Properties

Label 81.5.f.a.8.4
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.4
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.89555 - 0.510564i) q^{2} +(-6.91152 - 2.51559i) q^{4} +(-31.8237 - 37.9260i) q^{5} +(28.2667 - 10.2882i) q^{7} +(59.4692 + 34.3346i) q^{8} +(72.7837 + 126.065i) q^{10} +(-75.7716 + 90.3011i) q^{11} +(3.56465 + 20.2161i) q^{13} +(-87.1005 + 15.3582i) q^{14} +(-64.5172 - 54.1364i) q^{16} +(-203.984 + 117.770i) q^{17} +(47.7809 - 82.7590i) q^{19} +(124.544 + 342.182i) q^{20} +(265.505 - 222.785i) q^{22} +(-85.2078 + 234.107i) q^{23} +(-317.105 + 1798.39i) q^{25} -60.3569i q^{26} -221.247 q^{28} +(1150.78 + 202.914i) q^{29} +(562.326 + 204.670i) q^{31} +(-547.062 - 651.963i) q^{32} +(650.776 - 236.863i) q^{34} +(-1289.74 - 744.633i) q^{35} +(-123.627 - 214.128i) q^{37} +(-180.606 + 215.238i) q^{38} +(-590.358 - 3348.09i) q^{40} +(508.880 - 89.7293i) q^{41} +(-1990.16 - 1669.95i) q^{43} +(750.857 - 433.508i) q^{44} +(366.250 - 634.364i) q^{46} +(176.156 + 483.984i) q^{47} +(-1146.12 + 961.705i) q^{49} +(1836.39 - 5045.44i) q^{50} +(26.2183 - 148.692i) q^{52} +3241.10i q^{53} +5836.10 q^{55} +(2034.24 + 358.691i) q^{56} +(-3228.55 - 1175.09i) q^{58} +(-1210.50 - 1442.62i) q^{59} +(-4396.97 + 1600.37i) q^{61} +(-1523.75 - 879.736i) q^{62} +(1924.95 + 3334.11i) q^{64} +(653.278 - 778.546i) q^{65} +(-473.625 - 2686.06i) q^{67} +(1706.10 - 300.832i) q^{68} +(3354.34 + 2814.62i) q^{70} +(-5060.73 + 2921.81i) q^{71} +(-1626.01 + 2816.33i) q^{73} +(248.643 + 683.140i) q^{74} +(-538.427 + 451.794i) q^{76} +(-1212.77 + 3332.07i) q^{77} +(322.322 - 1827.98i) q^{79} +4169.70i q^{80} -1519.30 q^{82} +(1228.73 + 216.659i) q^{83} +(10958.1 + 3988.42i) q^{85} +(4910.01 + 5851.52i) q^{86} +(-7606.53 + 2768.55i) q^{88} +(-6163.24 - 3558.35i) q^{89} +(308.749 + 534.769i) q^{91} +(1177.83 - 1403.68i) q^{92} +(-262.964 - 1491.34i) q^{94} +(-4659.29 + 821.558i) q^{95} +(7251.91 + 6085.08i) q^{97} +(3809.65 - 2199.50i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.89555 0.510564i −0.723889 0.127641i −0.200449 0.979704i \(-0.564240\pi\)
−0.523439 + 0.852063i \(0.675351\pi\)
\(3\) 0 0
\(4\) −6.91152 2.51559i −0.431970 0.157224i
\(5\) −31.8237 37.9260i −1.27295 1.51704i −0.743573 0.668655i \(-0.766870\pi\)
−0.529376 0.848387i \(-0.677574\pi\)
\(6\) 0 0
\(7\) 28.2667 10.2882i 0.576871 0.209964i −0.0370743 0.999313i \(-0.511804\pi\)
0.613945 + 0.789349i \(0.289582\pi\)
\(8\) 59.4692 + 34.3346i 0.929207 + 0.536478i
\(9\) 0 0
\(10\) 72.7837 + 126.065i 0.727837 + 1.26065i
\(11\) −75.7716 + 90.3011i −0.626211 + 0.746290i −0.982125 0.188229i \(-0.939725\pi\)
0.355914 + 0.934519i \(0.384170\pi\)
\(12\) 0 0
\(13\) 3.56465 + 20.2161i 0.0210926 + 0.119622i 0.993536 0.113517i \(-0.0362115\pi\)
−0.972443 + 0.233139i \(0.925100\pi\)
\(14\) −87.1005 + 15.3582i −0.444390 + 0.0783580i
\(15\) 0 0
\(16\) −64.5172 54.1364i −0.252020 0.211470i
\(17\) −203.984 + 117.770i −0.705827 + 0.407509i −0.809514 0.587101i \(-0.800269\pi\)
0.103687 + 0.994610i \(0.466936\pi\)
\(18\) 0 0
\(19\) 47.7809 82.7590i 0.132357 0.229249i −0.792228 0.610226i \(-0.791079\pi\)
0.924585 + 0.380976i \(0.124412\pi\)
\(20\) 124.544 + 342.182i 0.311360 + 0.855455i
\(21\) 0 0
\(22\) 265.505 222.785i 0.548565 0.460300i
\(23\) −85.2078 + 234.107i −0.161073 + 0.442545i −0.993806 0.111130i \(-0.964553\pi\)
0.832732 + 0.553676i \(0.186775\pi\)
\(24\) 0 0
\(25\) −317.105 + 1798.39i −0.507368 + 2.87743i
\(26\) 60.3569i 0.0892854i
\(27\) 0 0
\(28\) −221.247 −0.282202
\(29\) 1150.78 + 202.914i 1.36835 + 0.241277i 0.809074 0.587707i \(-0.199969\pi\)
0.559274 + 0.828983i \(0.311080\pi\)
\(30\) 0 0
\(31\) 562.326 + 204.670i 0.585147 + 0.212976i 0.617593 0.786497i \(-0.288108\pi\)
−0.0324468 + 0.999473i \(0.510330\pi\)
\(32\) −547.062 651.963i −0.534240 0.636683i
\(33\) 0 0
\(34\) 650.776 236.863i 0.562955 0.204899i
\(35\) −1289.74 744.633i −1.05285 0.607864i
\(36\) 0 0
\(37\) −123.627 214.128i −0.0903047 0.156412i 0.817335 0.576163i \(-0.195451\pi\)
−0.907639 + 0.419751i \(0.862117\pi\)
\(38\) −180.606 + 215.238i −0.125073 + 0.149057i
\(39\) 0 0
\(40\) −590.358 3348.09i −0.368974 2.09256i
\(41\) 508.880 89.7293i 0.302725 0.0533785i −0.0202226 0.999796i \(-0.506438\pi\)
0.322947 + 0.946417i \(0.395326\pi\)
\(42\) 0 0
\(43\) −1990.16 1669.95i −1.07635 0.903161i −0.0807334 0.996736i \(-0.525726\pi\)
−0.995612 + 0.0935745i \(0.970171\pi\)
\(44\) 750.857 433.508i 0.387840 0.223919i
\(45\) 0 0
\(46\) 366.250 634.364i 0.173086 0.299794i
\(47\) 176.156 + 483.984i 0.0797446 + 0.219097i 0.973158 0.230140i \(-0.0739183\pi\)
−0.893413 + 0.449236i \(0.851696\pi\)
\(48\) 0 0
\(49\) −1146.12 + 961.705i −0.477349 + 0.400544i
\(50\) 1836.39 5045.44i 0.734556 2.01818i
\(51\) 0 0
\(52\) 26.2183 148.692i 0.00969613 0.0549895i
\(53\) 3241.10i 1.15383i 0.816806 + 0.576913i \(0.195743\pi\)
−0.816806 + 0.576913i \(0.804257\pi\)
\(54\) 0 0
\(55\) 5836.10 1.92929
\(56\) 2034.24 + 358.691i 0.648673 + 0.114379i
\(57\) 0 0
\(58\) −3228.55 1175.09i −0.959734 0.349315i
\(59\) −1210.50 1442.62i −0.347745 0.414427i 0.563614 0.826038i \(-0.309411\pi\)
−0.911359 + 0.411611i \(0.864966\pi\)
\(60\) 0 0
\(61\) −4396.97 + 1600.37i −1.18166 + 0.430090i −0.856789 0.515667i \(-0.827544\pi\)
−0.324874 + 0.945757i \(0.605322\pi\)
\(62\) −1523.75 879.736i −0.396397 0.228860i
\(63\) 0 0
\(64\) 1924.95 + 3334.11i 0.469958 + 0.813991i
\(65\) 653.278 778.546i 0.154622 0.184271i
\(66\) 0 0
\(67\) −473.625 2686.06i −0.105508 0.598365i −0.991016 0.133742i \(-0.957301\pi\)
0.885508 0.464624i \(-0.153810\pi\)
\(68\) 1706.10 300.832i 0.368967 0.0650588i
\(69\) 0 0
\(70\) 3354.34 + 2814.62i 0.684559 + 0.574413i
\(71\) −5060.73 + 2921.81i −1.00391 + 0.579610i −0.909404 0.415914i \(-0.863462\pi\)
−0.0945101 + 0.995524i \(0.530128\pi\)
\(72\) 0 0
\(73\) −1626.01 + 2816.33i −0.305124 + 0.528491i −0.977289 0.211911i \(-0.932031\pi\)
0.672165 + 0.740402i \(0.265365\pi\)
\(74\) 248.643 + 683.140i 0.0454059 + 0.124752i
\(75\) 0 0
\(76\) −538.427 + 451.794i −0.0932179 + 0.0782191i
\(77\) −1212.77 + 3332.07i −0.204549 + 0.561995i
\(78\) 0 0
