Properties

Label 81.5.f.a.8.3
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.3
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.49504 - 0.792597i) q^{2} +(4.54211 + 1.65319i) q^{4} +(3.40574 + 4.05880i) q^{5} +(-28.7185 + 10.4527i) q^{7} +(44.1393 + 25.4838i) q^{8} +(-12.0919 - 20.9439i) q^{10} +(-13.9368 + 16.6092i) q^{11} +(0.515455 + 2.92329i) q^{13} +(137.376 - 24.2231i) q^{14} +(-237.454 - 199.247i) q^{16} +(249.786 - 144.214i) q^{17} +(220.850 - 382.524i) q^{19} +(8.75926 + 24.0659i) q^{20} +(75.8110 - 63.6130i) q^{22} +(301.451 - 828.229i) q^{23} +(103.655 - 587.858i) q^{25} -13.5489i q^{26} -147.723 q^{28} +(-1064.69 - 187.734i) q^{29} +(1637.03 + 595.829i) q^{31} +(385.260 + 459.135i) q^{32} +(-1237.10 + 450.268i) q^{34} +(-140.233 - 80.9637i) q^{35} +(293.810 + 508.894i) q^{37} +(-1295.92 + 1544.42i) q^{38} +(46.8931 + 265.944i) q^{40} +(1376.52 - 242.718i) q^{41} +(-1229.63 - 1031.78i) q^{43} +(-90.7608 + 52.4008i) q^{44} +(-2011.49 + 3484.00i) q^{46} +(754.401 + 2072.70i) q^{47} +(-1123.78 + 942.961i) q^{49} +(-931.870 + 2560.29i) q^{50} +(-2.49151 + 14.1301i) q^{52} -1536.91i q^{53} -114.879 q^{55} +(-1533.99 - 270.484i) q^{56} +(4637.04 + 1687.74i) q^{58} +(844.872 + 1006.88i) q^{59} +(2815.23 - 1024.66i) q^{61} +(-6886.25 - 3975.78i) q^{62} +(1111.94 + 1925.94i) q^{64} +(-10.1095 + 12.0481i) q^{65} +(-1421.14 - 8059.70i) q^{67} +(1372.97 - 242.091i) q^{68} +(566.183 + 475.084i) q^{70} +(4745.40 - 2739.76i) q^{71} +(-1147.66 + 1987.81i) q^{73} +(-917.341 - 2520.37i) q^{74} +(1635.51 - 1372.36i) q^{76} +(226.633 - 622.670i) q^{77} +(1006.95 - 5710.70i) q^{79} -1642.36i q^{80} -6379.91 q^{82} +(5853.36 + 1032.10i) q^{83} +(1436.04 + 522.676i) q^{85} +(4709.43 + 5612.48i) q^{86} +(-1038.43 + 377.957i) q^{88} +(-1843.12 - 1064.13i) q^{89} +(-45.3593 - 78.5647i) q^{91} +(2738.45 - 3263.55i) q^{92} +(-1748.25 - 9914.81i) q^{94} +(2304.75 - 406.389i) q^{95} +(-3155.11 - 2647.45i) q^{97} +(5798.82 - 3347.95i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.49504 0.792597i −1.12376 0.198149i −0.419269 0.907862i \(-0.637714\pi\)
−0.704491 + 0.709713i \(0.748825\pi\)
\(3\) 0 0
\(4\) 4.54211 + 1.65319i 0.283882 + 0.103325i
\(5\) 3.40574 + 4.05880i 0.136230 + 0.162352i 0.829846 0.557992i \(-0.188428\pi\)
−0.693617 + 0.720344i \(0.743984\pi\)
\(6\) 0 0
\(7\) −28.7185 + 10.4527i −0.586092 + 0.213320i −0.618010 0.786170i \(-0.712061\pi\)
0.0319175 + 0.999491i \(0.489839\pi\)
\(8\) 44.1393 + 25.4838i 0.689677 + 0.398185i
\(9\) 0 0
\(10\) −12.0919 20.9439i −0.120919 0.209439i
\(11\) −13.9368 + 16.6092i −0.115180 + 0.137266i −0.820554 0.571569i \(-0.806335\pi\)
0.705374 + 0.708836i \(0.250779\pi\)
\(12\) 0 0
\(13\) 0.515455 + 2.92329i 0.00305003 + 0.0172976i 0.986295 0.164993i \(-0.0527601\pi\)
−0.983245 + 0.182290i \(0.941649\pi\)
\(14\) 137.376 24.2231i 0.700897 0.123587i
\(15\) 0 0
\(16\) −237.454 199.247i −0.927554 0.778310i
\(17\) 249.786 144.214i 0.864310 0.499010i −0.00114291 0.999999i \(-0.500364\pi\)
0.865453 + 0.500989i \(0.167030\pi\)
\(18\) 0 0
\(19\) 220.850 382.524i 0.611774 1.05962i −0.379167 0.925328i \(-0.623789\pi\)
0.990941 0.134296i \(-0.0428772\pi\)
\(20\) 8.75926 + 24.0659i 0.0218982 + 0.0601647i
\(21\) 0 0
\(22\) 75.8110 63.6130i 0.156634 0.131432i
\(23\) 301.451 828.229i 0.569850 1.56565i −0.234889 0.972022i \(-0.575473\pi\)
0.804739 0.593629i \(-0.202305\pi\)
\(24\) 0 0
\(25\) 103.655 587.858i 0.165848 0.940573i
\(26\) 13.5489i 0.0200427i
\(27\) 0 0
\(28\) −147.723 −0.188422
\(29\) −1064.69 187.734i −1.26598 0.223227i −0.499965 0.866046i \(-0.666654\pi\)
−0.766018 + 0.642819i \(0.777765\pi\)
\(30\) 0 0
\(31\) 1637.03 + 595.829i 1.70346 + 0.620010i 0.996212 0.0869542i \(-0.0277134\pi\)
0.707250 + 0.706964i \(0.249936\pi\)
\(32\) 385.260 + 459.135i 0.376230 + 0.448374i
\(33\) 0 0
\(34\) −1237.10 + 450.268i −1.07016 + 0.389505i
\(35\) −140.233 80.9637i −0.114476 0.0660928i
\(36\) 0 0
\(37\) 293.810 + 508.894i 0.214617 + 0.371727i 0.953154 0.302486i \(-0.0978165\pi\)
−0.738537 + 0.674213i \(0.764483\pi\)
\(38\) −1295.92 + 1544.42i −0.897451 + 1.06954i
\(39\) 0 0
\(40\) 46.8931 + 265.944i 0.0293082 + 0.166215i
\(41\) 1376.52 242.718i 0.818872 0.144389i 0.251507 0.967856i \(-0.419074\pi\)
0.567365 + 0.823466i \(0.307963\pi\)
\(42\) 0 0
\(43\) −1229.63 1031.78i −0.665022 0.558020i 0.246566 0.969126i \(-0.420698\pi\)
−0.911587 + 0.411107i \(0.865142\pi\)
\(44\) −90.7608 + 52.4008i −0.0468806 + 0.0270665i
\(45\) 0 0
\(46\) −2011.49 + 3484.00i −0.950608 + 1.64650i
\(47\) 754.401 + 2072.70i 0.341513 + 0.938298i 0.984956 + 0.172805i \(0.0552829\pi\)
−0.643444 + 0.765494i \(0.722495\pi\)
\(48\) 0 0
\(49\) −1123.78 + 942.961i −0.468046 + 0.392737i
\(50\) −931.870 + 2560.29i −0.372748 + 1.02412i
\(51\) 0 0
\(52\) −2.49151 + 14.1301i −0.000921416 + 0.00522561i
\(53\) 1536.91i 0.547138i −0.961852 0.273569i \(-0.911796\pi\)
0.961852 0.273569i \(-0.0882042\pi\)
\(54\) 0 0
\(55\) −114.879 −0.0379764
\(56\) −1533.99 270.484i −0.489155 0.0862513i
\(57\) 0 0
\(58\) 4637.04 + 1687.74i 1.37843 + 0.501707i
\(59\) 844.872 + 1006.88i 0.242710 + 0.289250i 0.873623 0.486603i \(-0.161764\pi\)
−0.630914 + 0.775853i \(0.717320\pi\)
\(60\) 0 0
\(61\) 2815.23 1024.66i 0.756578 0.275372i 0.0652071 0.997872i \(-0.479229\pi\)
0.691371 + 0.722500i \(0.257007\pi\)
\(62\) −6886.25 3975.78i −1.79143 1.03428i
\(63\) 0 0
\(64\) 1111.94 + 1925.94i 0.271470 + 0.470200i
\(65\) −10.1095 + 12.0481i −0.00239279 + 0.00285162i
\(66\) 0 0
\(67\) −1421.14 8059.70i −0.316583 1.79543i −0.563200 0.826320i \(-0.690430\pi\)
0.246617 0.969113i \(-0.420681\pi\)
\(68\) 1372.97 242.091i 0.296922 0.0523554i
\(69\) 0 0
\(70\) 566.183 + 475.084i 0.115547 + 0.0969558i
\(71\) 4745.40 2739.76i 0.941360 0.543495i 0.0509738 0.998700i \(-0.483767\pi\)
0.890386 + 0.455205i \(0.150434\pi\)
\(72\) 0 0
\(73\) −1147.66 + 1987.81i −0.215362 + 0.373017i −0.953384 0.301759i \(-0.902426\pi\)
0.738023 + 0.674776i \(0.235760\pi\)
\(74\) −917.341 2520.37i −0.167520 0.460258i
\(75\) 0 0
\(76\) 1635.51 1372.36i 0.283157 0.237597i
\(77\) 226.633 622.670i 0.0382246 0.105021i
\(78\) 0 0
\(79\) 1006.95 5710.70i 0.161344 0.915029i −0.791410 0.611286i \(-0.790652\pi\)
