248219i 0.955072 0.296373i \(-0.0957772\pi\)
−0.998840 + 0.0481544i \(0.984666\pi\)
\(662\) −368985. + 65062.0i −0.841962 + 0.148461i
\(663\) 0 0
\(664\) 468202. + 392868.i 1.06193 + 0.891067i
\(665\) 681801. 393638.i 1.54175 0.890130i
\(666\) 0 0
\(667\) 131148. 227155.i 0.294788 0.510587i
\(668\) 154061. + 423278.i 0.345254 + 0.948578i
\(669\) 0 0
\(670\) −23388.5 + 19625.3i −0.0521019 + 0.0437187i
\(671\) 23567.7 64751.7i 0.0523446 0.143816i
\(672\) 0 0
\(673\) 5142.62 29165.2i 0.0113541 0.0643925i −0.978604 0.205752i \(-0.934036\pi\)
0.989958 + 0.141359i \(0.0451472\pi\)
\(674\) 286376.i 0.630401i
\(675\) 0 0
\(676\) −283767. −0.620966
\(677\) −505452. 89124.8i −1.10281 0.194456i −0.407531 0.913192i \(-0.633610\pi\)
−0.695283 + 0.718736i \(0.744721\pi\)
\(678\) 0 0
\(679\) 72663.3 + 26447.3i 0.157607 + 0.0573643i
\(680\) 289377. + 344866.i 0.625816 + 0.745818i
\(681\) 0 0
\(682\) 37290.2 13572.5i 0.0801727 0.0291805i
\(683\) 211439. + 122074.i 0.453256 + 0.261687i 0.709204 0.705003i \(-0.249054\pi\)
−0.255948 + 0.966690i \(0.582388\pi\)
\(684\) 0 0
\(685\) 35731.6 + 61888.9i 0.0761501 + 0.131896i
\(686\) −250968. + 299092.i −0.533299 + 0.635561i
\(687\) 0 0
\(688\) −395.002 2240.17i −0.000834493 0.00473264i
\(689\) −30600.8 + 5395.74i −0.0644605 + 0.0113661i
\(690\) 0 0
\(691\) −216628. 181773.i −0.453689 0.380691i 0.387113 0.922032i \(-0.373472\pi\)
−0.840803 + 0.541342i \(0.817917\pi\)
\(692\) 32119.2 18544.0i 0.0670737 0.0387250i
\(693\) 0 0
\(694\) −154699. + 267946.i −0.321195 + 0.556326i
\(695\) 45303.4 + 124470.i 0.0937910 + 0.257689i
\(696\) 0 0
\(697\) −598906. + 502542.i −1.23280 + 1.03444i
\(698\) 37862.7 104027.i 0.0777143 0.213518i
\(699\) 0 0
\(700\) 38207.2 216684.i 0.0779738 0.442211i
\(701\) 448128.i 0.911941i −0.889995 0.455970i \(-0.849292\pi\)
0.889995 0.455970i \(-0.150708\pi\)
\(702\) 0 0
\(703\) −753728. −1.52512
\(704\) −44238.5 7800.45i −0.0892597 0.0157389i
\(705\) 0 0
\(706\) −236073. 85923.7i −0.473628 0.172387i
\(707\) 31387.0 + 37405.5i 0.0627929 + 0.0748336i
\(708\) 0 0
\(709\) −457909. + 166665.i −0.910934 + 0.331553i −0.754626 0.656156i \(-0.772181\pi\)
−0.156308 + 0.987708i \(0.549959\pi\)
\(710\) −13500.7 7794.63i −0.0267818 0.0154625i
\(711\) 0 0
\(712\) 304915. + 528129.i 0.601477 + 1.04179i
\(713\) −397051. + 473187.i −0.781030 + 0.930795i
\(714\) 0 0
\(715\) −1428.35 8100.60i −0.00279398 0.0158455i
\(716\) −287555. + 50703.7i −0.560912 + 0.0989040i
\(717\) 0 0
\(718\) 28630.4 + 24023.8i 0.0555365 + 0.0466007i
\(719\) 377380. 217880.i 0.729997 0.421464i −0.0884242 0.996083i \(-0.528183\pi\)