\(79\) 322.322 1827.98i 0.0516459 0.292899i −0.948035 0.318167i \(-0.896933\pi\)
0.999681 + 0.0252681i \(0.00804395\pi\)
\(80\) 4169.70i 0.651516i
\(81\) 0 0
\(82\) −1519.30 −0.225952
\(83\) 1228.73 + 216.659i 0.178362 + 0.0314500i 0.262116 0.965037i \(-0.415580\pi\)
−0.0837539 + 0.996486i \(0.526691\pi\)
\(84\) 0 0
\(85\) 10958.1 + 3988.42i 1.51669 + 0.552030i
\(86\) 4910.01 + 5851.52i 0.663874 + 0.791174i
\(87\) 0 0
\(88\) −7606.53 + 2768.55i −0.982248 + 0.357509i
\(89\) −6163.24 3558.35i −0.778089 0.449230i 0.0576637 0.998336i \(-0.481635\pi\)
−0.835753 + 0.549106i \(0.814968\pi\)
\(90\) 0 0
\(91\) 308.749 + 534.769i 0.0372840 + 0.0645779i
\(92\) 1177.83 1403.68i 0.139158 0.165842i
\(93\) 0 0
\(94\) −262.964 1491.34i −0.0297605 0.168780i
\(95\) −4659.29 + 821.558i −0.516265 + 0.0910314i
\(96\) 0 0
\(97\) 7251.91 + 6085.08i 0.770742 + 0.646730i 0.940899 0.338687i \(-0.109983\pi\)
−0.170157 + 0.985417i \(0.554427\pi\)
\(98\) 3809.65 2199.50i 0.396673 0.229020i
\(99\) 0 0
\(100\) 6715.69 11631.9i 0.671569 1.16319i
\(101\) 732.417 + 2012.30i 0.0717986 + 0.197265i 0.970401 0.241498i \(-0.0776388\pi\)
−0.898603 + 0.438763i \(0.855417\pi\)
\(102\) 0 0
\(103\) −8587.90 + 7206.10i −0.809492 + 0.679244i −0.950486 0.310766i \(-0.899414\pi\)
0.140995 + 0.990010i \(0.454970\pi\)
\(104\) −482.126 + 1324.63i −0.0445752 + 0.122469i
\(105\) 0 0
\(106\) 1654.79 9384.78i 0.147276 0.835242i
\(107\) 8544.65i 0.746323i 0.927766 + 0.373162i \(0.121726\pi\)
−0.927766 + 0.373162i \(0.878274\pi\)
\(108\) 0 0
\(109\) −7006.31 −0.589707 −0.294853 0.955542i \(-0.595271\pi\)
−0.294853 + 0.955542i \(0.595271\pi\)
\(110\) −16898.7 2979.70i −1.39659 0.246256i
\(111\) 0 0
\(112\) −2380.65 866.487i −0.189784 0.0690759i
\(113\) −9643.22 11492.3i −0.755206 0.900019i 0.242329 0.970194i \(-0.422089\pi\)
−0.997535 + 0.0701748i \(0.977644\pi\)
\(114\) 0 0
\(115\) 11590.4 4218.55i 0.876398 0.318983i
\(116\) −7443.20 4297.33i −0.553151 0.319362i
\(117\) 0 0
\(118\) 2768.52 + 4795.22i 0.198831 + 0.344385i
\(119\) −4554.30 + 5427.61i −0.321609 + 0.383278i
\(120\) 0 0
\(121\) 129.435 + 734.062i 0.00884058 + 0.0501374i
\(122\) 13548.7 2389.01i 0.910289 0.160509i
\(123\) 0 0
\(124\) −3371.66 2829.16i −0.219281 0.183999i
\(125\) 51499.9 29733.5i 3.29599 1.90294i
\(126\) 0 0
\(127\) −11799.6 + 20437.4i −0.731574 + 1.26712i 0.224636 + 0.974443i \(0.427881\pi\)
−0.956210 + 0.292681i \(0.905453\pi\)
\(128\) 785.853 + 2159.11i 0.0479647 + 0.131782i
\(129\) 0 0
\(130\) −2289.10 + 1920.78i −0.135450 + 0.113656i
\(131\) −3886.76 + 10678.8i −0.226488 + 0.622270i −0.999933 0.0115932i \(-0.996310\pi\)
0.773445 + 0.633863i \(0.218532\pi\)
\(132\) 0 0
\(133\) 499.165 2830.90i 0.0282189 0.160037i
\(134\) 8019.46i 0.446617i
\(135\) 0 0
\(136\) −16174.4 −0.874479
\(137\) 8987.88 + 1584.81i 0.478868 + 0.0844374i 0.407872 0.913039i \(-0.366271\pi\)
0.0709965 + 0.997477i \(0.477382\pi\)
\(138\) 0 0
\(139\) 12824.5 + 4667.73i 0.663758 + 0.241588i 0.651858 0.758341i \(-0.273990\pi\)
0.0119002 + 0.999929i \(0.496212\pi\)
\(140\) 7040.90 + 8391.01i 0.359229 + 0.428113i
\(141\) 0 0
\(142\) 16145.4 5876.44i 0.800704 0.291432i
\(143\) −2095.64 1209.92i −0.102481 0.0591676i
\(144\) 0 0
\(145\) −28926.4 50102.0i −1.37581 2.38297i
\(146\) 6146.11 7324.65i 0.288333 0.343622i
\(147\) 0 0
\(148\) 315.793 + 1790.95i 0.0144171 + 0.0817635i
\(149\) −34884.9 + 6151.14i −1.57132 + 0.277066i −0.890361 0.455256i \(-0.849548\pi\)
−0.680958 + 0.732322i \(0.738437\pi\)
\(150\) 0 0
\(151\) −27267.1 22879.8i −1.19587 1.00346i −0.999738 0.0228781i \(-0.992717\pi\)
−0.196133 0.980577i \(-0.562839\pi\)
\(152\) 5682.99 3281.08i 0.245974 0.142013i
\(153\) 0 0
\(154\) 5212.88 9028.98i 0.219805 0.380713i
\(155\) −10133.0 27840.2i −0.421769 1.15880i
\(156\) 0 0
\(157\) 26009.7 21824.7i 1.05520 0.885419i 0.0615708 0.998103i \(-0.480389\pi\)
0.993631 + 0.112683i \(0.0359446\pi\)
\(158\) −1866.60 + 5128.45i −0.0747718 + 0.205434i
\(159\) 0 0
\(160\) −7316.83 + 41495.8i −0.285814 + 1.62093i
\(161\) 7494.05i 0.289111i
\(162\) 0 0
\(163\) −4748.87 −0.178737 −0.0893686 0.995999i \(-0.528485\pi\)
−0.0893686 + 0.995999i \(0.528485\pi\)
\(164\) −3742.86 659.967i −0.139160 0.0245377i
\(165\) 0 0
\(166\) −3447.25 1254.69i −0.125100 0.0455325i
\(167\) 23833.0 + 28403.1i 0.854567 + 1.01843i 0.999579 + 0.0290038i \(0.00923349\pi\)
−0.145012 + 0.989430i \(0.546322\pi\)
\(168\) 0 0
\(169\) 26442.6 9624.31i 0.925828 0.336974i
\(170\) −29693.4 17143.5i −1.02745 0.593201i
\(171\) 0 0
\(172\) 9554.16 + 16548.3i 0.322950 + 0.559366i
\(173\) 20128.4 23988.1i 0.672539 0.801501i −0.316588 0.948563i \(-0.602537\pi\)
0.989127 + 0.147062i \(0.0469817\pi\)
\(174\) 0 0
\(175\) 9538.76 + 54097.0i 0.311470 + 1.76643i
\(176\) 9777.14 1723.97i 0.315636 0.0556552i
\(177\) 0 0
\(178\) 16029.2 + 13450.1i 0.505909 + 0.424508i
\(179\) −3361.98 + 1941.04i −0.104927 + 0.0605798i −0.551545 0.834145i \(-0.685962\pi\)
0.446618 + 0.894725i \(0.352628\pi\)
\(180\) 0 0
\(181\) −4830.64 + 8366.92i −0.147451 + 0.255393i −0.930285 0.366838i \(-0.880440\pi\)
0.782834 + 0.622231i \(0.213774\pi\)
\(182\) −620.966 1706.09i −0.0187467 0.0515062i
\(183\) 0 0
\(184\) −13105.2 + 10996.6i −0.387086 + 0.324804i
\(185\) −4186.77 + 11503.1i −0.122331 + 0.336101i
\(186\) 0 0
\(187\) 4821.42 27343.6i 0.137877 0.781939i
\(188\) 3788.20i 0.107181i
\(189\) 0 0
\(190\) 13910.7 0.385338
\(191\) −29595.2 5218.44i −0.811251 0.143045i −0.247391 0.968916i \(-0.579573\pi\)
−0.563860 + 0.825870i \(0.690684\pi\)
\(192\) 0 0
\(193\) −21435.3 7801.80i −0.575459 0.209450i 0.0378629 0.999283i \(-0.487945\pi\)
−0.613322 + 0.789833i \(0.710167\pi\)
\(194\) −17891.5 21322.2i −0.475382 0.566539i
\(195\) 0 0
\(196\) 10340.7 3763.69i 0.269176 0.0979720i
\(197\) 8182.86 + 4724.37i 0.210849 + 0.121734i 0.601706 0.798718i \(-0.294488\pi\)
−0.390857 + 0.920452i \(0.627821\pi\)
\(198\) 0 0
\(199\) 24364.4 + 42200.4i 0.615247 + 1.06564i 0.990341 + 0.138652i \(0.0442770\pi\)
−0.375094 + 0.926987i \(0.622390\pi\)
\(200\) −80605.0 + 96061.3i −2.01513 + 2.40153i
\(201\) 0 0
\(202\) −1093.35 6200.67i −0.0267951 0.151962i
\(203\) 34616.4 6103.80i 0.840019 0.148118i