0.952754 0.303743i \(-0.0982365\pi\)
\(80\) 1642.36i 0.256619i
\(81\) 0 0
\(82\) −6379.91 −0.948826
\(83\) 5853.36 + 1032.10i 0.849667 + 0.149819i 0.581493 0.813551i \(-0.302469\pi\)
0.268174 + 0.963371i \(0.413580\pi\)
\(84\) 0 0
\(85\) 1436.04 + 522.676i 0.198760 + 0.0723427i
\(86\) 4709.43 + 5612.48i 0.636754 + 0.758854i
\(87\) 0 0
\(88\) −1038.43 + 377.957i −0.134095 + 0.0488064i
\(89\) −1843.12 1064.13i −0.232688 0.134343i 0.379123 0.925346i \(-0.376226\pi\)
−0.611812 + 0.791003i \(0.709559\pi\)
\(90\) 0 0
\(91\) −45.3593 78.5647i −0.00547752 0.00948734i
\(92\) 2738.45 3263.55i 0.323540 0.385581i
\(93\) 0 0
\(94\) −1748.25 9914.81i −0.197855 1.12209i
\(95\) 2304.75 406.389i 0.255374 0.0450293i
\(96\) 0 0
\(97\) −3155.11 2647.45i −0.335329 0.281374i 0.459538 0.888158i \(-0.348015\pi\)
−0.794867 + 0.606784i \(0.792459\pi\)
\(98\) 5798.82 3347.95i 0.603792 0.348599i
\(99\) 0 0
\(100\) 1442.66 2498.76i 0.144266 0.249876i
\(101\) 1786.17 + 4907.47i 0.175098 + 0.481077i 0.995934 0.0900866i \(-0.0287144\pi\)
−0.820836 + 0.571164i \(0.806492\pi\)
\(102\) 0 0
\(103\) −14168.9 + 11889.2i −1.33556 + 1.12067i −0.352815 + 0.935693i \(0.614775\pi\)
−0.982744 + 0.184973i \(0.940780\pi\)
\(104\) −51.7448 + 142.168i −0.00478410 + 0.0131442i
\(105\) 0 0
\(106\) −1218.15 + 6908.48i −0.108415 + 0.614852i
\(107\) 17775.6i 1.55259i 0.630369 + 0.776295i \(0.282904\pi\)
−0.630369 + 0.776295i \(0.717096\pi\)
\(108\) 0 0
\(109\) 6129.70 0.515925 0.257962 0.966155i \(-0.416949\pi\)
0.257962 + 0.966155i \(0.416949\pi\)
\(110\) 516.385 + 91.0526i 0.0426764 + 0.00752501i
\(111\) 0 0
\(112\) 8902.00 + 3240.06i 0.709662 + 0.258296i
\(113\) −11400.7 13586.8i −0.892839 1.06404i −0.997579 0.0695439i \(-0.977846\pi\)
0.104740 0.994500i \(-0.466599\pi\)
\(114\) 0 0
\(115\) 4388.28 1597.20i 0.331817 0.120772i
\(116\) −4525.59 2612.85i −0.336325 0.194177i
\(117\) 0 0
\(118\) −2999.69 5195.61i −0.215433 0.373141i
\(119\) −5666.06 + 6752.54i −0.400117 + 0.476841i
\(120\) 0 0
\(121\) 2460.75 + 13955.6i 0.168073 + 0.953187i
\(122\) −13466.7 + 2374.54i −0.904777 + 0.159537i
\(123\) 0 0
\(124\) 6450.54 + 5412.65i 0.419520 + 0.352019i
\(125\) 5606.86 3237.12i 0.358839 0.207176i
\(126\) 0 0
\(127\) 12573.1 21777.2i 0.779531 1.35019i −0.152681 0.988276i \(-0.548791\pi\)
0.932212 0.361912i \(-0.117876\pi\)
\(128\) −6751.61 18549.9i −0.412086 1.13220i
\(129\) 0 0
\(130\) 54.9921 46.1439i 0.00325397 0.00273041i
\(131\) 6605.88 18149.5i 0.384936 1.05760i −0.584315 0.811527i \(-0.698637\pi\)
0.969251 0.246075i \(-0.0791410\pi\)
\(132\) 0 0
\(133\) −2344.09 + 13294.0i −0.132517 + 0.751541i
\(134\) 37355.1i 2.08037i
\(135\) 0 0
\(136\) 14700.5 0.794793
\(137\) −10731.9 1892.33i −0.571790 0.100822i −0.119725 0.992807i \(-0.538201\pi\)
−0.452065 + 0.891985i \(0.649312\pi\)
\(138\) 0 0
\(139\) −8824.67 3211.92i −0.456740 0.166240i 0.103396 0.994640i \(-0.467029\pi\)
−0.560136 + 0.828400i \(0.689251\pi\)
\(140\) −503.106 599.579i −0.0256687 0.0305907i
\(141\) 0 0
\(142\) −23502.3 + 8554.13i −1.16556 + 0.424228i
\(143\) −55.7374 32.1800i −0.00272568 0.00157367i
\(144\) 0 0
\(145\) −2864.09 4960.74i −0.136223 0.235945i
\(146\) 6734.32 8025.65i 0.315928 0.376508i
\(147\) 0 0
\(148\) 493.218 + 2797.18i 0.0225173 + 0.127702i
\(149\) −14743.3 + 2599.65i −0.664084 + 0.117096i −0.495522 0.868595i \(-0.665023\pi\)
−0.168562 + 0.985691i \(0.553912\pi\)
\(150\) 0 0
\(151\) 10574.2 + 8872.78i 0.463759 + 0.389140i 0.844512 0.535537i \(-0.179891\pi\)
−0.380753 + 0.924677i \(0.624335\pi\)
\(152\) 19496.4 11256.2i 0.843853 0.487199i
\(153\) 0 0
\(154\) −1512.25 + 2619.30i −0.0637651 + 0.110444i
\(155\) 3156.93 + 8673.61i 0.131402 + 0.361024i
\(156\) 0 0
\(157\) −17443.2 + 14636.6i −0.707664 + 0.593800i −0.923943 0.382531i \(-0.875052\pi\)
0.216279 + 0.976332i \(0.430608\pi\)
\(158\) −9052.57 + 24871.7i −0.362625 + 0.996304i
\(159\) 0 0
\(160\) −551.442 + 3127.39i −0.0215407 + 0.122163i
\(161\) 26936.5i 1.03918i
\(162\) 0 0
\(163\) 8385.18 0.315600 0.157800 0.987471i \(-0.449560\pi\)
0.157800 + 0.987471i \(0.449560\pi\)
\(164\) 6653.58 + 1173.21i 0.247382 + 0.0436201i
\(165\) 0 0
\(166\) −25493.0 9278.71i −0.925136 0.336722i
\(167\) −14490.7 17269.3i −0.519585 0.619217i 0.440898 0.897557i \(-0.354660\pi\)
−0.960483 + 0.278340i \(0.910216\pi\)
\(168\) 0 0
\(169\) 26830.3 9765.42i 0.939403 0.341915i
\(170\) −6040.79 3487.65i −0.209024 0.120680i
\(171\) 0 0
\(172\) −3879.37 6719.26i −0.131131 0.227125i
\(173\) 10444.2 12446.9i 0.348965 0.415880i −0.562800 0.826593i \(-0.690276\pi\)
0.911765 + 0.410713i \(0.134720\pi\)
\(174\) 0 0
\(175\) 3167.87 + 17965.9i 0.103441 + 0.586642i
\(176\) 6618.70 1167.06i 0.213672 0.0376761i
\(177\) 0 0
\(178\) 7441.50 + 6244.16i 0.234866 + 0.197076i
\(179\) −3194.81 + 1844.53i −0.0997101 + 0.0575677i −0.549026 0.835805i \(-0.685001\pi\)
0.449316 + 0.893373i \(0.351668\pi\)
\(180\) 0 0
\(181\) −4327.00 + 7494.59i −0.132078 + 0.228765i −0.924477 0.381237i \(-0.875498\pi\)
0.792400 + 0.610002i \(0.208832\pi\)
\(182\) 141.622 + 389.103i 0.00427551 + 0.0117469i
\(183\) 0 0
\(184\) 34412.3 28875.3i 1.01643 0.852887i
\(185\) −1064.86 + 2925.68i −0.0311135 + 0.0854836i
\(186\) 0 0
\(187\) −1085.93 + 6158.63i −0.0310542 + 0.176117i
\(188\) 10661.6i 0.301653i
\(189\) 0 0
\(190\) −10682.0 −0.295902
\(191\) 41395.1 + 7299.08i 1.13470 + 0.200079i 0.709288 0.704919i \(-0.249017\pi\)
0.425416 + 0.904998i \(0.360128\pi\)
\(192\) 0 0
\(193\) −42862.3 15600.6i −1.15070 0.418820i −0.304932 0.952374i \(-0.598634\pi\)
−0.845766 + 0.533555i \(0.820856\pi\)
\(194\) 12084.0 + 14401.1i 0.321075 + 0.382643i
\(195\) 0 0
\(196\) −6663.22 + 2425.21i −0.173449 + 0.0631303i
\(197\) −64536.0 37259.9i −1.66291 0.960083i −0.971314 0.237800i \(-0.923574\pi\)
−0.691598 0.722283i \(-0.743093\pi\)
\(198\) 0 0
\(199\) −11151.7 19315.3i −0.281601 0.487747i 0.690178 0.723639i \(-0.257532\pi\)
−0.971779 + 0.235892i \(0.924199\pi\)
\(200\) 19556.2 23306.1i 0.488904 0.582653i
\(201\) 0 0
\(202\) −4139.27 23475.0i −0.101443 0.575311i
\(203\) 32538.7 5737.45i 0.789602 0.139228i
\(204\) 0 0
\(205\) 5673.22 + 4760.40i 0.134996 + 0.113275i