0.818421 + 0.574619i \(0.194850\pi\)
\(720\) 0 0
\(721\) 308082. 533613.i 0.592646 1.02649i
\(722\) −102772. 282363.i −0.197151 0.541668i
\(723\) 0 0
\(724\) 14176.1 11895.1i 0.0270445 0.0226930i
\(725\) 33191.1 91191.7i 0.0631459 0.173492i
\(726\) 0 0
\(727\) −147103. + 834264.i −0.278326 + 1.57846i 0.449869 + 0.893095i \(0.351471\pi\)
−0.728195 + 0.685370i \(0.759640\pi\)
\(728\) 119130.i 0.224781i
\(729\) 0 0
\(730\) −169136. −0.317388
\(731\) 100214. + 17670.4i 0.187540 + 0.0330683i
\(732\) 0 0
\(733\) −695767. 253239.i −1.29496 0.471326i −0.399607 0.916686i \(-0.630853\pi\)
−0.895352 + 0.445360i \(0.853076\pi\)
\(734\) 69920.2 + 83327.6i 0.129781 + 0.154667i
\(735\) 0 0
\(736\) 694140. 252646.i 1.28142 0.466398i
\(737\) −10873.7 6277.94i −0.0200190 0.0115580i
\(738\) 0 0
\(739\) 222419. + 385242.i 0.407271 + 0.705414i 0.994583 0.103946i \(-0.0331471\pi\)
−0.587312 + 0.809361i \(0.699814\pi\)
\(740\) 184665. 220075.i 0.337225 0.401889i
\(741\) 0 0
\(742\) −47022.1 266676.i −0.0854072 0.484368i
\(743\) 34938.0 6160.52i 0.0632879 0.0111594i −0.141915 0.989879i \(-0.545326\pi\)
0.205202 + 0.978720i \(0.434215\pi\)
\(744\) 0 0
\(745\) 198142. + 166261.i 0.356996 + 0.299555i
\(746\) −174177. + 100561.i −0.312977 + 0.180698i
\(747\) 0 0
\(748\) −35867.1 + 62123.7i −0.0641052 + 0.111033i
\(749\) −498769. 1.37036e6i −0.889070 2.44270i
\(750\) 0 0
\(751\) 152855. 128260.i 0.271019 0.227412i −0.497141 0.867670i \(-0.665617\pi\)
0.768160 + 0.640258i \(0.221173\pi\)
\(752\) −5410.28 + 14864.6i −0.00956718 + 0.0262856i
\(753\) 0 0
\(754\) −3535.24 + 20049.3i −0.00621836 + 0.0352661i
\(755\) 390574.i 0.685188i
\(756\) 0 0
\(757\) 548038. 0.956354 0.478177 0.878264i \(-0.341298\pi\)
0.478177 + 0.878264i \(0.341298\pi\)
\(758\) −240405. 42389.9i −0.418413 0.0737776i
\(759\) 0 0
\(760\) 569861. + 207412.i 0.986601 + 0.359093i
\(761\) −200787. 239289.i −0.346711 0.413194i 0.564304 0.825567i \(-0.309144\pi\)
−0.911015 + 0.412373i \(0.864700\pi\)
\(762\) 0 0
\(763\) 1.12185e6 408320.i 1.92702 0.701377i
\(764\) −278917. 161033.i −0.477846 0.275885i
\(765\) 0 0
\(766\) −317531. 549980.i −0.541164 0.937323i
\(767\) 78906.8 94037.4i 0.134129 0.159849i
\(768\) 0 0
\(769\) 151598. + 859755.i 0.256354 + 1.45386i 0.792572 + 0.609778i \(0.208741\pi\)
−0.536218 + 0.844080i \(0.680147\pi\)
\(770\) 70594.1 12447.6i 0.119066 0.0209945i
\(771\) 0 0
\(772\) −487963. 409450.i −0.818752 0.687015i
\(773\) 325414. 187878.i 0.544599 0.314425i −0.202342 0.979315i \(-0.564855\pi\)
0.746941 + 0.664890i \(0.231522\pi\)
\(774\) 0 0