\(204\) 0 0
\(205\) −19597.5 16444.3i −0.466330 0.391298i
\(206\) 28545.9 16481.0i 0.672681 0.388373i
\(207\) 0 0
\(208\) 864.448 1497.27i 0.0199808 0.0346077i
\(209\) 3852.79 + 10585.4i 0.0882028 + 0.242335i
\(210\) 0 0
\(211\) −20693.8 + 17364.1i −0.464809 + 0.390021i −0.844897 0.534929i \(-0.820338\pi\)
0.380088 + 0.924950i \(0.375894\pi\)
\(212\) 8153.27 22400.9i 0.181410 0.498419i
\(213\) 0 0
\(214\) 4362.60 24741.5i 0.0952615 0.540255i
\(215\) 128623.i 2.78254i
\(216\) 0 0
\(217\) 18000.8 0.382271
\(218\) 20287.1 + 3577.17i 0.426882 + 0.0752708i
\(219\) 0 0
\(220\) −40336.3 14681.2i −0.833395 0.303331i
\(221\) −3107.99 3703.96i −0.0636349 0.0758371i
\(222\) 0 0
\(223\) −34127.2 + 12421.3i −0.686263 + 0.249779i −0.661534 0.749915i \(-0.730094\pi\)
−0.0247285 + 0.999694i \(0.507872\pi\)
\(224\) −22171.2 12800.5i −0.441868 0.255113i
\(225\) 0 0
\(226\) 22054.9 + 38200.2i 0.431806 + 0.747909i
\(227\) 52677.6 62778.7i 1.02229 1.21832i 0.0466574 0.998911i \(-0.485143\pi\)
0.975633 0.219408i \(-0.0704125\pi\)
\(228\) 0 0
\(229\) 2581.23 + 14638.9i 0.0492217 + 0.279150i 0.999478 0.0323204i \(-0.0102897\pi\)
−0.950256 + 0.311470i \(0.899179\pi\)
\(230\) −35714.4 + 6297.41i −0.675130 + 0.119044i
\(231\) 0 0
\(232\) 61469.1 + 51578.7i 1.14204 + 0.958284i
\(233\) −19670.0 + 11356.5i −0.362320 + 0.209185i −0.670098 0.742273i \(-0.733748\pi\)
0.307778 + 0.951458i \(0.400415\pi\)
\(234\) 0 0
\(235\) 12749.7 22083.1i 0.230868 0.399875i
\(236\) 4737.37 + 13015.8i 0.0850577 + 0.233694i
\(237\) 0 0
\(238\) 15958.4 13390.7i 0.281731 0.236400i
\(239\) 15097.9 41481.1i 0.264314 0.726196i −0.734551 0.678554i \(-0.762607\pi\)
0.998864 0.0476424i \(-0.0151708\pi\)
\(240\) 0 0
\(241\) 4090.96 23201.0i 0.0704354 0.399459i −0.929124 0.369769i \(-0.879437\pi\)
0.999559 0.0296900i \(-0.00945200\pi\)
\(242\) 2191.60i 0.0374223i
\(243\) 0 0
\(244\) 34415.6 0.578064
\(245\) 72947.3 + 12862.6i 1.21528 + 0.214287i
\(246\) 0 0
\(247\) 1843.39 + 670.939i 0.0302151 + 0.0109974i
\(248\) 26413.8 + 31478.8i 0.429465 + 0.511817i
\(249\) 0 0
\(250\) −164302. + 59800.9i −2.62882 + 0.956814i
\(251\) −94159.5 54363.0i −1.49457 0.862891i −0.494591 0.869126i \(-0.664682\pi\)
−0.999981 + 0.00623462i \(0.998015\pi\)
\(252\) 0 0
\(253\) −14683.7 25433.0i −0.229401 0.397334i
\(254\) 44600.9 53153.3i 0.691315 0.823878i
\(255\) 0 0
\(256\) −11869.6 67315.6i −0.181115 1.02715i
\(257\) 51865.1 9145.22i 0.785252 0.138461i 0.233375 0.972387i \(-0.425023\pi\)
0.551877 + 0.833926i \(0.313912\pi\)
\(258\) 0 0
\(259\) −5697.53 4780.80i −0.0849351 0.0712690i
\(260\) −6473.65 + 3737.56i −0.0957640 + 0.0552894i
\(261\) 0 0
\(262\) 16706.5 28936.5i 0.243379 0.421545i
\(263\) −14888.8 40906.7i −0.215253 0.591402i 0.784328 0.620346i \(-0.213008\pi\)
−0.999581 + 0.0289439i \(0.990786\pi\)
\(264\) 0 0
\(265\) 122922. 103144.i 1.75040 1.46876i
\(266\) −2890.72 + 7942.18i −0.0408547 + 0.112247i
\(267\) 0 0
\(268\) −3483.56 + 19756.2i −0.0485013 + 0.275064i
\(269\) 80700.6i 1.11525i −0.830093 0.557625i \(-0.811713\pi\)
0.830093 0.557625i \(-0.188287\pi\)
\(270\) 0 0
\(271\) −52631.4 −0.716648 −0.358324 0.933597i \(-0.616652\pi\)
−0.358324 + 0.933597i \(0.616652\pi\)
\(272\) 19536.1 + 3444.75i 0.264059 + 0.0465607i
\(273\) 0 0
\(274\) −25215.8 9177.78i −0.335870 0.122247i
\(275\) −138369. 164902.i −1.82967 2.18052i
\(276\) 0 0
\(277\) 26404.1 9610.32i 0.344122 0.125250i −0.164177 0.986431i \(-0.552497\pi\)
0.508299 + 0.861181i \(0.330275\pi\)
\(278\) −34750.8 20063.4i −0.449651 0.259606i
\(279\) 0 0
\(280\) −51133.4 88565.6i −0.652211 1.12966i
\(281\) −24684.5 + 29417.8i −0.312616 + 0.372562i −0.899358 0.437212i \(-0.855966\pi\)
0.586742 + 0.809774i \(0.300410\pi\)
\(282\) 0 0
\(283\) −15332.4 86954.2i −0.191442 1.08572i −0.917396 0.397976i \(-0.869713\pi\)
0.725954 0.687743i \(-0.241398\pi\)
\(284\) 42327.4 7463.47i 0.524790 0.0925346i
\(285\) 0 0
\(286\) 5450.30 + 4573.34i 0.0666328 + 0.0559115i
\(287\) 13461.2 7771.82i 0.163425 0.0943537i
\(288\) 0 0
\(289\) −14020.9 + 24284.8i −0.167872 + 0.290763i
\(290\) 58177.7 + 159842.i 0.691768 + 1.90062i
\(291\) 0 0
\(292\) 18322.9 15374.7i 0.214896 0.180319i
\(293\) −5860.54 + 16101.7i −0.0682656 + 0.187558i −0.969134 0.246534i \(-0.920708\pi\)
0.900869 + 0.434092i \(0.142931\pi\)
\(294\) 0 0
\(295\) −16190.2 + 91819.1i −0.186041 + 1.05509i
\(296\) 16978.7i 0.193786i
\(297\) 0 0
\(298\) 104152. 1.17282
\(299\) −5036.47 888.065i −0.0563357 0.00993351i
\(300\) 0 0
\(301\) −73436.1 26728.5i −0.810544 0.295014i
\(302\) 67271.7 + 80171.3i 0.737596 + 0.879032i
\(303\) 0 0
\(304\) −7562.97 + 2752.69i −0.0818361 + 0.0297859i
\(305\) 200623. + 115830.i 2.15666 + 1.24515i
\(306\) 0 0
\(307\) 70636.7 + 122346.i 0.749469 + 1.29812i 0.948077 + 0.318040i \(0.103025\pi\)
−0.198608 + 0.980079i \(0.563642\pi\)
\(308\) 16764.2 19978.8i 0.176718 0.210605i
\(309\) 0 0
\(310\) 15126.4 + 85786.2i 0.157403 + 0.892677i
\(311\) −108917. + 19205.1i −1.12610 + 0.198562i −0.705517 0.708693i \(-0.749285\pi\)
−0.420582 + 0.907254i \(0.638174\pi\)
\(312\) 0 0
\(313\) −5442.80 4567.05i −0.0555563 0.0466173i 0.614587 0.788849i \(-0.289323\pi\)
−0.670143 + 0.742232i \(0.733767\pi\)
\(314\) −86455.3 + 49915.0i −0.876864 + 0.506258i
\(315\) 0 0
\(316\) −6826.18 + 11823.3i −0.0683603 + 0.118403i
\(317\) 23370.3 + 64209.4i 0.232566 + 0.638969i 0.999998 0.00216124i \(-0.000687945\pi\)
−0.767432 + 0.641131i \(0.778466\pi\)
\(318\) 0 0
\(319\) −105520. + 88541.6i −1.03694 + 0.870094i
\(320\) 65190.5 179109.i 0.636626 1.74912i
\(321\) 0 0
\(322\) 3826.20 21699.4i 0.0369025 0.209284i
\(323\) 22508.7i 0.215747i
\(324\) 0 0
\(325\) −37486.9 −0.354906
\(326\) 13750.6 + 2424.60i 0.129386 + 0.0228142i
\(327\) 0 0
\(328\) 33343.5 + 12136.0i 0.309930 + 0.112805i
\(329\) 9958.68 + 11868.3i 0.0920047 + 0.109647i
\(330\) 0 0
\(331\) 159267. 57968.4i 1.45368 0.529097i 0.510065 0.860136i \(-0.329621\pi\)
0.943617 + 0.331039i \(0.107399\pi\)
\(332\) −7947.39 4588.43i −0.0721022 0.0416282i
\(333\) 0 0
\(334\) −54508.2 94411.0i −0.488618 0.846310i
\(335\) −86799.2 + 103443.i −0.773439 + 0.921749i
\(336\) 0 0