\(206\) 73113.3 42212.0i 1.72291 0.994721i
\(207\) 0 0
\(208\) 460.061 796.849i 0.0106338 0.0184183i
\(209\) 3275.49 + 8999.33i 0.0749865 + 0.206024i
\(210\) 0 0
\(211\) 41046.5 34442.1i 0.921958 0.773615i −0.0523980 0.998626i \(-0.516686\pi\)
0.974356 + 0.225012i \(0.0722420\pi\)
\(212\) 2540.81 6980.82i 0.0565328 0.155323i
\(213\) 0 0
\(214\) 14088.9 79902.1i 0.307645 1.74474i
\(215\) 8504.77i 0.183986i
\(216\) 0 0
\(217\) −53241.0 −1.13065
\(218\) −27553.3 4858.38i −0.579776 0.102230i
\(219\) 0 0
\(220\) −521.792 189.917i −0.0107808 0.00392390i
\(221\) 550.332 + 655.860i 0.0112678 + 0.0134285i
\(222\) 0 0
\(223\) 45179.2 16443.9i 0.908509 0.330670i 0.154852 0.987938i \(-0.450510\pi\)
0.753657 + 0.657268i \(0.228288\pi\)
\(224\) −15863.3 9158.67i −0.316153 0.182531i
\(225\) 0 0
\(226\) 40477.6 + 70109.2i 0.792497 + 1.37265i
\(227\) 5517.87 6575.94i 0.107083 0.127616i −0.709841 0.704362i \(-0.751233\pi\)
0.816924 + 0.576746i \(0.195678\pi\)
\(228\) 0 0
\(229\) 4767.31 + 27036.7i 0.0909080 + 0.515565i 0.995925 + 0.0901889i \(0.0287471\pi\)
−0.905017 + 0.425376i \(0.860142\pi\)
\(230\) −20991.4 + 3701.36i −0.396814 + 0.0699690i
\(231\) 0 0
\(232\) −42210.6 35418.9i −0.784233 0.658050i
\(233\) −26428.8 + 15258.7i −0.486817 + 0.281064i −0.723253 0.690583i \(-0.757354\pi\)
0.236436 + 0.971647i \(0.424021\pi\)
\(234\) 0 0
\(235\) −5843.39 + 10121.0i −0.105811 + 0.183269i
\(236\) 2172.94 + 5970.10i 0.0390142 + 0.107191i
\(237\) 0 0
\(238\) 30821.2 25862.1i 0.544121 0.456572i
\(239\) −11167.1 + 30681.4i −0.195499 + 0.537129i −0.998247 0.0591894i \(-0.981148\pi\)
0.802748 + 0.596319i \(0.203371\pi\)
\(240\) 0 0
\(241\) −14816.1 + 84026.5i −0.255095 + 1.44671i 0.540735 + 0.841193i \(0.318146\pi\)
−0.795830 + 0.605520i \(0.792965\pi\)
\(242\) 64681.4i 1.10446i
\(243\) 0 0
\(244\) 14481.0 0.243232
\(245\) −7654.58 1349.71i −0.127523 0.0224858i
\(246\) 0 0
\(247\) 1232.07 + 448.436i 0.0201948 + 0.00735032i
\(248\) 57073.2 + 68017.2i 0.927960 + 1.10590i
\(249\) 0 0
\(250\) −27768.8 + 10107.0i −0.444301 + 0.161712i
\(251\) −29664.6 17126.9i −0.470859 0.271851i 0.245740 0.969336i \(-0.420969\pi\)
−0.716599 + 0.697485i \(0.754302\pi\)
\(252\) 0 0
\(253\) 9555.00 + 16549.7i 0.149276 + 0.258553i
\(254\) −73777.0 + 87923.9i −1.14355 + 1.36282i
\(255\) 0 0
\(256\) 9467.40 + 53692.3i 0.144461 + 0.819280i
\(257\) −9684.06 + 1707.56i −0.146619 + 0.0258529i −0.246476 0.969149i \(-0.579273\pi\)
0.0998567 + 0.995002i \(0.468162\pi\)
\(258\) 0 0
\(259\) −13757.1 11543.6i −0.205082 0.172084i
\(260\) −65.8365 + 38.0107i −0.000973913 + 0.000562289i
\(261\) 0 0
\(262\) −44079.0 + 76347.0i −0.642139 + 1.11222i
\(263\) 4436.12 + 12188.1i 0.0641345 + 0.176208i 0.967621 0.252409i \(-0.0812230\pi\)
−0.903486 + 0.428618i \(0.859001\pi\)
\(264\) 0 0
\(265\) 6238.02 5234.32i 0.0888290 0.0745364i
\(266\) 21073.6 57899.2i 0.297835 0.818294i
\(267\) 0 0
\(268\) 6869.26 38957.5i 0.0956401 0.542402i
\(269\) 59552.5i 0.822992i 0.911412 + 0.411496i \(0.134994\pi\)
−0.911412 + 0.411496i \(0.865006\pi\)
\(270\) 0 0
\(271\) −9217.27 −0.125506 −0.0627529 0.998029i \(-0.519988\pi\)
−0.0627529 + 0.998029i \(0.519988\pi\)
\(272\) −88046.8 15525.0i −1.19008 0.209843i
\(273\) 0 0
\(274\) 46740.6 + 17012.2i 0.622577 + 0.226600i
\(275\) 8319.26 + 9914.51i 0.110007 + 0.131101i
\(276\) 0 0
\(277\) −47228.6 + 17189.8i −0.615525 + 0.224033i −0.630919 0.775849i \(-0.717322\pi\)
0.0153938 + 0.999882i \(0.495100\pi\)
\(278\) 37121.5 + 21432.1i 0.480326 + 0.277316i
\(279\) 0 0
\(280\) −4126.53 7147.36i −0.0526343 0.0911653i
\(281\) −54411.4 + 64845.0i −0.689092 + 0.821228i −0.991246 0.132032i \(-0.957850\pi\)
0.302154 + 0.953259i \(0.402294\pi\)
\(282\) 0 0
\(283\) 18732.8 + 106239.i 0.233900 + 1.32651i 0.844918 + 0.534896i \(0.179649\pi\)
−0.611018 + 0.791617i \(0.709240\pi\)
\(284\) 26083.5 4599.22i 0.323392 0.0570227i
\(285\) 0 0
\(286\) 225.036 + 188.828i 0.00275119 + 0.00230852i
\(287\) −36994.7 + 21358.9i −0.449133 + 0.259307i
\(288\) 0 0
\(289\) −165.227 + 286.182i −0.00197827 + 0.00342647i
\(290\) 8942.32 + 24568.8i 0.106330 + 0.292138i
\(291\) 0 0
\(292\) −8499.04 + 7131.54i −0.0996791 + 0.0836407i
\(293\) 4123.53 11329.3i 0.0480323 0.131968i −0.913357 0.407160i \(-0.866519\pi\)
0.961389 + 0.275192i \(0.0887414\pi\)
\(294\) 0 0
\(295\) −1209.31 + 6858.34i −0.0138961 + 0.0788088i
\(296\) 29949.6i 0.341828i
\(297\) 0 0
\(298\) 68332.4 0.769474
\(299\) 2576.54 + 454.313i 0.0288200 + 0.00508175i
\(300\) 0 0
\(301\) 46097.9 + 16778.3i 0.508801 + 0.185188i
\(302\) −40498.8 48264.6i −0.444046 0.529194i
\(303\) 0 0
\(304\) −128659. + 46828.0i −1.39217 + 0.506708i
\(305\) 13746.8 + 7936.73i 0.147775 + 0.0853182i
\(306\) 0 0
\(307\) −57424.8 99462.6i −0.609288 1.05532i −0.991358 0.131184i \(-0.958122\pi\)
0.382070 0.924133i \(-0.375211\pi\)
\(308\) 2058.79 2453.57i 0.0217025 0.0258641i
\(309\) 0 0
\(310\) −7315.88 41490.4i −0.0761278 0.431742i
\(311\) 178521. 31478.1i 1.84574 0.325453i 0.862256 0.506473i \(-0.169051\pi\)
0.983479 + 0.181020i \(0.0579400\pi\)
\(312\) 0 0
\(313\) −74737.6 62712.3i −0.762870 0.640124i 0.176002 0.984390i \(-0.443683\pi\)
−0.938872 + 0.344266i \(0.888128\pi\)
\(314\) 90008.8 51966.6i 0.912906 0.527066i
\(315\) 0 0
\(316\) 14014.6 24273.9i 0.140348 0.243090i
\(317\) −12894.1 35426.2i −0.128313 0.352538i 0.858855 0.512218i \(-0.171176\pi\)
−0.987169 + 0.159680i \(0.948954\pi\)
\(318\) 0 0
\(319\) 17956.5 15067.3i 0.176458 0.148066i
\(320\) −4030.02 + 11072.4i −0.0393557 + 0.108129i
\(321\) 0 0
\(322\) 21349.8 121081.i 0.205912 1.16779i
\(323\) 127399.i 1.22113i
\(324\) 0 0
\(325\) 1771.91 0.0167755
\(326\) −37691.7 6646.07i −0.354659 0.0625359i
\(327\) 0 0
\(328\) 66944.2 + 24365.7i 0.622250 + 0.226481i
\(329\) −43330.6 51639.4i −0.400316 0.477078i
\(330\) 0 0
\(331\) 173465. 63136.1i 1.58327 0.576264i 0.607360 0.794427i \(-0.292228\pi\)
0.975912 + 0.218162i \(0.0700062\pi\)
\(332\) 24880.3 + 14364.7i 0.225725 + 0.130322i
\(333\) 0 0
\(334\) 51448.7 + 89111.7i 0.461192 + 0.798807i
\(335\) 27872.7 33217.4i 0.248364 0.295989i
\(336\) 0 0
\(337\) −30162.8 171062.i −0.265590 1.50623i −0.767350 0.641228i \(-0.778425\pi\)