\(775\) −114269. + 197920.i −0.190250 + 0.329523i
\(776\) 20372.2 + 55972.0i 0.0338309 + 0.0929496i
\(777\) 0 0
\(778\) 32494.8 27266.4i 0.0536853 0.0450473i
\(779\) −360199. + 989638.i −0.593564 + 1.63080i
\(780\) 0 0
\(781\) 1113.25 6313.57i 0.00182512 0.0103508i
\(782\) 648614.i 1.06065i
\(783\) 0 0
\(784\) 36477.6 0.0593463
\(785\) −72052.7 12704.8i −0.116926 0.0206172i
\(786\) 0 0
\(787\) 30613.3 + 11142.3i 0.0494266 + 0.0179898i 0.366615 0.930373i \(-0.380517\pi\)
−0.317189 + 0.948362i \(0.602739\pi\)
\(788\) 82316.9 + 98101.4i 0.132567 + 0.157988i
\(789\) 0 0
\(790\) −339293. + 123492.i −0.543651 + 0.197873i
\(791\) −1.08028e6 623698.i −1.72656 0.996830i
\(792\) 0 0
\(793\) −41625.8 72098.1i −0.0661937 0.114651i
\(794\) 221266. 263695.i 0.350973 0.418274i
\(795\) 0 0
\(796\) 85978.3 + 487607.i 0.135695 + 0.769562i
\(797\) −1.18058e6 + 208169.i −1.85858 + 0.327717i −0.986769 0.162133i \(-0.948163\pi\)
−0.871807 + 0.489850i \(0.837051\pi\)
\(798\) 0 0
\(799\) −542087. 454865.i −0.849133 0.712507i
\(800\) 236685. 136650.i 0.369820 0.213516i
\(801\) 0 0
\(802\) −150372. + 260452.i −0.233786 + 0.404929i
\(803\) −23789.5 65361.2i −0.0368939 0.101365i
\(804\) 0 0
\(805\) −854753. + 717223.i −1.31901 + 1.10678i
\(806\) 16397.9 45052.9i 0.0252417 0.0693510i
\(807\) 0 0
\(808\) −6531.42 + 37041.5i −0.0100043 + 0.0567370i
\(809\) 1.08016e6i 1.65041i 0.564834 + 0.825205i \(0.308940\pi\)
−0.564834 + 0.825205i \(0.691060\pi\)
\(810\) 0 0
\(811\) −874301. −1.32929 −0.664644 0.747160i \(-0.731417\pi\)
−0.664644 + 0.747160i \(0.731417\pi\)
\(812\) 300788. + 53037.1i 0.456193 + 0.0804391i
\(813\) 0 0
\(814\) −64489.7 23472.3i −0.0973288 0.0354248i
\(815\) −521376. 621352.i −0.784939 0.935454i
\(816\) 0 0
\(817\) 128810. 46882.9i 0.192976 0.0702377i
\(818\) −214986. 124122.i −0.321294 0.185499i
\(819\) 0 0
\(820\) −200707. 347634.i −0.298493 0.517005i
\(821\) 529901. 631511.i 0.786155 0.936903i −0.213039 0.977044i \(-0.568336\pi\)
0.999194 + 0.0401408i \(0.0127806\pi\)
\(822\) 0 0
\(823\) 174771. + 991177.i 0.258030 + 1.46336i 0.788174 + 0.615453i \(0.211027\pi\)
−0.530144 + 0.847908i \(0.677862\pi\)
\(824\) 467416. 82418.0i 0.688413 0.121386i
\(825\) 0 0
\(826\) 819505. + 687647.i 1.20113 + 1.00787i
\(827\) 707410. 408423.i 1.03433 0.597172i 0.116109 0.993236i \(-0.462958\pi\)
0.918223 + 0.396065i \(0.129624\pi\)
\(828\) 0 0
\(829\) −385454. + 667625.i −0.560871 + 0.971457i 0.436550 + 0.899680i \(0.356200\pi\)
−0.997421 + 0.0717770i \(0.977133\pi\)
\(830\) −151968. 417530.i −0.220596 0.606082i
\(831\) 0 0
\(832\) −41574.9 + 34885.5i −0.0600598 + 0.0503962i