\(337\) −743.090 4214.27i −0.00654307 0.0371076i 0.981361 0.192171i \(-0.0615529\pi\)
−0.987904 + 0.155064i \(0.950442\pi\)
\(338\) −81479.7 + 14367.1i −0.713208 + 0.125758i
\(339\) 0 0
\(340\) −65703.9 55132.1i −0.568373 0.476921i
\(341\) −61090.2 + 35270.5i −0.525367 + 0.303321i
\(342\) 0 0
\(343\) −58614.6 + 101523.i −0.498216 + 0.862935i
\(344\) −61016.6 167642.i −0.515622 1.41666i
\(345\) 0 0
\(346\) −70530.4 + 59182.1i −0.589148 + 0.494354i
\(347\) −65820.8 + 180841.i −0.546643 + 1.50189i 0.291571 + 0.956549i \(0.405822\pi\)
−0.838214 + 0.545341i \(0.816400\pi\)
\(348\) 0 0
\(349\) −15699.3 + 89035.3i −0.128893 + 0.730990i 0.850026 + 0.526741i \(0.176586\pi\)
−0.978919 + 0.204249i \(0.934525\pi\)
\(350\) 161511.i 1.31846i
\(351\) 0 0
\(352\) 100325. 0.809697
\(353\) −190086. 33517.2i −1.52546 0.268979i −0.652882 0.757460i \(-0.726440\pi\)
−0.872575 + 0.488480i \(0.837551\pi\)
\(354\) 0 0
\(355\) 271864. + 98950.5i 2.15722 + 0.785166i
\(356\) 33646.0 + 40097.8i 0.265481 + 0.316388i
\(357\) 0 0
\(358\) 10725.8 3903.88i 0.0836882 0.0304600i
\(359\) 32016.9 + 18484.9i 0.248422 + 0.143426i 0.619041 0.785358i \(-0.287521\pi\)
−0.370620 + 0.928785i \(0.620855\pi\)
\(360\) 0 0
\(361\) 60594.5 + 104953.i 0.464963 + 0.805340i
\(362\) 18259.2 21760.5i 0.139337 0.166055i
\(363\) 0 0
\(364\) −788.668 4472.76i −0.00595239 0.0337577i
\(365\) 158558. 27958.0i 1.19015 0.209856i
\(366\) 0 0
\(367\) −18276.4 15335.7i −0.135694 0.113860i 0.572415 0.819964i \(-0.306007\pi\)
−0.708108 + 0.706104i \(0.750451\pi\)
\(368\) 18171.1 10491.1i 0.134179 0.0774683i
\(369\) 0 0
\(370\) 17996.1 31170.1i 0.131454 0.227685i
\(371\) 33345.2 + 91615.1i 0.242262 + 0.665609i
\(372\) 0 0
\(373\) −98510.4 + 82660.0i −0.708051 + 0.594125i −0.924051 0.382268i \(-0.875143\pi\)
0.216001 + 0.976393i \(0.430699\pi\)
\(374\) −27921.3 + 76713.3i −0.199615 + 0.548438i
\(375\) 0 0
\(376\) −6141.54 + 34830.4i −0.0434412 + 0.246367i
\(377\) 23987.7i 0.168774i
\(378\) 0 0
\(379\) −261836. −1.82285 −0.911424 0.411468i \(-0.865016\pi\)
−0.911424 + 0.411468i \(0.865016\pi\)
\(380\) 34269.5 + 6042.64i 0.237323 + 0.0418465i
\(381\) 0 0
\(382\) 83030.3 + 30220.5i 0.568997 + 0.207098i
\(383\) 53474.5 + 63728.4i 0.364543 + 0.434446i 0.916872 0.399180i \(-0.130705\pi\)
−0.552329 + 0.833626i \(0.686261\pi\)
\(384\) 0 0
\(385\) 164967. 60043.1i 1.11295 0.405081i
\(386\) 58083.7 + 33534.6i 0.389834 + 0.225071i
\(387\) 0 0
\(388\) −34814.2 60300.0i −0.231256 0.400547i
\(389\) 91785.3 109385.i 0.606560 0.722870i −0.372137 0.928178i \(-0.621375\pi\)
0.978698 + 0.205307i \(0.0658194\pi\)
\(390\) 0 0
\(391\) −10189.7 57788.9i −0.0666515 0.377999i
\(392\) −101178. + 17840.5i −0.658439 + 0.116101i
\(393\) 0 0
\(394\) −21281.8 17857.6i −0.137093 0.115035i
\(395\) −79585.5 + 45948.7i −0.510082 + 0.294496i
\(396\) 0 0
\(397\) 154947. 268377.i 0.983112 1.70280i 0.333069 0.942903i \(-0.391916\pi\)
0.650043 0.759897i \(-0.274751\pi\)
\(398\) −49002.4 134633.i −0.309351 0.849935i
\(399\) 0 0
\(400\) 117817. 98860.3i 0.736357 0.617877i
\(401\) −31277.9 + 85935.3i −0.194513 + 0.534420i −0.998157 0.0606907i \(-0.980670\pi\)
0.803644 + 0.595111i \(0.202892\pi\)
\(402\) 0 0
\(403\) −2133.14 + 12097.6i −0.0131344 + 0.0744887i
\(404\) 15750.5i 0.0965011i
\(405\) 0 0
\(406\) −103350. −0.626986
\(407\) 28703.4 + 5061.19i 0.173279 + 0.0305537i
\(408\) 0 0
\(409\) −211429. 76953.8i −1.26391 0.460027i −0.378834 0.925465i \(-0.623675\pi\)
−0.885081 + 0.465437i \(0.845897\pi\)
\(410\) 48349.9 + 57621.1i 0.287626 + 0.342779i
\(411\) 0 0
\(412\) 77483.0 28201.5i 0.456470 0.166141i
\(413\) −49058.9 28324.1i −0.287619 0.166057i
\(414\) 0 0
\(415\) −30885.9 53495.9i −0.179334 0.310616i
\(416\) 11230.1 13383.5i 0.0648929 0.0773363i
\(417\) 0 0
\(418\) −5751.41 32617.8i −0.0329171 0.186682i
\(419\) 1027.79 181.228i 0.00585434 0.00103228i −0.170720 0.985320i \(-0.554609\pi\)
0.176575 + 0.984287i \(0.443498\pi\)
\(420\) 0 0
\(421\) −103499. 86846.4i −0.583948 0.489990i 0.302293 0.953215i \(-0.402248\pi\)
−0.886241 + 0.463225i \(0.846692\pi\)
\(422\) 68785.4 39713.3i 0.386252 0.223003i
\(423\) 0 0
\(424\) −111282. + 192746.i −0.619002 + 1.07214i
\(425\) −147113. 404189.i −0.814465 2.23772i
\(426\) 0 0
\(427\) −107823. + 90474.0i −0.591364 + 0.496213i
\(428\) 21494.8 59056.6i 0.117340 0.322389i
\(429\) 0 0
\(430\) 65670.3 372435.i 0.355166 2.01425i
\(431\) 247960.i 1.33483i −0.744685 0.667417i \(-0.767400\pi\)
0.744685 0.667417i \(-0.232600\pi\)
\(432\) 0 0
\(433\) 88166.4 0.470248 0.235124 0.971965i \(-0.424450\pi\)
0.235124 + 0.971965i \(0.424450\pi\)
\(434\) −52122.2 9190.55i −0.276722 0.0487935i
\(435\) 0 0
\(436\) 48424.3 + 17625.0i 0.254736 + 0.0927163i
\(437\) 15303.1 + 18237.5i 0.0801340 + 0.0955000i
\(438\) 0 0
\(439\) −204096. + 74284.9i −1.05902 + 0.385453i −0.812061 0.583572i \(-0.801654\pi\)
−0.246962 + 0.969025i \(0.579432\pi\)
\(440\) 347068. + 200380.i 1.79271 + 1.03502i
\(441\) 0 0
\(442\) 7108.25 + 12311.9i 0.0363846 + 0.0630201i
\(443\) −54878.4 + 65401.6i −0.279637 + 0.333258i −0.887521 0.460768i \(-0.847574\pi\)
0.607884 + 0.794026i \(0.292019\pi\)
\(444\) 0 0
\(445\) 61183.2 + 346987.i 0.308967 + 1.75224i
\(446\) 105159. 18542.4i 0.528660 0.0932170i
\(447\) 0 0
\(448\) 88714.0 + 74439.9i 0.442014 + 0.370894i
\(449\) −62430.3 + 36044.1i −0.309672 + 0.178789i −0.646780 0.762677i \(-0.723885\pi\)
0.337107 + 0.941466i \(0.390551\pi\)
\(450\) 0 0
\(451\) −30456.0 + 52751.3i −0.149734 + 0.259346i
\(452\) 37739.3 + 103688.i 0.184722 + 0.507518i
\(453\) 0 0
\(454\) −184583. + 154884.i −0.895532 + 0.751441i
\(455\) 10456.1 28728.0i 0.0505066 0.138766i
\(456\) 0 0
\(457\) 51056.8 289557.i 0.244467 1.38644i −0.577259 0.816561i \(-0.695878\pi\)
0.821727 0.569882i \(-0.193011\pi\)
\(458\) 43705.6i 0.208356i
\(459\) 0 0
\(460\) −90719.2 −0.428730
\(461\) −9786.05 1725.54i −0.0460475 0.00811941i 0.150577 0.988598i \(-0.451887\pi\)
−0.196624 + 0.980479i \(0.562998\pi\)
\(462\) 0 0
\(463\) 241845. + 88024.6i 1.12817 + 0.410622i 0.837629 0.546240i \(-0.183941\pi\)
0.290545 + 0.956861i \(0.406163\pi\)
\(464\) −63260.1 75390.5i −0.293829 0.350171i
\(465\) 0 0