0.501761 0.865007i \(-0.332686\pi\)
\(338\) −128343. + 22630.4i −1.12341 + 0.198088i
\(339\) 0 0
\(340\) 5658.57 + 4748.10i 0.0489496 + 0.0410736i
\(341\) −32711.2 + 18885.8i −0.281312 + 0.162415i
\(342\) 0 0
\(343\) 59106.0 102375.i 0.502393 0.870169i
\(344\) −27981.1 76877.6i −0.236455 0.649655i
\(345\) 0 0
\(346\) −56812.3 + 47671.2i −0.474559 + 0.398203i
\(347\) 11813.0 32455.8i 0.0981070 0.269547i −0.880924 0.473257i \(-0.843078\pi\)
0.979031 + 0.203711i \(0.0653002\pi\)
\(348\) 0 0
\(349\) −9436.44 + 53516.7i −0.0774743 + 0.439378i 0.921254 + 0.388962i \(0.127166\pi\)
−0.998728 + 0.0504169i \(0.983945\pi\)
\(350\) 83268.4i 0.679742i
\(351\) 0 0
\(352\) −12995.2 −0.104881
\(353\) 192496. + 33942.3i 1.54480 + 0.272391i 0.880126 0.474740i \(-0.157458\pi\)
0.664678 + 0.747130i \(0.268569\pi\)
\(354\) 0 0
\(355\) 27281.7 + 9929.73i 0.216479 + 0.0787917i
\(356\) −6612.47 7880.43i −0.0521751 0.0621799i
\(357\) 0 0
\(358\) 15822.8 5759.02i 0.123457 0.0449348i
\(359\) 98785.0 + 57033.5i 0.766482 + 0.442529i 0.831618 0.555348i \(-0.187415\pi\)
−0.0651363 + 0.997876i \(0.520748\pi\)
\(360\) 0 0
\(361\) −32389.4 56100.1i −0.248535 0.430476i
\(362\) 25390.2 30258.9i 0.193754 0.230907i
\(363\) 0 0
\(364\) −76.1446 431.837i −0.000574693 0.00325925i
\(365\) −11976.8 + 2111.83i −0.0898987 + 0.0158516i
\(366\) 0 0
\(367\) 4564.10 + 3829.73i 0.0338862 + 0.0284339i 0.659573 0.751640i \(-0.270737\pi\)
−0.625687 + 0.780074i \(0.715181\pi\)
\(368\) −236603. + 136603.i −1.74713 + 1.00871i
\(369\) 0 0
\(370\) 7105.47 12307.0i 0.0519026 0.0898980i
\(371\) 16064.9 + 44137.8i 0.116716 + 0.320674i
\(372\) 0 0
\(373\) −103345. + 86717.1i −0.742803 + 0.623286i −0.933589 0.358346i \(-0.883341\pi\)
0.190786 + 0.981632i \(0.438896\pi\)
\(374\) 9762.63 26822.6i 0.0697949 0.191760i
\(375\) 0 0
\(376\) −19521.6 + 110713.i −0.138083 + 0.783108i
\(377\) 3209.17i 0.0225793i
\(378\) 0 0
\(379\) −58032.4 −0.404010 −0.202005 0.979385i \(-0.564746\pi\)
−0.202005 + 0.979385i \(0.564746\pi\)
\(380\) 11140.3 + 1964.33i 0.0771487 + 0.0136034i
\(381\) 0 0
\(382\) −180288. 65619.3i −1.23549 0.449682i
\(383\) 86216.3 + 102749.i 0.587749 + 0.700452i 0.975172 0.221450i \(-0.0710790\pi\)
−0.387423 + 0.921902i \(0.626635\pi\)
\(384\) 0 0
\(385\) 3299.15 1200.79i 0.0222577 0.00810114i
\(386\) 180303. + 104098.i 1.21012 + 0.698663i
\(387\) 0 0
\(388\) −9954.11 17241.0i −0.0661210 0.114525i
\(389\) 167201. 199262.i 1.10494 1.31682i 0.160908 0.986969i \(-0.448558\pi\)
0.944034 0.329849i \(-0.106998\pi\)
\(390\) 0 0
\(391\) −44144.0 250353.i −0.288748 1.63757i
\(392\) −73633.0 + 12983.5i −0.479182 + 0.0844927i
\(393\) 0 0
\(394\) 260560. + 218636.i 1.67848 + 1.40841i
\(395\) 26608.0 15362.1i 0.170537 0.0984594i
\(396\) 0 0
\(397\) −39496.9 + 68410.6i −0.250600 + 0.434053i −0.963691 0.267019i \(-0.913961\pi\)
0.713091 + 0.701072i \(0.247295\pi\)
\(398\) 34818.0 + 95661.8i 0.219805 + 0.603910i
\(399\) 0 0
\(400\) −141743. + 118936.i −0.885892 + 0.743351i
\(401\) −78196.3 + 214842.i −0.486292 + 1.33608i 0.417722 + 0.908575i \(0.362829\pi\)
−0.904014 + 0.427502i \(0.859394\pi\)
\(402\) 0 0
\(403\) −897.967 + 5092.63i −0.00552905 + 0.0313568i
\(404\) 25243.2i 0.154661i
\(405\) 0 0
\(406\) −150810. −0.914911
\(407\) −12547.1 2212.40i −0.0757452 0.0133559i
\(408\) 0 0
\(409\) 64715.1 + 23554.4i 0.386864 + 0.140807i 0.528128 0.849165i \(-0.322894\pi\)
−0.141263 + 0.989972i \(0.545116\pi\)
\(410\) −21728.3 25894.8i −0.129258 0.154044i
\(411\) 0 0
\(412\) −84012.0 + 30577.9i −0.494933 + 0.180141i
\(413\) −34788.1 20084.9i −0.203953 0.117752i
\(414\) 0 0
\(415\) 15745.9 + 27272.7i 0.0914263 + 0.158355i
\(416\) −1143.60 + 1362.89i −0.00660826 + 0.00787542i
\(417\) 0 0
\(418\) −7590.61 43048.5i −0.0434434 0.246380i
\(419\) −125988. + 22215.0i −0.717629 + 0.126537i −0.520526 0.853846i \(-0.674264\pi\)
−0.197103 + 0.980383i \(0.563153\pi\)
\(420\) 0 0
\(421\) 132517. + 111195.i 0.747665 + 0.627365i 0.934884 0.354953i \(-0.115503\pi\)
−0.187219 + 0.982318i \(0.559947\pi\)
\(422\) −211804. + 122285.i −1.18935 + 0.686672i
\(423\) 0 0
\(424\) 39166.4 67838.2i 0.217862 0.377349i
\(425\) −58885.7 161787.i −0.326011 0.895708i
\(426\) 0 0
\(427\) −70138.8 + 58853.4i −0.384682 + 0.322787i
\(428\) −29386.5 + 80738.8i −0.160421 + 0.440753i
\(429\) 0 0
\(430\) −6740.86 + 38229.3i −0.0364568 + 0.206757i
\(431\) 95875.3i 0.516122i −0.966129 0.258061i \(-0.916916\pi\)
0.966129 0.258061i \(-0.0830836\pi\)
\(432\) 0 0
\(433\) 309887. 1.65283 0.826413 0.563064i \(-0.190378\pi\)
0.826413 + 0.563064i \(0.190378\pi\)
\(434\) 239321. + 42198.7i 1.27058 + 0.224037i
\(435\) 0 0
\(436\) 27841.8 + 10133.6i 0.146462 + 0.0533077i
\(437\) −250242. 298227.i −1.31038 1.56165i
\(438\) 0 0
\(439\) 185854. 67645.2i 0.964366 0.351001i 0.188623 0.982050i \(-0.439598\pi\)
0.775743 + 0.631049i \(0.217375\pi\)
\(440\) −5070.67 2927.55i −0.0261915 0.0151217i
\(441\) 0 0
\(442\) −1953.93 3384.31i −0.0100015 0.0173231i
\(443\) 3449.16 4110.54i 0.0175754 0.0209456i −0.757185 0.653200i \(-0.773426\pi\)
0.774761 + 0.632255i \(0.217870\pi\)
\(444\) 0 0
\(445\) −1958.11 11105.0i −0.00988822 0.0560789i
\(446\) −216116. + 38107.1i −1.08647 + 0.191574i
\(447\) 0 0
\(448\) −52064.6 43687.4i −0.259410 0.217671i
\(449\) −94142.3 + 54353.1i −0.466974 + 0.269607i −0.714972 0.699153i \(-0.753561\pi\)
0.247998 + 0.968760i \(0.420227\pi\)
\(450\) 0 0
\(451\) −15153.0 + 26245.7i −0.0744980 + 0.129034i
\(452\) −29321.5 80560.1i −0.143519 0.394315i
\(453\) 0 0
\(454\) −30015.1 + 25185.7i −0.145623 + 0.122192i
\(455\) 164.396 451.675i 0.000794089 0.00218174i
\(456\) 0 0
\(457\) −20255.9 + 114877.i −0.0969881 + 0.550047i 0.897132 + 0.441763i \(0.145647\pi\)
−0.994120 + 0.108284i \(0.965464\pi\)
\(458\) 125310.i 0.597385i
\(459\) 0 0
\(460\) 22572.5 0.106676
\(461\) −407829. 71911.3i −1.91901 0.338373i −0.920392 0.390997i \(-0.872130\pi\)
−0.998614 + 0.0526243i \(0.983241\pi\)
\(462\) 0 0
\(463\) 55310.7 + 20131.4i 0.258016 + 0.0939102i 0.467790 0.883840i \(-0.345050\pi\)
−0.209774 + 0.977750i \(0.567273\pi\)
\(464\) 215410. + 256715.i 1.00053 + 1.19238i
\(465\) 0 0
\(466\) 130893. 47641.0i 0.602758 0.219386i