\(833\) −558116. + 1.53341e6i −0.804331 + 2.20988i
\(834\) 0 0
\(835\) 146758. 832305.i 0.210488 1.19374i
\(836\) 96630.1i 0.138261i
\(837\) 0 0
\(838\) 234834. 0.334405
\(839\) 53061.4 + 9356.16i 0.0753798 + 0.0132915i 0.211211 0.977441i \(-0.432259\pi\)
−0.135831 + 0.990732i \(0.543370\pi\)
\(840\) 0 0
\(841\) −538039. 195830.i −0.760715 0.276878i
\(842\) 203159. + 242115.i 0.286558 + 0.341506i
\(843\) 0 0
\(844\) 9450.00 3439.52i 0.0132662 0.00482851i
\(845\) 461087. + 266209.i 0.645758 + 0.372828i
\(846\) 0 0
\(847\) −587166. 1.01700e6i −0.818453 1.41760i
\(848\) −7305.55 + 8706.42i −0.0101592 + 0.0121073i
\(849\) 0 0
\(850\) 41671.1 + 236329.i 0.0576763 + 0.327099i
\(851\) 1.05202e6 185500.i 1.45267 0.256145i
\(852\) 0 0
\(853\) 369011. + 309637.i 0.507155 + 0.425554i 0.860127 0.510080i \(-0.170384\pi\)
−0.352972 + 0.935634i \(0.614829\pi\)
\(854\) 628311. 362755.i 0.861507 0.497391i
\(855\) 0 0
\(856\) 561660. 972824.i 0.766525 1.32766i
\(857\) −125149. 343845.i −0.170399 0.468167i 0.824871 0.565322i \(-0.191248\pi\)
−0.995269 + 0.0971550i \(0.969026\pi\)
\(858\) 0 0
\(859\) 660472. 554202.i 0.895093 0.751072i −0.0741321 0.997248i \(-0.523619\pi\)
0.969225 + 0.246176i \(0.0791742\pi\)
\(860\) −17869.6 + 49096.4i −0.0241612 + 0.0663824i
\(861\) 0 0
\(862\) 128012. 725992.i 0.172280 0.977051i
\(863\) 98163.6i 0.131804i 0.997826 + 0.0659021i \(0.0209925\pi\)
−0.997826 + 0.0659021i \(0.979008\pi\)
\(864\) 0 0
\(865\) −69586.5 −0.0930021
\(866\) 383649. + 67647.6i 0.511562 + 0.0902021i
\(867\) 0 0
\(868\) −675901. 246008.i −0.897106 0.326520i
\(869\) −95445.2 113747.i −0.126391 0.150626i
\(870\) 0 0
\(871\) −14254.8 + 5188.31i −0.0187899 + 0.00683896i
\(872\) 796408. + 459806.i 1.04738 + 0.604703i
\(873\) 0 0
\(874\) 436860. + 756664.i 0.571899 + 0.990559i
\(875\) −892615. + 1.06378e6i −1.16587 + 1.38942i
\(876\) 0 0
\(877\) −228699. 1.29702e6i −0.297348 1.68635i −0.657501 0.753453i \(-0.728387\pi\)
0.360153 0.932893i \(-0.382725\pi\)
\(878\) 459024. 80938.3i 0.595451 0.104994i
\(879\) 0 0
\(880\) −2304.75 1933.92i −0.00297618 0.00249731i
\(881\) −449905. + 259753.i −0.579655 + 0.334664i −0.760996 0.648756i \(-0.775289\pi\)
0.181342 + 0.983420i \(0.441956\pi\)
\(882\) 0 0
\(883\) −169836. + 294164.i −0.217825 + 0.377284i −0.954143 0.299352i \(-0.903230\pi\)
0.736318 + 0.676636i \(0.236563\pi\)
\(884\) 29641.9 + 81440.4i 0.0379316 + 0.104216i
\(885\) 0 0
\(886\) 118761. 99652.1i 0.151288 0.126946i
\(887\) 467802. 1.28528e6i 0.594586 1.63361i −0.167303 0.985906i \(-0.553506\pi\)
0.761889 0.647707i \(-0.224272\pi\)