\(466\) 62753.7 22840.5i 0.288980 0.105180i
\(467\) 295396. + 170547.i 1.35448 + 0.782008i 0.988873 0.148763i \(-0.0475292\pi\)
0.365604 + 0.930771i \(0.380862\pi\)
\(468\) 0 0
\(469\) −41022.6 71053.3i −0.186500 0.323027i
\(470\) −48192.2 + 57433.2i −0.218163 + 0.259997i
\(471\) 0 0
\(472\) −22455.9 127354.i −0.100797 0.571646i
\(473\) 301596. 53179.4i 1.34804 0.237696i
\(474\) 0 0
\(475\) 133682. + 112172.i 0.592494 + 0.497162i
\(476\) 45130.8 26056.3i 0.199186 0.115000i
\(477\) 0 0
\(478\) −64895.5 + 112402.i −0.284026 + 0.491948i
\(479\) 78767.8 + 216413.i 0.343303 + 0.943217i 0.984429 + 0.175782i \(0.0562452\pi\)
−0.641126 + 0.767435i \(0.721533\pi\)
\(480\) 0 0
\(481\) 3888.16 3262.56i 0.0168056 0.0141016i
\(482\) −23691.2 + 65091.0i −0.101975 + 0.280173i
\(483\) 0 0
\(484\) 952.005 5399.09i 0.00406395 0.0230478i
\(485\) 468686.i 1.99250i
\(486\) 0 0
\(487\) 219527. 0.925615 0.462808 0.886459i \(-0.346842\pi\)
0.462808 + 0.886459i \(0.346842\pi\)
\(488\) −316432. 55795.5i −1.32874 0.234293i
\(489\) 0 0
\(490\) −204656. 74488.6i −0.852377 0.310240i
\(491\) −134136. 159857.i −0.556392 0.663083i 0.412387 0.911009i \(-0.364695\pi\)
−0.968779 + 0.247926i \(0.920251\pi\)
\(492\) 0 0
\(493\) −258638. + 94136.5i −1.06414 + 0.387315i
\(494\) −4995.08 2883.91i −0.0204686 0.0118176i
\(495\) 0 0
\(496\) −25199.6 43647.0i −0.102431 0.177415i
\(497\) −112990. + 134656.i −0.457432 + 0.545146i
\(498\) 0 0
\(499\) −57335.2 325164.i −0.230261 1.30587i −0.852368 0.522942i \(-0.824834\pi\)
0.622107 0.782932i \(-0.286277\pi\)
\(500\) −430740. + 75951.0i −1.72296 + 0.303804i
\(501\) 0 0
\(502\) 244888. + 205486.i 0.971763 + 0.815406i
\(503\) −246836. + 142511.i −0.975602 + 0.563264i −0.900939 0.433945i \(-0.857121\pi\)
−0.0746622 + 0.997209i \(0.523788\pi\)
\(504\) 0 0
\(505\) 53010.3 91816.6i 0.207863 0.360030i
\(506\) 29532.4 + 81139.6i 0.115345 + 0.316907i
\(507\) 0 0
\(508\) 132965. 111571.i 0.515241 0.432338i
\(509\) −42394.2 + 116477.i −0.163633 + 0.449578i −0.994227 0.107301i \(-0.965779\pi\)
0.830594 + 0.556879i \(0.188001\pi\)
\(510\) 0 0
\(511\) −16986.8 + 96336.9i −0.0650534 + 0.368936i
\(512\) 164213.i 0.626424i
\(513\) 0 0
\(514\) −154848. −0.586109
\(515\) 546598. + 96380.0i 2.06088 + 0.363389i
\(516\) 0 0
\(517\) −57051.9 20765.2i −0.213446 0.0776882i
\(518\) 14056.6 + 16752.0i 0.0523867 + 0.0624320i
\(519\) 0 0
\(520\) 65581.0 23869.5i 0.242533 0.0882749i
\(521\) −171993. 99300.3i −0.633630 0.365826i 0.148527 0.988908i \(-0.452547\pi\)
−0.782157 + 0.623082i \(0.785880\pi\)
\(522\) 0 0
\(523\) −216878. 375645.i −0.792890 1.37333i −0.924170 0.381981i \(-0.875242\pi\)
0.131280 0.991345i \(-0.458091\pi\)
\(524\) 53726.8 64029.1i 0.195672 0.233193i
\(525\) 0 0
\(526\) 22225.9 + 126049.i 0.0803318 + 0.455584i
\(527\) −138810. + 24475.9i −0.499802 + 0.0881286i
\(528\) 0 0
\(529\) 166825. + 139983.i 0.596143 + 0.500223i
\(530\) −408589. + 235899.i −1.45457 + 0.839797i
\(531\) 0 0
\(532\) −10571.4 + 18310.2i −0.0373515 + 0.0646947i
\(533\) 3627.96 + 9967.74i 0.0127705 + 0.0350867i
\(534\) 0 0
\(535\) 324065. 271923.i 1.13220 0.950032i
\(536\) 64058.7 176000.i 0.222971 0.612608i
\(537\) 0 0
\(538\) −41202.9 + 233673.i −0.142352 + 0.807317i
\(539\) 176365.i 0.607066i
\(540\) 0 0
\(541\) 290726. 0.993320 0.496660 0.867945i \(-0.334560\pi\)
0.496660 + 0.867945i \(0.334560\pi\)
\(542\) 152397. + 26871.7i 0.518774 + 0.0914738i
\(543\) 0 0
\(544\) 188374. + 68562.4i 0.636535 + 0.231680i
\(545\) 222967. + 265722.i 0.750667 + 0.894610i
\(546\) 0 0
\(547\) −392794. + 142965.i −1.31277 + 0.477811i −0.901136 0.433537i \(-0.857265\pi\)
−0.411638 + 0.911347i \(0.635043\pi\)
\(548\) −58133.2 33563.2i −0.193581 0.111764i
\(549\) 0 0
\(550\) 316462. + 548129.i 1.04616 + 1.81200i
\(551\) 71778.3 85542.0i 0.236423 0.281758i
\(552\) 0 0
\(553\) −9695.70 54987.0i −0.0317051 0.179808i
\(554\) −81361.3 + 14346.2i −0.265093 + 0.0467430i
\(555\) 0 0
\(556\) −76894.6 64522.2i −0.248740 0.208718i
\(557\) 294946. 170287.i 0.950675 0.548873i 0.0573846 0.998352i \(-0.481724\pi\)
0.893291 + 0.449480i \(0.148391\pi\)
\(558\) 0 0
\(559\) 26665.6 46186.2i 0.0853352 0.147805i
\(560\) 42898.9 + 117864.i 0.136795 + 0.375841i
\(561\) 0 0
\(562\) 86495.0 72577.9i 0.273854 0.229790i
\(563\) −3983.63 + 10944.9i −0.0125679 + 0.0345300i −0.945818 0.324697i \(-0.894738\pi\)
0.933250 + 0.359227i \(0.116960\pi\)
\(564\) 0 0
\(565\) −128976. + 731459.i −0.404028 + 2.29136i
\(566\) 259609.i 0.810376i
\(567\) 0 0
\(568\) −401277. −1.24379
\(569\) −219065. 38627.1i −0.676627 0.119308i −0.175233 0.984527i \(-0.556068\pi\)
−0.501393 + 0.865219i \(0.667179\pi\)
\(570\) 0 0
\(571\) 110761. + 40313.8i 0.339716 + 0.123646i 0.506244 0.862390i \(-0.331034\pi\)
−0.166528 + 0.986037i \(0.553256\pi\)
\(572\) 11440.4 + 13634.1i 0.0349663 + 0.0416712i
\(573\) 0 0
\(574\) −42945.6 + 15630.9i −0.130345 + 0.0474418i
\(575\) −393996. 227473.i −1.19167 0.688010i
\(576\) 0 0
\(577\) 79405.7 + 137535.i 0.238506 + 0.413105i 0.960286 0.279018i \(-0.0900089\pi\)
−0.721780 + 0.692123i \(0.756676\pi\)
\(578\) 52997.1 63159.5i 0.158634 0.189053i
\(579\) 0 0
\(580\) 73889.5 + 419048.i 0.219648 + 1.24568i
\(581\) 36961.2 6517.26i 0.109495 0.0193069i
\(582\) 0 0
\(583\) −292675. 245583.i −0.861089 0.722539i
\(584\) −193395. + 111657.i −0.567047 + 0.327385i
\(585\) 0 0
\(586\) 25190.4 43631.1i 0.0733568 0.127058i
\(587\) 160654. + 441393.i 0.466246 + 1.28100i 0.920714 + 0.390238i \(0.127607\pi\)
−0.454467 + 0.890763i \(0.650170\pi\)
\(588\) 0 0
\(589\) 43806.7 36758.2i 0.126273 0.105956i
\(590\) 93759.1 257601.i 0.269345 0.740020i
\(591\) 0 0
\(592\) −3616.06 + 20507.7i −0.0103179 + 0.0585158i
\(593\) 515426.i 1.46574i 0.680368 + 0.732870i \(0.261820\pi\)
−0.680368 + 0.732870i \(0.738180\pi\)
\(594\) 0 0
\(595\) 350783. 0.990841
\(596\) 256581. + 45242.2i 0.722324 + 0.127365i
\(597\) 0 0
\(598\) 14130.0 + 5142.88i 0.0395129 + 0.0143815i
\(599\) −450250. 536588.i −1.25488 1.49550i −0.793848 0.608116i \(-0.791926\pi\)
−0.461027 0.887386i \(-0.652519\pi\)
\(600\) 0 0
\(601\) 563518. 205104.i 1.56012 0.567838i 0.589358 0.807872i \(-0.299381\pi\)