\(467\) 250588. + 144677.i 1.14902 + 0.663384i 0.948647 0.316337i \(-0.102453\pi\)
0.200368 + 0.979721i \(0.435786\pi\)
\(468\) 0 0
\(469\) 125059. + 216608.i 0.568549 + 0.984756i
\(470\) 34288.2 40863.1i 0.155220 0.184984i
\(471\) 0 0
\(472\) 11632.9 + 65973.6i 0.0522161 + 0.296132i
\(473\) 34274.1 6043.45i 0.153195 0.0270124i
\(474\) 0 0
\(475\) −201978. 169479.i −0.895192 0.751156i
\(476\) −36899.1 + 21303.7i −0.162855 + 0.0940246i
\(477\) 0 0
\(478\) 74514.6 129063.i 0.326126 0.564867i
\(479\) 99918.0 + 274522.i 0.435484 + 1.19648i 0.942400 + 0.334488i \(0.108563\pi\)
−0.506916 + 0.861996i \(0.669215\pi\)
\(480\) 0 0
\(481\) −1336.20 + 1121.20i −0.00577538 + 0.00484612i
\(482\) 133198. 365960.i 0.573330 1.57521i
\(483\) 0 0
\(484\) −11894.3 + 67456.0i −0.0507749 + 0.287959i
\(485\) 21822.5i 0.0927728i
\(486\) 0 0
\(487\) −92077.0 −0.388234 −0.194117 0.980978i \(-0.562184\pi\)
−0.194117 + 0.980978i \(0.562184\pi\)
\(488\) 150374. + 26515.1i 0.631443 + 0.111341i
\(489\) 0 0
\(490\) 33337.9 + 12134.0i 0.138850 + 0.0505373i
\(491\) −80976.3 96503.8i −0.335888 0.400296i 0.571491 0.820608i \(-0.306365\pi\)
−0.907380 + 0.420312i \(0.861921\pi\)
\(492\) 0 0
\(493\) −293019. + 106650.i −1.20559 + 0.438801i
\(494\) −5182.77 2992.27i −0.0212377 0.0122616i
\(495\) 0 0
\(496\) −270001. 467655.i −1.09749 1.90091i
\(497\) −107643. + 128284.i −0.435786 + 0.519349i
\(498\) 0 0
\(499\) 40143.7 + 227666.i 0.161219 + 0.914319i 0.952878 + 0.303355i \(0.0981069\pi\)
−0.791658 + 0.610964i \(0.790782\pi\)
\(500\) 30818.6 5434.15i 0.123274 0.0217366i
\(501\) 0 0
\(502\) 119769. + 100498.i 0.475266 + 0.398796i
\(503\) −102094. + 58943.8i −0.403518 + 0.232971i −0.688001 0.725710i \(-0.741511\pi\)
0.284483 + 0.958681i \(0.408178\pi\)
\(504\) 0 0
\(505\) −13835.2 + 23963.3i −0.0542504 + 0.0939644i
\(506\) −29832.8 81965.1i −0.116518 0.320131i
\(507\) 0 0
\(508\) 93110.1 78128.7i 0.360802 0.302749i
\(509\) −26711.8 + 73390.0i −0.103102 + 0.283271i −0.980508 0.196477i \(-0.937050\pi\)
0.877406 + 0.479748i \(0.159272\pi\)
\(510\) 0 0
\(511\) 12181.2 69083.1i 0.0466497 0.264564i
\(512\) 66993.2i 0.255559i
\(513\) 0 0
\(514\) 44883.7 0.169888
\(515\) −96511.4 17017.6i −0.363885 0.0641627i
\(516\) 0 0
\(517\) −44939.9 16356.8i −0.168132 0.0611952i
\(518\) 52689.4 + 62792.7i 0.196365 + 0.234018i
\(519\) 0 0
\(520\) −753.260 + 274.164i −0.00278572 + 0.00101392i
\(521\) 433604. + 250342.i 1.59742 + 0.922269i 0.991983 + 0.126373i \(0.0403336\pi\)
0.605434 + 0.795896i \(0.293000\pi\)
\(522\) 0 0
\(523\) 7028.79 + 12174.2i 0.0256967 + 0.0445079i 0.878588 0.477581i \(-0.158486\pi\)
−0.852891 + 0.522089i \(0.825153\pi\)
\(524\) 60009.3 71516.3i 0.218553 0.260461i
\(525\) 0 0
\(526\) −10280.3 58302.3i −0.0371563 0.210724i
\(527\) 494833. 87252.4i 1.78171 0.314164i
\(528\) 0 0
\(529\) −380721. 319462.i −1.36049 1.14159i
\(530\) −32188.9 + 18584.2i −0.114592 + 0.0661597i
\(531\) 0 0
\(532\) −32624.7 + 56507.7i −0.115272 + 0.199657i
\(533\) 1419.07 + 3898.86i 0.00499516 + 0.0137241i
\(534\) 0 0
\(535\) −72147.7 + 60539.1i −0.252066 + 0.211509i
\(536\) 142664. 391966.i 0.496575 1.36433i
\(537\) 0 0
\(538\) 47201.2 267691.i 0.163075 0.924846i
\(539\) 31807.0i 0.109482i
\(540\) 0 0
\(541\) −88604.0 −0.302732 −0.151366 0.988478i \(-0.548367\pi\)
−0.151366 + 0.988478i \(0.548367\pi\)
\(542\) 41432.0 + 7305.58i 0.141038 + 0.0248689i
\(543\) 0 0
\(544\) 162446. + 59125.5i 0.548923 + 0.199792i
\(545\) 20876.2 + 24879.2i 0.0702842 + 0.0837614i
\(546\) 0 0
\(547\) −268634. + 97774.9i −0.897815 + 0.326778i −0.749377 0.662144i \(-0.769647\pi\)
−0.148438 + 0.988922i \(0.547425\pi\)
\(548\) −45617.2 26337.1i −0.151903 0.0877015i
\(549\) 0 0
\(550\) −29537.2 51159.9i −0.0976437 0.169124i
\(551\) −306950. + 365809.i −1.01103 + 1.20490i
\(552\) 0 0
\(553\) 30774.0 + 174528.i 0.100632 + 0.570710i
\(554\) 225919. 39835.7i 0.736095 0.129793i
\(555\) 0 0
\(556\) −34772.7 29177.8i −0.112484 0.0943849i
\(557\) 439295. 253627.i 1.41594 0.817496i 0.420005 0.907522i \(-0.362028\pi\)
0.995939 + 0.0900257i \(0.0286949\pi\)
\(558\) 0 0
\(559\) 2382.37 4126.38i 0.00762405 0.0132052i
\(560\) 17167.1 + 47166.2i 0.0547421 + 0.150403i
\(561\) 0 0
\(562\) 295977. 248354.i 0.937100 0.786320i
\(563\) −174351. + 479027.i −0.550058 + 1.51127i 0.283572 + 0.958951i \(0.408480\pi\)
−0.833631 + 0.552322i \(0.813742\pi\)
\(564\) 0 0
\(565\) 16318.4 92546.0i 0.0511187 0.289908i
\(566\) 492397.i 1.53703i
\(567\) 0 0
\(568\) 279278. 0.865646
\(569\) −202415. 35691.1i −0.625197 0.110239i −0.147931 0.988998i \(-0.547261\pi\)
−0.477267 + 0.878759i \(0.658372\pi\)
\(570\) 0 0
\(571\) −149528. 54423.6i −0.458616 0.166922i 0.102373 0.994746i \(-0.467357\pi\)
−0.560988 + 0.827824i \(0.689579\pi\)
\(572\) −199.966 238.310i −0.000611172 0.000728367i
\(573\) 0 0
\(574\) 183222. 66687.2i 0.556100 0.202404i
\(575\) −455635. 263061.i −1.37810 0.795647i
\(576\) 0 0
\(577\) 247561. + 428789.i 0.743586 + 1.28793i 0.950852 + 0.309645i \(0.100210\pi\)
−0.207266 + 0.978285i \(0.566457\pi\)
\(578\) 969.530 1155.44i 0.00290206 0.00345854i
\(579\) 0 0
\(580\) −4807.93 27267.1i −0.0142923 0.0810557i
\(581\) −178888. + 31542.8i −0.529943 + 0.0934432i
\(582\) 0 0
\(583\) 25526.9 + 21419.6i 0.0751037 + 0.0630195i
\(584\) −101314. + 58493.7i −0.297060 + 0.171508i
\(585\) 0 0
\(586\) −27515.0 + 47657.4i −0.0801261 + 0.138783i
\(587\) −162016. 445137.i −0.470200 1.29187i −0.917591 0.397526i \(-0.869869\pi\)
0.447390 0.894339i \(-0.352353\pi\)
\(588\) 0 0
\(589\) 589457. 494613.i 1.69911 1.42572i
\(590\) 10871.8 29870.0i 0.0312318 0.0858087i
\(591\) 0 0
\(592\) 31629.5 179380.i 0.0902503 0.511835i
\(593\) 15066.4i 0.0428449i −0.999771 0.0214224i \(-0.993181\pi\)
0.999771 0.0214224i \(-0.00681949\pi\)
\(594\) 0 0
\(595\) −46704.3 −0.131924
\(596\) −71263.6 12565.7i −0.200620 0.0353748i
\(597\) 0 0
\(598\) −11221.6 4084.31i −0.0313798 0.0114213i
\(599\) −134668. 160491.i −0.375328 0.447298i 0.545006 0.838432i \(-0.316527\pi\)
−0.920334 + 0.391134i \(0.872083\pi\)
\(600\) 0 0
\(601\) 75619.0 27523.0i 0.209354 0.0761987i −0.235214 0.971944i \(-0.575579\pi\)
0.444569 + 0.895745i \(0.353357\pi\)