\(888\) 0 0
\(889\) −167006. + 947140.i −0.211314 + 1.19842i
\(890\) 443335.i 0.559695i
\(891\) 0 0
\(892\) 386684. 0.485989
\(893\) −938756. 165528.i −1.17720 0.207572i
\(894\) 0 0
\(895\) 514809. + 187375.i 0.642688 + 0.233919i
\(896\) 570057. + 679367.i 0.710072 + 0.846230i
\(897\) 0 0
\(898\) 757061. 275548.i 0.938811 0.341699i
\(899\) −274741. 158622.i −0.339941 0.196265i
\(900\) 0 0
\(901\) −254216. 440315.i −0.313150 0.542392i
\(902\) −61637.9 + 73457.2i −0.0757591 + 0.0902862i
\(903\) 0 0
\(904\) −166852. 946262.i −0.204171 1.15791i
\(905\) −34193.6 + 6029.25i −0.0417491 + 0.00736150i
\(906\) 0 0
\(907\) −224759. 188595.i −0.273213 0.229253i 0.495878 0.868392i \(-0.334846\pi\)
−0.769091 + 0.639139i \(0.779291\pi\)
\(908\) 491194. 283591.i 0.595774 0.343970i
\(909\) 0 0
\(910\) 43302.6 75002.3i 0.0522915 0.0905716i
\(911\) 402064. + 1.10466e6i 0.484461 + 1.33104i 0.905632 + 0.424064i \(0.139397\pi\)
−0.421172 + 0.906981i \(0.638381\pi\)
\(912\) 0 0
\(913\) 139976. 117454.i 0.167924 0.140905i
\(914\) −242441. + 666101.i −0.290211 + 0.797347i
\(915\) 0 0
\(916\) −124803. + 707790.i −0.148742 + 0.843556i
\(917\) 566624.i 0.673839i
\(918\) 0 0
\(919\) 945391. 1.11939 0.559694 0.828700i \(-0.310919\pi\)
0.559694 + 0.828700i \(0.310919\pi\)
\(920\) −846436. 149249.i −1.00004 0.176334i
\(921\) 0 0
\(922\) −423487. 154137.i −0.498170 0.181319i
\(923\) −4978.73 5933.42i −0.00584407 0.00696469i
\(924\) 0 0
\(925\) 371397. 135178.i 0.434066 0.157987i
\(926\) −561175. 323994.i −0.654449 0.377847i
\(927\) 0 0
\(928\) 189690. + 328553.i 0.220267 + 0.381513i
\(929\) 960369. 1.14452e6i 1.11277 1.32615i 0.172779 0.984961i \(-0.444725\pi\)
0.939994 0.341190i \(-0.110830\pi\)
\(930\) 0 0
\(931\) 381706. + 2.16476e6i 0.440382 + 2.49753i
\(932\) −532644. + 93919.6i −0.613205 + 0.108125i
\(933\) 0 0
\(934\) 283939. + 238253.i 0.325485 + 0.273114i
\(935\) 116560. 67295.7i 0.133329 0.0769776i
\(936\) 0 0
\(937\) 624225. 1.08119e6i 0.710988 1.23147i −0.253499 0.967336i \(-0.581582\pi\)
0.964487 0.264131i \(-0.0850852\pi\)
\(938\) −45214.4 124226.i −0.0513892 0.141191i
\(939\) 0 0
\(940\) 278328. 233545.i 0.314993 0.264311i
\(941\) 261870. 719483.i 0.295738 0.812534i −0.699462 0.714670i \(-0.746577\pi\)
0.995200 0.0978637i \(-0.0312009\pi\)
\(942\) 0 0
\(943\) 259191. 1.46995e6i 0.291472 1.65302i
\(944\) 44900.5i 0.0503857i
\(945\) 0 0
\(946\) 12481.1 0.0139467
\(947\) 1.48819e6 + 262408.i 1.65943 + 0.292602i 0.923254 0.384189i \(-0.125519\pi\)
0.736175 + 0.676791i \(0.236630\pi\)
\(948\) 0 0
\(949\) −78967.3 28741.8i −0.0876829 0.0319140i