0.970764 + 0.240034i \(0.0771587\pi\)
\(602\) 198991. + 114888.i 0.549087 + 0.317016i
\(603\) 0 0
\(604\) 130901. + 226727.i 0.358813 + 0.621483i
\(605\) 23721.0 28269.5i 0.0648069 0.0772339i
\(606\) 0 0
\(607\) −87130.8 494143.i −0.236480 1.34114i −0.839475 0.543399i \(-0.817137\pi\)
0.602995 0.797745i \(-0.293974\pi\)
\(608\) −80095.0 + 14122.9i −0.216670 + 0.0382047i
\(609\) 0 0
\(610\) −521777. 437823.i −1.40225 1.17663i
\(611\) −9156.36 + 5286.43i −0.0245268 + 0.0141605i
\(612\) 0 0
\(613\) 88778.8 153769.i 0.236259 0.409213i −0.723379 0.690451i \(-0.757412\pi\)
0.959638 + 0.281239i \(0.0907453\pi\)
\(614\) −142067. 390325.i −0.376839 1.03536i
\(615\) 0 0
\(616\) −186528. + 156515.i −0.491566 + 0.412473i
\(617\) 76122.3 209144.i 0.199959 0.549383i −0.798668 0.601772i \(-0.794461\pi\)
0.998627 + 0.0523891i \(0.0166836\pi\)
\(618\) 0 0
\(619\) 44170.8 250505.i 0.115280 0.653785i −0.871331 0.490695i \(-0.836743\pi\)
0.986611 0.163090i \(-0.0521461\pi\)
\(620\) 217908.i 0.566879i
\(621\) 0 0
\(622\) 325182. 0.840515
\(623\) −210823. 37173.9i −0.543179 0.0957771i
\(624\) 0 0
\(625\) −1.69409e6 616597.i −4.33686 1.57849i
\(626\) 13428.1 + 16003.0i 0.0342663 + 0.0408370i
\(627\) 0 0
\(628\) −234668. + 85412.3i −0.595025 + 0.216571i
\(629\) 50435.9 + 29119.2i 0.127479 + 0.0736000i
\(630\) 0 0
\(631\) 92940.0 + 160977.i 0.233423 + 0.404301i 0.958813 0.284037i \(-0.0916739\pi\)
−0.725390 + 0.688338i \(0.758341\pi\)
\(632\) 81931.2 97641.8i 0.205123 0.244456i
\(633\) 0 0
\(634\) −34887.0 197854.i −0.0867930 0.492228i
\(635\) 1.15062e6 202885.i 2.85354 0.503156i
\(636\) 0 0
\(637\) −23527.5 19741.9i −0.0579824 0.0486530i
\(638\) 350744. 202502.i 0.861687 0.497495i
\(639\) 0 0
\(640\) 56877.9 98515.4i 0.138862 0.240516i
\(641\) 203464. + 559012.i 0.495189 + 1.36052i 0.895876 + 0.444304i \(0.146549\pi\)
−0.400687 + 0.916215i \(0.631229\pi\)
\(642\) 0 0
\(643\) 125554. 105353.i 0.303676 0.254814i −0.478197 0.878253i \(-0.658709\pi\)
0.781872 + 0.623439i \(0.214265\pi\)
\(644\) 18851.9 51795.3i 0.0454553 0.124887i
\(645\) 0 0
\(646\) 11492.1 65175.1i 0.0275382 0.156177i
\(647\) 159455.i 0.380916i −0.981695 0.190458i \(-0.939003\pi\)
0.981695 0.190458i \(-0.0609972\pi\)
\(648\) 0 0
\(649\) 221992. 0.527045
\(650\) 108545. + 19139.5i 0.256912 + 0.0453006i
\(651\) 0 0
\(652\) 32821.9 + 11946.2i 0.0772091 + 0.0281018i
\(653\) −198728. 236834.i −0.466050 0.555416i 0.480910 0.876770i \(-0.340307\pi\)
−0.946959 + 0.321354i \(0.895862\pi\)
\(654\) 0 0
\(655\) 528695. 192429.i 1.23232 0.448527i
\(656\) −37689.1 21759.8i −0.0875807 0.0505648i
\(657\) 0 0
\(658\) −22776.4 39449.8i −0.0526057 0.0911157i
\(659\) −99185.3 + 118204.i −0.228390 + 0.272184i −0.868054 0.496471i \(-0.834629\pi\)
0.639664 + 0.768655i \(0.279074\pi\)
\(660\) 0 0
\(661\) 79881.2 + 453029.i 0.182828 + 1.03687i 0.928715 + 0.370795i \(0.120915\pi\)
−0.745887 + 0.666072i \(0.767974\pi\)
\(662\) −490763. + 86534.7i −1.11984 + 0.197458i
\(663\) 0 0
\(664\) 65632.9 + 55072.6i 0.148863 + 0.124911i
\(665\) −123250. + 71158.6i −0.278705 + 0.160910i
\(666\) 0 0
\(667\) −145559. + 252115.i −0.327180 + 0.566693i
\(668\) −93272.0 256263.i −0.209025 0.574292i
\(669\) 0 0
\(670\) 304146. 255209.i 0.677537 0.568521i
\(671\) 188650. 518313.i 0.418999 1.15119i
\(672\) 0 0
\(673\) −63486.9 + 360052.i −0.140170 + 0.794942i 0.830950 + 0.556348i \(0.187798\pi\)
−0.971119 + 0.238594i \(0.923313\pi\)
\(674\) 12582.0i 0.0276969i
\(675\) 0 0
\(676\) −206969. −0.452911
\(677\) −86367.5 15228.9i −0.188440 0.0332271i 0.0786316 0.996904i \(-0.474945\pi\)
−0.267072 + 0.963677i \(0.586056\pi\)
\(678\) 0 0
\(679\) 267592. + 97395.6i 0.580409 + 0.211251i
\(680\) 514729. + 613430.i 1.11317 + 1.32662i
\(681\) 0 0
\(682\) 194898. 70937.1i 0.419024 0.152512i
\(683\) −295267. 170473.i −0.632957 0.365438i 0.148939 0.988846i \(-0.452414\pi\)
−0.781896 + 0.623409i \(0.785747\pi\)
\(684\) 0 0
\(685\) −225923. 391309.i −0.481480 0.833948i
\(686\) 221556. 264040.i 0.470799 0.561076i
\(687\) 0 0
\(688\) 37995.0 + 215480.i 0.0802694 + 0.455230i
\(689\) −65522.5 + 11553.4i −0.138023 + 0.0243372i
\(690\) 0 0
\(691\) −330573. 277384.i −0.692327 0.580932i 0.227252 0.973836i \(-0.427026\pi\)
−0.919579 + 0.392904i \(0.871470\pi\)
\(692\) −199462. + 115160.i −0.416532 + 0.240485i
\(693\) 0 0
\(694\) 282919. 490029.i 0.587412 1.01743i
\(695\) −231094. 634926.i −0.478431 1.31448i
\(696\) 0 0
\(697\) −93235.9 + 78234.2i −0.191919 + 0.161039i
\(698\) 90916.5 249791.i 0.186609 0.512703i
\(699\) 0 0
\(700\) 70158.4 397888.i 0.143180 0.812017i
\(701\) 449638.i 0.915012i −0.889206 0.457506i \(-0.848743\pi\)
0.889206 0.457506i \(-0.151257\pi\)
\(702\) 0 0
\(703\) −23628.1 −0.0478099
\(704\) −446930. 78805.8i −0.901767 0.159006i
\(705\) 0 0
\(706\) 533291. + 194102.i 1.06993 + 0.389422i
\(707\) 41406.0 + 49345.8i 0.0828370 + 0.0987213i
\(708\) 0 0
\(709\) −842698. + 306717.i −1.67641 + 0.610163i −0.992811 0.119697i \(-0.961808\pi\)
−0.683597 + 0.729859i \(0.739586\pi\)
\(710\) −736677. 425321.i −1.46137 0.843723i
\(711\) 0 0
\(712\) −244349. 423225.i −0.482004 0.834855i
\(713\) −95829.1 + 114205.i −0.188503 + 0.224649i
\(714\) 0 0
\(715\) 20803.7 + 117983.i 0.0406937 + 0.230786i
\(716\) 28119.2 4958.18i 0.0548501 0.00967156i
\(717\) 0 0
\(718\) −83268.8 69870.8i −0.161523 0.135534i
\(719\) 254619. 147004.i 0.492531 0.284363i −0.233093 0.972454i \(-0.574885\pi\)
0.725624 + 0.688092i \(0.241551\pi\)
\(720\) 0 0
\(721\) −168613. + 292047.i −0.324356 + 0.561800i
\(722\) −121869. 334834.i −0.233787 0.642325i
\(723\) 0 0
\(724\) 54434.8 45676.2i 0.103848 0.0871391i
\(725\) −729837. + 2.00521e6i −1.38851 + 3.81490i
\(726\) 0 0
\(727\) −9651.65 + 54737.2i −0.0182613 + 0.103565i −0.992576 0.121625i \(-0.961189\pi\)
0.974315 + 0.225191i \(0.0723005\pi\)
\(728\) 42403.1i 0.0800083i
\(729\) 0 0
\(730\) −473387. −0.888322
\(731\) 602631. + 106260.i 1.12776 + 0.198855i
\(732\) 0 0
\(733\) 727234. + 264692.i 1.35353 + 0.492643i 0.914046 0.405610i \(-0.132941\pi\)
0.439479 + 0.898253i \(0.355163\pi\)
\(734\) 45090.5 + 53736.8i 0.0836938 + 0.0997423i
\(735\) 0 0