\(602\) −193914. 111956.i −0.535076 0.308926i
\(603\) 0 0
\(604\) 33360.6 + 57782.3i 0.0914451 + 0.158387i
\(605\) −48262.4 + 57516.9i −0.131855 + 0.157139i
\(606\) 0 0
\(607\) 71808.1 + 407244.i 0.194893 + 1.10529i 0.912571 + 0.408917i \(0.134094\pi\)
−0.717679 + 0.696374i \(0.754795\pi\)
\(608\) 260715. 45971.1i 0.705276 0.124359i
\(609\) 0 0
\(610\) −55501.9 46571.6i −0.149159 0.125159i
\(611\) −5670.24 + 3273.72i −0.0151887 + 0.00876917i
\(612\) 0 0
\(613\) −103985. + 180108.i −0.276727 + 0.479305i −0.970569 0.240822i \(-0.922583\pi\)
0.693843 + 0.720127i \(0.255916\pi\)
\(614\) 179293. + 492603.i 0.475583 + 1.30665i
\(615\) 0 0
\(616\) 25871.5 21708.7i 0.0681804 0.0572102i
\(617\) −32768.0 + 90029.3i −0.0860755 + 0.236490i −0.975261 0.221056i \(-0.929050\pi\)
0.889186 + 0.457547i \(0.151272\pi\)
\(618\) 0 0
\(619\) 28352.2 160793.i 0.0739954 0.419649i −0.925198 0.379486i \(-0.876101\pi\)
0.999193 0.0401635i \(-0.0127879\pi\)
\(620\) 44615.5i 0.116065i
\(621\) 0 0
\(622\) −827410. −2.13865
\(623\) 64054.8 + 11294.6i 0.165035 + 0.0291001i
\(624\) 0 0
\(625\) −318346. 115868.i −0.814965 0.296623i
\(626\) 286243. + 341131.i 0.730443 + 0.870509i
\(627\) 0 0
\(628\) −103426. + 37644.0i −0.262247 + 0.0954502i
\(629\) 146779. + 84743.0i 0.370991 + 0.214192i
\(630\) 0 0
\(631\) 66259.5 + 114765.i 0.166414 + 0.288237i 0.937156 0.348909i \(-0.113448\pi\)
−0.770743 + 0.637147i \(0.780115\pi\)
\(632\) 189977. 226405.i 0.475627 0.566830i
\(633\) 0 0
\(634\) 29880.7 + 169462.i 0.0743383 + 0.421594i
\(635\) 131210. 23135.8i 0.325401 0.0573770i
\(636\) 0 0
\(637\) −3335.80 2799.07i −0.00822094 0.00689819i
\(638\) −92657.6 + 53495.9i −0.227635 + 0.131425i
\(639\) 0 0
\(640\) 52296.1 90579.5i 0.127676 0.221141i
\(641\) 53876.6 + 148025.i 0.131125 + 0.360262i 0.987829 0.155547i \(-0.0497139\pi\)
−0.856704 + 0.515808i \(0.827492\pi\)
\(642\) 0 0
\(643\) −13670.2 + 11470.6i −0.0330637 + 0.0277437i −0.659170 0.751994i \(-0.729092\pi\)
0.626106 + 0.779738i \(0.284648\pi\)
\(644\) −44531.2 + 122349.i −0.107373 + 0.295004i
\(645\) 0 0
\(646\) −100976. + 572663.i −0.241965 + 1.37225i
\(647\) 484495.i 1.15739i −0.815543 0.578696i \(-0.803562\pi\)
0.815543 0.578696i \(-0.196438\pi\)
\(648\) 0 0
\(649\) −28498.3 −0.0676597
\(650\) −7964.81 1404.41i −0.0188516 0.00332405i
\(651\) 0 0
\(652\) 38086.4 + 13862.3i 0.0895932 + 0.0326092i
\(653\) 279134. + 332658.i 0.654615 + 0.780139i 0.986602 0.163144i \(-0.0521637\pi\)
−0.331988 + 0.943284i \(0.607719\pi\)
\(654\) 0 0
\(655\) 96163.2 35000.5i 0.224143 0.0815816i
\(656\) −375222. 216634.i −0.871927 0.503408i
\(657\) 0 0
\(658\) 153844. + 266465.i 0.355327 + 0.615444i
\(659\) −368729. + 439434.i −0.849056 + 1.01187i 0.150673 + 0.988584i \(0.451856\pi\)
−0.999729 + 0.0232815i \(0.992589\pi\)
\(660\) 0 0
\(661\) −56618.1 321097.i −0.129584 0.734909i −0.978479 0.206347i \(-0.933842\pi\)
0.848895 0.528562i \(-0.177269\pi\)
\(662\) −829774. + 146311.i −1.89341 + 0.333859i
\(663\) 0 0
\(664\) 232061. + 194722.i 0.526340 + 0.441652i
\(665\) −61941.1 + 35761.7i −0.140067 + 0.0808677i
\(666\) 0 0
\(667\) −476439. + 825216.i −1.07092 + 1.85488i
\(668\) −37268.8 102395.i −0.0835204 0.229470i
\(669\) 0 0
\(670\) −151617. + 127222.i −0.337752 + 0.283408i
\(671\) −22216.5 + 61039.3i −0.0493435 + 0.135570i
\(672\) 0 0
\(673\) 50573.5 286817.i 0.111659 0.633248i −0.876692 0.481053i \(-0.840255\pi\)
0.988350 0.152196i \(-0.0486344\pi\)
\(674\) 792836.i 1.74527i
\(675\) 0 0
\(676\) 138010. 0.302008
\(677\) 548456. + 96707.7i 1.19664 + 0.211001i 0.736247 0.676713i \(-0.236596\pi\)
0.460396 + 0.887713i \(0.347707\pi\)
\(678\) 0 0
\(679\) 118283. + 43051.5i 0.256557 + 0.0933790i
\(680\) 50066.0 + 59666.4i 0.108274 + 0.129036i
\(681\) 0 0
\(682\) 162007. 58965.8i 0.348309 0.126774i
\(683\) −680796. 393058.i −1.45941 0.842588i −0.460423 0.887700i \(-0.652302\pi\)
−0.998982 + 0.0451117i \(0.985636\pi\)
\(684\) 0 0
\(685\) −28869.5 50003.5i −0.0615260 0.106566i
\(686\) −346826. + 413331.i −0.736992 + 0.878313i
\(687\) 0 0
\(688\) 86400.1 + 489999.i 0.182531 + 1.03519i
\(689\) 4492.84 792.208i 0.00946416 0.00166879i
\(690\) 0 0
\(691\) 429073. + 360035.i 0.898618 + 0.754030i 0.969920 0.243424i \(-0.0782708\pi\)
−0.0713015 + 0.997455i \(0.522715\pi\)
\(692\) 68015.7 39268.9i 0.142035 0.0820042i
\(693\) 0 0
\(694\) −78824.2 + 136527.i −0.163659 + 0.283466i
\(695\) −17018.0 46756.5i −0.0352321 0.0967994i
\(696\) 0 0
\(697\) 308833. 259141.i 0.635708 0.533422i
\(698\) 84834.4 233081.i 0.174125 0.478405i
\(699\) 0 0
\(700\) −15312.3 + 86840.3i −0.0312496 + 0.177225i
\(701\) 530883.i 1.08035i 0.841554 + 0.540173i \(0.181641\pi\)
−0.841554 + 0.540173i \(0.818359\pi\)
\(702\) 0 0
\(703\) 259552. 0.525188
\(704\) −47485.3 8372.94i −0.0958107 0.0168940i
\(705\) 0 0
\(706\) −838377. 305144.i −1.68202 0.612204i
\(707\) −102592. 122265.i −0.205247 0.244604i
\(708\) 0 0
\(709\) −180117. + 65557.3i −0.358313 + 0.130415i −0.514903 0.857248i \(-0.672172\pi\)
0.156590 + 0.987664i \(0.449950\pi\)
\(710\) −114762. 66258.0i −0.227658 0.131438i
\(711\) 0 0
\(712\) −54236.2 93939.8i −0.106987 0.185306i
\(713\) 986966. 1.17622e6i 1.94144 2.31371i
\(714\) 0 0
\(715\) −59.2148 335.824i −0.000115829 0.000656900i
\(716\) −17560.5 + 3096.40i −0.0342541 + 0.00603991i
\(717\) 0 0
\(718\) −398838. 334665.i −0.773655 0.649174i
\(719\) 540128. 311843.i 1.04481 0.603223i 0.123621 0.992330i \(-0.460549\pi\)
0.921193 + 0.389106i \(0.127216\pi\)
\(720\) 0 0
\(721\) 282637. 489542.i 0.543700 0.941716i
\(722\) 101127. + 277844.i 0.193996 + 0.532999i
\(723\) 0 0
\(724\) −32043.7 + 26887.9i −0.0611316 + 0.0512955i
\(725\) −220722. + 606428.i −0.419923 + 1.15373i
\(726\) 0 0
\(727\) −2423.03 + 13741.7i −0.00458448 + 0.0259999i −0.987014 0.160633i \(-0.948646\pi\)
0.982430 + 0.186633i \(0.0597575\pi\)
\(728\) 4623.72i 0.00872426i
\(729\) 0 0
\(730\) 55509.9 0.104166
\(731\) −455940. 80394.4i −0.853243 0.150450i
\(732\) 0 0
\(733\) 231734. + 84344.2i 0.431302 + 0.156981i 0.548543 0.836122i \(-0.315183\pi\)
−0.117241 + 0.993104i \(0.537405\pi\)
\(734\) −17480.4 20832.3i −0.0324458 0.0386674i
\(735\) 0 0