\(950\) 207787. + 247631.i 0.230235 + 0.274384i
\(951\) 0 0
\(952\) −1.83172e6 + 666692.i −2.02109 + 0.735616i
\(953\) 624485. + 360547.i 0.687601 + 0.396987i 0.802713 0.596366i \(-0.203389\pi\)
−0.115112 + 0.993353i \(0.536723\pi\)
\(954\) 0 0
\(955\) 302138. + 523318.i 0.331282 + 0.573798i
\(956\) −534037. + 636441.i −0.584327 + 0.696373i
\(957\) 0 0
\(958\) −46323.5 262714.i −0.0504744 0.286254i
\(959\) −304726. + 53731.5i −0.331339 + 0.0584240i
\(960\) 0 0
\(961\) −135143. 113399.i −0.146335 0.122789i
\(962\) −71806.3 + 41457.4i −0.0775912 + 0.0447973i
\(963\) 0 0
\(964\) 104614. 181197.i 0.112573 0.194983i
\(965\) 408767. + 1.12308e6i 0.438956 + 1.20602i
\(966\) 0 0
\(967\) 875922. 734986.i 0.936726 0.786006i −0.0402869 0.999188i \(-0.512827\pi\)
0.977013 + 0.213182i \(0.0683827\pi\)
\(968\) 309384. 850026.i 0.330178 0.907155i
\(969\) 0 0
\(970\) 7519.31 42644.1i 0.00799161 0.0453227i
\(971\) 1.26624e6i 1.34300i 0.741003 + 0.671502i \(0.234351\pi\)
−0.741003 + 0.671502i \(0.765649\pi\)
\(972\) 0 0
\(973\) −573529. −0.605801
\(974\) −10393.2 1832.61i −0.0109555 0.00193175i
\(975\) 0 0
\(976\) −28614.3 10414.8i −0.0300389 0.0109333i
\(977\) −458620. 546562.i −0.480467 0.572598i 0.470299 0.882507i \(-0.344146\pi\)
−0.950766 + 0.309909i \(0.899701\pi\)
\(978\) 0 0
\(979\) 171323. 62356.5i 0.178752 0.0650603i
\(980\) −725590. 418919.i −0.755508 0.436193i
\(981\) 0 0
\(982\) 182975. + 316922.i 0.189744 + 0.328647i
\(983\) 57552.1 68587.9i 0.0595599 0.0709807i −0.735442 0.677588i \(-0.763025\pi\)
0.795002 + 0.606607i \(0.207470\pi\)
\(984\) 0 0
\(985\) −41723.7 236627.i −0.0430041 0.243888i
\(986\) −328059. + 57845.6i −0.337441 + 0.0594999i
\(987\) 0 0
\(988\) 89432.2 + 75042.5i 0.0916178 + 0.0768765i
\(989\) −168249. + 97138.7i −0.172013 + 0.0993115i
\(990\) 0 0
\(991\) −854306. + 1.47970e6i −0.869894 + 1.50670i −0.00778888 + 0.999970i \(0.502479\pi\)
−0.862105 + 0.506730i \(0.830854\pi\)
\(992\) −305573. 839554.i −0.310521 0.853150i
\(993\) 0 0
\(994\) 51707.8 43388.0i 0.0523339 0.0439134i
\(995\) 317732. 872962.i 0.320933 0.881758i
\(996\) 0 0
\(997\) −71080.3 + 403116.i −0.0715087 + 0.405546i 0.927952 + 0.372700i \(0.121568\pi\)
−0.999460 + 0.0328455i \(0.989543\pi\)
\(998\) 265139.i 0.266203i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.7 66
3.2 odd 2 27.5.f.a.2.5 66
27.13 even 9 27.5.f.a.14.5 yes 66
27.14 odd 18 inner 81.5.f.a.71.7 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.5 66 3.2 odd 2
27.5.f.a.14.5 yes 66 27.13 even 9
81.5.f.a.8.7 66 1.1 even 1 trivial
81.5.f.a.71.7 66 27.14 odd 18 inner