\(736\) 199243. 72518.4i 0.367813 0.133873i
\(737\) 278442. + 160758.i 0.512624 + 0.295964i
\(738\) 0 0
\(739\) 172753. + 299218.i 0.316328 + 0.547896i 0.979719 0.200377i \(-0.0642166\pi\)
−0.663391 + 0.748273i \(0.730883\pi\)
\(740\) 57873.9 68971.4i 0.105686 0.125952i
\(741\) 0 0
\(742\) −49777.3 282301.i −0.0904115 0.512749i
\(743\) 284486. 50162.6i 0.515328 0.0908662i 0.0900647 0.995936i \(-0.471293\pi\)
0.425263 + 0.905070i \(0.360181\pi\)
\(744\) 0 0
\(745\) 1.34345e6 + 1.12729e6i 2.42053 + 2.03107i
\(746\) 327445. 189051.i 0.588384 0.339704i
\(747\) 0 0
\(748\) −102109. + 176857.i −0.182498 + 0.316097i
\(749\) 87909.3 + 241529.i 0.156701 + 0.430532i
\(750\) 0 0
\(751\) −431649. + 362197.i −0.765334 + 0.642192i −0.939509 0.342523i \(-0.888719\pi\)
0.174175 + 0.984715i \(0.444274\pi\)
\(752\) 14836.1 40761.8i 0.0262351 0.0720804i
\(753\) 0 0
\(754\) 12247.2 69457.6i 0.0215425 0.122173i
\(755\) 1.76225e6i 3.09154i
\(756\) 0 0
\(757\) 63666.1 0.111101 0.0555503 0.998456i \(-0.482309\pi\)
0.0555503 + 0.998456i \(0.482309\pi\)
\(758\) 758160. + 133684.i 1.31954 + 0.232670i
\(759\) 0 0
\(760\) −305292. 111117.i −0.528553 0.192378i
\(761\) −189279. 225574.i −0.326839 0.389512i 0.577454 0.816423i \(-0.304046\pi\)
−0.904294 + 0.426911i \(0.859602\pi\)
\(762\) 0 0
\(763\) −198045. + 72082.5i −0.340185 + 0.123817i
\(764\) 191421. + 110517.i 0.327946 + 0.189340i
\(765\) 0 0
\(766\) −122301. 211831.i −0.208436 0.361021i
\(767\) 24849.2 29614.1i 0.0422398 0.0503394i
\(768\) 0 0
\(769\) 99576.5 + 564726.i 0.168385 + 0.954960i 0.945505 + 0.325608i \(0.105569\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(770\) −508327. + 89631.8i −0.857357 + 0.151175i
\(771\) 0 0
\(772\) 128524. + 107845.i 0.215651 + 0.180952i
\(773\) 558017. 322171.i 0.933874 0.539172i 0.0458390 0.998949i \(-0.485404\pi\)
0.888035 + 0.459777i \(0.152071\pi\)
\(774\) 0 0
\(775\) −546393. + 946381.i −0.909708 + 1.57566i
\(776\) 222337. + 610866.i 0.369223 + 1.01443i
\(777\) 0 0
\(778\) −321618. + 269869.i −0.531350 + 0.445856i
\(779\) 16888.9 46401.7i 0.0278308 0.0764644i
\(780\) 0 0
\(781\) 119617. 678380.i 0.196105 1.11217i
\(782\) 172534.i 0.282137i
\(783\) 0 0
\(784\) 126007. 0.205005
\(785\) −1.65545e6 291900.i −2.68644 0.473691i
\(786\) 0 0
\(787\) 296328. + 107855.i 0.478436 + 0.174136i 0.569970 0.821666i \(-0.306955\pi\)
−0.0915343 + 0.995802i \(0.529177\pi\)
\(788\) −44671.4 53237.3i −0.0719411 0.0857361i
\(789\) 0 0
\(790\) 253904. 92413.5i 0.406832 0.148075i
\(791\) −390818. 225639.i −0.624628 0.360629i
\(792\) 0 0
\(793\) −48026.9 83185.0i −0.0763727 0.132281i
\(794\) −585682. + 697988.i −0.929011 + 1.10715i
\(795\) 0 0
\(796\) −62236.3 352960.i −0.0982240 0.557056i
\(797\) −484473. + 85425.6i −0.762698 + 0.134484i −0.541450 0.840733i \(-0.682124\pi\)
−0.221249 + 0.975217i \(0.571013\pi\)
\(798\) 0 0
\(799\) −92931.9 77979.1i −0.145570 0.122148i
\(800\) 1.34596e6 777091.i 2.10306 1.21420i
\(801\) 0 0
\(802\) 134442. 232861.i 0.209020 0.362033i
\(803\) −131112. 360228.i −0.203335 0.558658i
\(804\) 0 0
\(805\) 284220. 238489.i 0.438594 0.368024i
\(806\) 12353.2 33940.3i 0.0190156 0.0522451i
\(807\) 0 0
\(808\) −25535.2 + 144817.i −0.0391126 + 0.221818i
\(809\) 466812.i 0.713255i −0.934247 0.356628i \(-0.883927\pi\)
0.934247 0.356628i \(-0.116073\pi\)
\(810\) 0 0
\(811\) −335882. −0.510676 −0.255338 0.966852i \(-0.582187\pi\)
−0.255338 + 0.966852i \(0.582187\pi\)
\(812\) −254606. 44894.0i −0.386151 0.0680888i
\(813\) 0 0
\(814\) −80528.3 29309.9i −0.121535 0.0442350i
\(815\) 151127. + 180106.i 0.227523 + 0.271152i
\(816\) 0 0
\(817\) −233295. + 84912.4i −0.349511 + 0.127212i
\(818\) 572914. + 330772.i 0.856215 + 0.494336i
\(819\) 0 0
\(820\) 94081.8 + 162954.i 0.139919 + 0.242347i
\(821\) −766388. + 913346.i −1.13701 + 1.35503i −0.211015 + 0.977483i \(0.567677\pi\)
−0.925990 + 0.377547i \(0.876768\pi\)
\(822\) 0 0
\(823\) −3006.67 17051.7i −0.00443901 0.0251749i 0.982508 0.186221i \(-0.0596242\pi\)
−0.986947 + 0.161047i \(0.948513\pi\)
\(824\) −758134. + 133680.i −1.11658 + 0.196884i
\(825\) 0 0
\(826\) 127591. + 107062.i 0.187008 + 0.156919i
\(827\) 403669. 233058.i 0.590221 0.340764i −0.174964 0.984575i \(-0.555981\pi\)
0.765185 + 0.643811i \(0.222648\pi\)
\(828\) 0 0
\(829\) 351603. 608995.i 0.511616 0.886144i −0.488294 0.872679i \(-0.662380\pi\)
0.999909 0.0134650i \(-0.00428618\pi\)
\(830\) 62118.6 + 170669.i 0.0901707 + 0.247742i
\(831\) 0 0
\(832\) −60541.1 + 50800.0i −0.0874588 + 0.0733866i
\(833\) 120529. 331151.i 0.173701 0.477239i
\(834\) 0 0
\(835\) 318761. 1.80779e6i 0.457186 2.59283i
\(836\) 82853.6i 0.118549i
\(837\) 0 0
\(838\) −3068.56 −0.00436965
\(839\) 538609. + 94971.3i 0.765156 + 0.134918i 0.542587 0.839999i \(-0.317445\pi\)
0.222568 + 0.974917i \(0.428556\pi\)
\(840\) 0 0
\(841\) 618495. + 225114.i 0.874468 + 0.318280i
\(842\) 255348. + 304312.i 0.360170 + 0.429234i
\(843\) 0 0
\(844\) 186706. 67955.5i 0.262104 0.0953982i
\(845\) −1.20651e6 696581.i −1.68974 0.975569i
\(846\) 0 0
\(847\) 11210.9 + 19417.8i 0.0156269 + 0.0270666i
\(848\) 175461. 209107.i 0.244000 0.290788i
\(849\) 0 0
\(850\) 219608. + 1.24546e6i 0.303956 + 1.72382i
\(851\) 60662.9 10696.5i 0.0837652 0.0147701i
\(852\) 0 0
\(853\) 281194. + 235950.i 0.386463 + 0.324281i 0.815233 0.579133i \(-0.196609\pi\)
−0.428770 + 0.903413i \(0.641053\pi\)
\(854\) 358399. 206922.i 0.491418 0.283721i
\(855\) 0 0
\(856\) −293377. + 508144.i −0.400386 + 0.693489i
\(857\) −457859. 1.25796e6i −0.623404 1.71279i −0.698497 0.715613i \(-0.746148\pi\)
0.0750931 0.997177i \(-0.476075\pi\)
\(858\) 0 0
\(859\) −336636. + 282471.i −0.456219 + 0.382814i −0.841738 0.539887i \(-0.818467\pi\)
0.385518 + 0.922700i \(0.374023\pi\)
\(860\) 323562. 888980.i 0.437483 1.20197i
\(861\) 0 0
\(862\) −126600. + 717982.i −0.170380 + 0.966271i
\(863\) 826296.i 1.10947i 0.832028 + 0.554733i \(0.187180\pi\)
−0.832028 + 0.554733i \(0.812820\pi\)
\(864\) 0 0
\(865\) −1.55034e6 −2.07202
\(866\) −255291. 45014.6i −0.340407 0.0600230i
\(867\) 0 0
\(868\) −124413. 45282.5i −0.165130 0.0601023i
\(869\) 140646. + 167615.i 0.186246 + 0.221959i