\(736\) 496406. 180677.i 0.916392 0.333539i
\(737\) 153672. + 88722.4i 0.282917 + 0.163342i
\(738\) 0 0
\(739\) −309247. 535631.i −0.566261 0.980793i −0.996931 0.0782832i \(-0.975056\pi\)
0.430670 0.902509i \(-0.358277\pi\)
\(740\) −9673.42 + 11528.3i −0.0176651 + 0.0210525i
\(741\) 0 0
\(742\) −37228.7 211134.i −0.0676192 0.383488i
\(743\) 140934. 24850.4i 0.255292 0.0450149i −0.0445374 0.999008i \(-0.514181\pi\)
0.299829 + 0.953993i \(0.403070\pi\)
\(744\) 0 0
\(745\) −60763.4 50986.5i −0.109479 0.0918635i
\(746\) 533274. 307886.i 0.958237 0.553238i
\(747\) 0 0
\(748\) −15113.8 + 26177.9i −0.0270129 + 0.0467878i
\(749\) −185803. 510490.i −0.331199 0.909962i
\(750\) 0 0
\(751\) 75155.7 63063.1i 0.133255 0.111814i −0.573724 0.819048i \(-0.694502\pi\)
0.706979 + 0.707235i \(0.250058\pi\)
\(752\) 233845. 642483.i 0.413516 1.13613i
\(753\) 0 0
\(754\) −2543.58 + 14425.4i −0.00447407 + 0.0253737i
\(755\) 73136.8i 0.128305i
\(756\) 0 0
\(757\) 589321. 1.02840 0.514198 0.857672i \(-0.328090\pi\)
0.514198 + 0.857672i \(0.328090\pi\)
\(758\) 260858. + 45996.3i 0.454010 + 0.0800543i
\(759\) 0 0
\(760\) 112086. + 40796.1i 0.194055 + 0.0706304i
\(761\) −511608. 609711.i −0.883422 1.05282i −0.998232 0.0594341i \(-0.981070\pi\)
0.114810 0.993387i \(-0.463374\pi\)
\(762\) 0 0
\(763\) −176036. + 64071.9i −0.302380 + 0.110057i
\(764\) 175955. + 101587.i 0.301449 + 0.174042i
\(765\) 0 0
\(766\) −306108. 530194.i −0.521695 0.903603i
\(767\) −2507.91 + 2988.81i −0.00426305 + 0.00508051i
\(768\) 0 0
\(769\) −165095. 936298.i −0.279177 1.58329i −0.725372 0.688357i \(-0.758332\pi\)
0.446194 0.894936i \(-0.352779\pi\)
\(770\) −15781.6 + 2782.71i −0.0266176 + 0.00469340i
\(771\) 0 0
\(772\) −168895. 141719.i −0.283388 0.237791i
\(773\) 360204. 207964.i 0.602822 0.348039i −0.167329 0.985901i \(-0.553514\pi\)
0.770151 + 0.637862i \(0.220181\pi\)
\(774\) 0 0
\(775\) 519950. 900579.i 0.865681 1.49940i
\(776\) −71797.1 197261.i −0.119230 0.327580i
\(777\) 0 0
\(778\) −909510. + 763169.i −1.50262 + 1.26084i
\(779\) 211160. 580158.i 0.347966 0.956030i
\(780\) 0 0
\(781\) −20630.4 + 117001.i −0.0338225 + 0.191817i
\(782\) 1.16034e6i 1.89745i
\(783\) 0 0
\(784\) 454728. 0.739809
\(785\) −118814. 20950.1i −0.192809 0.0339975i
\(786\) 0 0
\(787\) 107226. + 39027.2i 0.173122 + 0.0630113i 0.427127 0.904192i \(-0.359526\pi\)
−0.254005 + 0.967203i \(0.581748\pi\)
\(788\) −231532. 275929.i −0.372871 0.444370i
\(789\) 0 0
\(790\) −131780. + 47964.0i −0.211152 + 0.0768531i
\(791\) 469428. + 271025.i 0.750268 + 0.433167i
\(792\) 0 0
\(793\) 4446.50 + 7701.56i 0.00707085 + 0.0122471i
\(794\) 231762. 276203.i 0.367622 0.438115i
\(795\) 0 0
\(796\) −18720.3 106168.i −0.0295452 0.167559i
\(797\) 569418. 100404.i 0.896426 0.158064i 0.293592 0.955931i \(-0.405149\pi\)
0.602834 + 0.797867i \(0.294038\pi\)
\(798\) 0 0
\(799\) 487351. + 408936.i 0.763393 + 0.640563i
\(800\) 309840. 178886.i 0.484126 0.279510i
\(801\) 0 0
\(802\) 521779. 903748.i 0.811219 1.40507i
\(803\) −17021.3 46765.5i −0.0263974 0.0725262i
\(804\) 0 0
\(805\) −109330. + 91738.7i −0.168712 + 0.141567i
\(806\) 8072.80 22179.8i 0.0124267 0.0341420i
\(807\) 0 0
\(808\) −46220.7 + 262131.i −0.0707969 + 0.401509i
\(809\) 602261.i 0.920212i 0.887864 + 0.460106i \(0.152189\pi\)
−0.887864 + 0.460106i \(0.847811\pi\)
\(810\) 0 0
\(811\) −990076. −1.50531 −0.752657 0.658413i \(-0.771228\pi\)
−0.752657 + 0.658413i \(0.771228\pi\)
\(812\) 157280. + 27732.6i 0.238539 + 0.0420609i
\(813\) 0 0
\(814\) 54646.3 + 19889.6i 0.0824730 + 0.0300177i
\(815\) 28557.7 + 34033.8i 0.0429940 + 0.0512383i
\(816\) 0 0
\(817\) −666244. + 242493.i −0.998134 + 0.363291i
\(818\) −272228. 157171.i −0.406842 0.234890i
\(819\) 0 0
\(820\) 17898.6 + 31001.2i 0.0266189 + 0.0461053i
\(821\) 114448. 136394.i 0.169794 0.202352i −0.674437 0.738333i \(-0.735614\pi\)
0.844230 + 0.535981i \(0.180058\pi\)
\(822\) 0 0
\(823\) 127178. + 721264.i 0.187764 + 1.06487i 0.922352 + 0.386351i \(0.126265\pi\)
−0.734587 + 0.678514i \(0.762624\pi\)
\(824\) −928388. + 163700.i −1.36734 + 0.241098i
\(825\) 0 0
\(826\) 140455. + 117855.i 0.205862 + 0.172739i
\(827\) −772587. + 446053.i −1.12963 + 0.652192i −0.943842 0.330397i \(-0.892817\pi\)
−0.185788 + 0.982590i \(0.559484\pi\)
\(828\) 0 0
\(829\) 312772. 541738.i 0.455113 0.788279i −0.543582 0.839356i \(-0.682932\pi\)
0.998695 + 0.0510773i \(0.0162655\pi\)
\(830\) −49162.2 135072.i −0.0713633 0.196069i
\(831\) 0 0
\(832\) −5056.92 + 4243.26i −0.00730533 + 0.00612990i
\(833\) −144715. + 397603.i −0.208557 + 0.573006i
\(834\) 0 0
\(835\) 20741.3 117630.i 0.0297484 0.168711i
\(836\) 46291.0i 0.0662344i
\(837\) 0 0
\(838\) 583927. 0.831516
\(839\) 386607. + 68169.3i 0.549220 + 0.0968423i 0.441370 0.897325i \(-0.354492\pi\)
0.107849 + 0.994167i \(0.465604\pi\)
\(840\) 0 0
\(841\) 433698. + 157853.i 0.613190 + 0.223183i
\(842\) −507536. 604858.i −0.715884 0.853158i
\(843\) 0 0
\(844\) 243377. 88582.1i 0.341661 0.124354i
\(845\) 131013. + 75640.3i 0.183485 + 0.105935i
\(846\) 0 0
\(847\) −216543. 375063.i −0.301840 0.522802i
\(848\) −306226. + 364946.i −0.425843 + 0.507500i
\(849\) 0 0
\(850\) 136462. + 773913.i 0.188874 + 1.07116i
\(851\) 510050. 89935.6i 0.704294 0.124186i
\(852\) 0 0
\(853\) −237020. 198883.i −0.325752 0.273338i 0.465214 0.885198i \(-0.345977\pi\)
−0.790966 + 0.611860i \(0.790422\pi\)
\(854\) 361924. 208957.i 0.496251 0.286511i
\(855\) 0 0
\(856\) −452991. + 784603.i −0.618219 + 1.07079i
\(857\) 255551. + 702119.i 0.347949 + 0.955981i 0.983015 + 0.183524i \(0.0587504\pi\)
−0.635067 + 0.772457i \(0.719027\pi\)
\(858\) 0 0
\(859\) −1.12397e6 + 943124.i −1.52324 + 1.27815i −0.692644 + 0.721279i \(0.743554\pi\)
−0.830598 + 0.556872i \(0.812001\pi\)
\(860\) 14060.0 38629.6i 0.0190103 0.0522304i
\(861\) 0 0
\(862\) −75990.5 + 430964.i −0.102269 + 0.579998i
\(863\) 888778.i 1.19336i 0.802479 + 0.596680i \(0.203514\pi\)
−0.802479 + 0.596680i \(0.796486\pi\)
\(864\) 0 0
\(865\) 86089.5 0.115058
\(866\) −1.39295e6 245615.i −1.85738 0.327506i
\(867\) 0 0
\(868\) −241827. 88017.7i −0.320970 0.116824i
\(869\) 80816.7 + 96313.6i 0.107019 + 0.127540i
\(870\) 0 0
\(871\) 22828.3 8308.82i 0.0300910 0.0109522i
\(872\) 270561. + 156208.i 0.355821 + 0.205434i
\(873\) 0 0
\(874\) 888475. + 1.53888e6i 1.16311 + 2.01457i
\(875\) −127184. + 151572.i −0.166118 + 0.197972i
\(876\) 0 0
\(877\) −220776. 1.25208e6i −0.287047 1.62793i −0.697880 0.716215i \(-0.745873\pi\)
0.410833 0.911711i \(-0.365238\pi\)
\(878\) −889035. + 156761.i −1.15327 + 0.203352i
\(879\) 0 0
\(880\) 27278.4 + 22889.3i 0.0352252 + 0.0295575i
\(881\) 492960. 284611.i 0.635126 0.366690i −0.147608 0.989046i \(-0.547157\pi\)
0.782735 + 0.622355i \(0.213824\pi\)
\(882\) 0 0
\(883\) −154742. + 268020.i −0.198466 + 0.343753i −0.948031 0.318177i \(-0.896929\pi\)
0.749565 + 0.661930i \(0.230263\pi\)
\(884\) 1415.41 + 3888.80i 0.00181124 + 0.00497635i
\(885\) 0 0
\(886\) −18762.1 + 15743.3i −0.0239009 + 0.0200552i
\(887\) −259048. + 711728.i −0.329255 + 0.904622i 0.659045 + 0.752103i \(0.270961\pi\)
−0.988301 + 0.152518i \(0.951262\pi\)
\(888\) 0 0
\(889\) −133450. + 756831.i −0.168855 + 0.957624i
\(890\) 51469.5i 0.0649786i
\(891\) 0 0
\(892\) 232394. 0.292076
\(893\) 959468. + 169180.i 1.20317 + 0.212152i
\(894\) 0 0
\(895\) −18367.3 6685.13i −0.0229297 0.00834572i
\(896\) 387793. + 462153.i 0.483041 + 0.575665i
\(897\) 0 0
\(898\) 466254. 169703.i 0.578189 0.210444i
\(899\) −1.63107e6 941700.i −2.01815 1.16518i
\(900\) 0 0
\(901\) −221644. 383899.i −0.273027 0.472897i
\(902\) 88915.6 105965.i 0.109286 0.130242i
\(903\) 0 0
\(904\) −156974. 890243.i −0.192084 1.08936i
\(905\) −45155.7 + 7962.16i −0.0551334 + 0.00972151i
\(906\) 0 0
\(907\) 365489. + 306682.i 0.444283 + 0.372798i 0.837309 0.546729i \(-0.184127\pi\)
−0.393026 + 0.919527i \(0.628572\pi\)
\(908\) 35934.1 20746.6i 0.0435848 0.0251637i
\(909\) 0 0
\(910\) −1096.96 + 1900.00i −0.00132468 + 0.00229441i
\(911\) 44060.5 + 121055.i 0.0530900 + 0.145864i 0.963403 0.268057i \(-0.0863814\pi\)
−0.910313 + 0.413920i \(0.864159\pi\)
\(912\) 0 0
\(913\) −98719.6 + 82835.6i −0.118430 + 0.0993746i
\(914\) 182102. 500321.i 0.217983 0.598903i
\(915\) 0 0
\(916\) −23043.3 + 130685.i −0.0274634 + 0.155753i
\(917\) 590277.i 0.701967i
\(918\) 0 0
\(919\) −1.05227e6 −1.24593 −0.622967 0.782248i \(-0.714073\pi\)
−0.622967 + 0.782248i \(0.714073\pi\)
\(920\) 234399. + 41330.8i 0.276936 + 0.0488313i
\(921\) 0 0
\(922\) 1.77621e6 + 646489.i 2.08946 + 0.760500i
\(923\) 10455.1 + 12459.9i 0.0122723 + 0.0146256i
\(924\) 0 0
\(925\) 329613. 119969.i 0.385230 0.140212i
\(926\) −232668. 134331.i −0.271340 0.156658i
\(927\) 0 0
\(928\) −323988. 561163.i −0.376212 0.651618i
\(929\) 142424. 169734.i 0.165026 0.196670i −0.677194 0.735805i \(-0.736804\pi\)
0.842220 + 0.539135i \(0.181249\pi\)
\(930\) 0 0
\(931\) 112519. + 638126.i 0.129815 + 0.736219i
\(932\) −145268. + 25614.7i −0.167239 + 0.0294888i
\(933\) 0 0
\(934\) −1.01173e6 848943.i −1.15977 0.973161i
\(935\) −28695.1 + 16567.1i −0.0328234 + 0.0189506i
\(936\) 0 0
\(937\) −424606. + 735439.i −0.483623 + 0.837659i −0.999823 0.0188087i \(-0.994013\pi\)
0.516200 + 0.856468i \(0.327346\pi\)
\(938\) −390461. 1.07278e6i −0.443785 1.21929i
\(939\) 0 0
\(940\) −43273.4 + 36310.7i −0.0489739 + 0.0410940i
\(941\) −14623.8 + 40178.5i −0.0165151 + 0.0453748i −0.947676 0.319233i \(-0.896575\pi\)
0.931161 + 0.364608i \(0.118797\pi\)
\(942\) 0 0
\(943\) 213928. 1.21324e6i 0.240571 1.36435i
\(944\) 407426.i 0.457199i
\(945\) 0 0
\(946\) −158854. −0.177507
\(947\) −242807. 42813.5i −0.270746 0.0477398i 0.0366269 0.999329i \(-0.488339\pi\)
−0.307373 + 0.951589i \(0.599450\pi\)
\(948\) 0 0
\(949\) −6402.51 2330.32i −0.00710915 0.00258752i
\(950\) 773570. + 921904.i 0.857141 + 1.02150i
\(951\) 0 0
\(952\) −422177. + 153660.i −0.465822 + 0.169545i
\(953\) −105421. 60864.6i −0.116075 0.0670160i 0.440838 0.897587i \(-0.354681\pi\)
−0.556914 + 0.830570i \(0.688015\pi\)
\(954\) 0 0
\(955\) 111356. + 192873.i 0.122097 + 0.211478i
\(956\) −101444. + 120897.i −0.110997 + 0.132282i
\(957\) 0 0
\(958\) −231550. 1.31318e6i −0.252298 1.43085i
\(959\) 327985. 57832.6i 0.356629 0.0628833i
\(960\) 0 0
\(961\) 1.61739e6 + 1.35715e6i 1.75133 + 1.46954i
\(962\) 6894.93 3980.79i 0.00745040 0.00430149i
\(963\) 0 0
\(964\) −206209. + 357164.i −0.221898 + 0.384338i
\(965\) −82658.1 227101.i −0.0887627 0.243874i
\(966\) 0 0
\(967\) 490606. 411668.i 0.524663 0.440244i −0.341591 0.939849i \(-0.610966\pi\)
0.866254 + 0.499604i \(0.166521\pi\)
\(968\) −247027. + 678700.i −0.263629 + 0.724315i
\(969\) 0 0
\(970\) −17296.4 + 98093.0i −0.0183829 + 0.104254i
\(971\) 1.59726e6i 1.69410i −0.531516 0.847048i \(-0.678377\pi\)
0.531516 0.847048i \(-0.321623\pi\)
\(972\) 0 0
\(973\) 287005. 0.303154
\(974\) 413890. + 72980.0i 0.436282 + 0.0769282i
\(975\) 0 0
\(976\) −872647. 317618.i −0.916092 0.333430i
\(977\) −673083. 802149.i −0.705146 0.840361i 0.287952 0.957645i \(-0.407026\pi\)
−0.993098 + 0.117284i \(0.962581\pi\)
\(978\) 0 0
\(979\) 43361.6 15782.3i 0.0452419 0.0164667i
\(980\) −32536.6 18785.0i −0.0338782 0.0195596i
\(981\) 0 0
\(982\) 287503. + 497970.i 0.298140 + 0.516393i
\(983\) −460198. + 548442.i −0.476253 + 0.567576i −0.949666 0.313265i \(-0.898577\pi\)
0.473413 + 0.880840i \(0.343022\pi\)
\(984\) 0 0
\(985\) −68562.3 388836.i −0.0706664 0.400769i
\(986\) 1.40166e6 247151.i 1.44175 0.254219i
\(987\) 0 0
\(988\) 4854.84 + 4073.69i 0.00497348 + 0.00417325i
\(989\) −1.22522e6 + 707381.i −1.25263 + 0.723204i
\(990\) 0 0
\(991\) −257375. + 445787.i −0.262071 + 0.453921i −0.966792 0.255564i \(-0.917739\pi\)
0.704721 + 0.709485i \(0.251072\pi\)
\(992\) 357115. + 981165.i 0.362898 + 0.997054i
\(993\) 0 0
\(994\) 585537. 491324.i 0.592628 0.497274i
\(995\) 40417.2 111045.i 0.0408244 0.112164i
\(996\) 0 0
\(997\) 200557. 1.13742e6i 0.201766 1.14427i −0.700682 0.713473i \(-0.747121\pi\)
0.902448 0.430798i \(-0.141768\pi\)
\(998\) 1.05519e6i 1.05942i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.3 66
3.2 odd 2 27.5.f.a.2.9 66
27.13 even 9 27.5.f.a.14.9 yes 66
27.14 odd 18 inner 81.5.f.a.71.3 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.9 66 3.2 odd 2
27.5.f.a.14.9 yes 66 27.13 even 9
81.5.f.a.8.3 66 1.1 even 1 trivial
81.5.f.a.71.3 66 27.14 odd 18 inner