\(870\) 0 0
\(871\) 52613.5 19149.8i 0.0693523 0.0252422i
\(872\) −416660. 240559.i −0.547960 0.316365i
\(873\) 0 0
\(874\) −34999.6 60621.0i −0.0458184 0.0793598i
\(875\) 1.14983e6 1.37031e6i 1.50181 1.78979i
\(876\) 0 0
\(877\) −171539. 972846.i −0.223030 1.26487i −0.866415 0.499325i \(-0.833582\pi\)
0.643385 0.765543i \(-0.277530\pi\)
\(878\) 628898. 110892.i 0.815814 0.143850i
\(879\) 0 0
\(880\) −376529. 315945.i −0.486220 0.407987i
\(881\) 386704. 223264.i 0.498226 0.287651i −0.229754 0.973249i \(-0.573792\pi\)
0.727981 + 0.685598i \(0.240459\pi\)
\(882\) 0 0
\(883\) 734110. 1.27152e6i 0.941542 1.63080i 0.179010 0.983847i \(-0.442711\pi\)
0.762532 0.646950i \(-0.223956\pi\)
\(884\) 12163.3 + 33418.4i 0.0155649 + 0.0427643i
\(885\) 0 0
\(886\) 192295. 161355.i 0.244963 0.205549i
\(887\) −326437. + 896880.i −0.414909 + 1.13995i 0.539639 + 0.841896i \(0.318561\pi\)
−0.954548 + 0.298057i \(0.903662\pi\)
\(888\) 0 0
\(889\) −123269. + 699095.i −0.155974 + 0.884571i
\(890\) 1.03596e6i 1.30786i
\(891\) 0 0
\(892\) 267117. 0.335716
\(893\) 48470.9 + 8546.74i 0.0607825 + 0.0107176i
\(894\) 0 0
\(895\) 180607. + 65735.4i 0.225469 + 0.0820641i
\(896\) 44426.9 + 52945.9i 0.0553389 + 0.0659503i
\(897\) 0 0
\(898\) 199173. 72493.1i 0.246989 0.0898967i
\(899\) 605583. + 349634.i 0.749298 + 0.432607i
\(900\) 0 0
\(901\) −381705. 661132.i −0.470195 0.814402i
\(902\) 115120. 137195.i 0.141494 0.168626i
\(903\) 0 0
\(904\) −178890. 1.01454e6i −0.218902 1.24146i
\(905\) 471053. 83059.4i 0.575139 0.101412i
\(906\) 0 0
\(907\) −165038. 138483.i −0.200618 0.168338i 0.536944 0.843618i \(-0.319579\pi\)
−0.737562 + 0.675279i \(0.764023\pi\)
\(908\) −522008. + 301381.i −0.633148 + 0.365548i
\(909\) 0 0
\(910\) −44943.8 + 77844.9i −0.0542734 + 0.0940043i
\(911\) 86155.1 + 236709.i 0.103811 + 0.285219i 0.980714 0.195449i \(-0.0626164\pi\)
−0.876903 + 0.480668i \(0.840394\pi\)
\(912\) 0 0
\(913\) −112668. + 94539.3i −0.135163 + 0.113415i
\(914\) −295675. + 812361.i −0.353934 + 0.972426i
\(915\) 0 0
\(916\) 18985.2 107670.i 0.0226269 0.128323i
\(917\) 341841.i 0.406524i
\(918\) 0 0
\(919\) 427276. 0.505915 0.252958 0.967477i \(-0.418597\pi\)
0.252958 + 0.967477i \(0.418597\pi\)
\(920\) 834112. + 147077.i 0.985483 + 0.173767i
\(921\) 0 0
\(922\) 27455.0 + 9992.82i 0.0322969 + 0.0117551i
\(923\) −77107.6 91893.2i −0.0905094 0.107865i
\(924\) 0 0
\(925\) 424290. 154429.i 0.495883 0.180487i
\(926\) −655335. 378358.i −0.764260 0.441246i
\(927\) 0 0
\(928\) −497256. 861273.i −0.577410 1.00010i
\(929\) 324820. 387105.i 0.376367 0.448536i −0.544297 0.838892i \(-0.683204\pi\)
0.920664 + 0.390356i \(0.127648\pi\)
\(930\) 0 0
\(931\) 24827.3 + 140803.i 0.0286438 + 0.162447i
\(932\) 164518. 29008.9i 0.189400 0.0333964i
\(933\) 0 0
\(934\) −768261. 644648.i −0.880674 0.738973i
\(935\) −1.19047e6 + 687318.i −1.36174 + 0.786203i
\(936\) 0 0
\(937\) 31013.4 53716.7i 0.0353240 0.0611829i −0.847823 0.530279i \(-0.822087\pi\)
0.883147 + 0.469096i \(0.155420\pi\)
\(938\) 82506.0 + 226683.i 0.0937734 + 0.257640i
\(939\) 0 0
\(940\) −143672. + 120555.i −0.162598 + 0.136436i
\(941\) 67742.3 186120.i 0.0765033 0.210191i −0.895545 0.444970i \(-0.853214\pi\)
0.972049 + 0.234779i \(0.0754366\pi\)
\(942\) 0 0
\(943\) −22354.3 + 126778.i −0.0251384 + 0.142567i
\(944\) 158606.i 0.177982i
\(945\) 0 0
\(946\) −900438. −1.00617
\(947\) −95314.0 16806.4i −0.106281 0.0187403i 0.120255 0.992743i \(-0.461629\pi\)
−0.226536 + 0.974003i \(0.572740\pi\)
\(948\) 0 0
\(949\) −62731.4 22832.4i −0.0696551 0.0253524i
\(950\) −329811. 393054.i −0.365442 0.435516i
\(951\) 0 0
\(952\) −457196. + 166406.i −0.504462 + 0.183609i
\(953\) 887146. + 512194.i 0.976808 + 0.563960i 0.901305 0.433185i \(-0.142610\pi\)
0.0755032 + 0.997146i \(0.475944\pi\)
\(954\) 0 0
\(955\) 743916. + 1.28850e6i 0.815675 + 1.41279i
\(956\) −208699. + 248717.i −0.228351 + 0.272139i
\(957\) 0 0
\(958\) −117584. 666851.i −0.128120 0.726604i
\(959\) 270362. 47672.2i 0.293974 0.0518356i
\(960\) 0 0
\(961\) −433137. 363445.i −0.469007 0.393543i
\(962\) −12924.1 + 7461.75i −0.0139653 + 0.00806289i
\(963\) 0 0
\(964\) −86638.8 + 150063.i −0.0932306 + 0.161480i
\(965\) 386259. + 1.06124e6i 0.414786 + 1.13961i
\(966\) 0 0
\(967\) −688509. + 577728.i −0.736304 + 0.617832i −0.931842 0.362864i \(-0.881799\pi\)
0.195539 + 0.980696i \(0.437355\pi\)
\(968\) −17506.3 + 48098.2i −0.0186829 + 0.0513308i
\(969\) 0 0
\(970\) −239295. + 1.35711e6i −0.254325 + 1.44235i
\(971\) 612535.i 0.649669i −0.945771 0.324835i \(-0.894691\pi\)
0.945771 0.324835i \(-0.105309\pi\)
\(972\) 0 0
\(973\) 410528. 0.433628
\(974\) −635653. 112083.i −0.670042 0.118147i
\(975\) 0 0
\(976\) 370318. + 134785.i 0.388754 + 0.141495i
\(977\) 11415.2 + 13604.1i 0.0119590 + 0.0142522i 0.771991 0.635634i \(-0.219261\pi\)
−0.760032 + 0.649886i \(0.774817\pi\)
\(978\) 0 0
\(979\) 788321. 286925.i 0.822504 0.299367i
\(980\) −471820. 272406.i −0.491275 0.283638i
\(981\) 0 0
\(982\) 306780. + 531358.i 0.318129 + 0.551016i
\(983\) −498988. + 594670.i −0.516396 + 0.615417i −0.959725 0.280942i \(-0.909353\pi\)
0.443329 + 0.896359i \(0.353797\pi\)
\(984\) 0 0
\(985\) −81232.2 460691.i −0.0837251 0.474829i
\(986\) 796963. 140526.i 0.819756 0.144545i
\(987\) 0 0
\(988\) −11052.8 9274.42i −0.0113229 0.00950108i
\(989\) 560523. 323618.i 0.573061 0.330857i
\(990\) 0 0
\(991\) −900597. + 1.55988e6i −0.917029 + 1.58834i −0.113126 + 0.993581i \(0.536086\pi\)
−0.803903 + 0.594760i \(0.797247\pi\)
\(992\) −174190. 478583.i −0.177011 0.486333i
\(993\) 0 0
\(994\) 395918. 332215.i 0.400713 0.336238i
\(995\) 825127. 2.26702e6i 0.833441 2.28986i
\(996\) 0 0
\(997\) −199375. + 1.13071e6i −0.200576 + 1.13752i 0.703675 + 0.710522i \(0.251541\pi\)
−0.904251 + 0.427002i \(0.859570\pi\)
\(998\) 970804.i 0.974699i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.4 66
3.2 odd 2 27.5.f.a.2.8 66
27.13 even 9 27.5.f.a.14.8 yes 66
27.14 odd 18 inner 81.5.f.a.71.4 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.8 66 3.2 odd 2
27.5.f.a.14.8 yes 66 27.13 even 9
81.5.f.a.8.4 66 1.1 even 1 trivial
81.5.f.a.71.4 66 27.14 odd 18 inner