Properties

Label 81.5.f.a.8.2
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,5,Mod(8,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.8"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.2
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.98494 - 1.05531i) q^{2} +(19.6707 + 7.15955i) q^{4} +(-10.5942 - 12.6257i) q^{5} +(7.09675 - 2.58301i) q^{7} +(-25.9633 - 14.9899i) q^{8} +(50.0816 + 86.7438i) q^{10} +(120.209 - 143.260i) q^{11} +(-9.75217 - 55.3073i) q^{13} +(-45.1995 + 7.96989i) q^{14} +(-117.001 - 98.1758i) q^{16} +(-396.435 + 228.882i) q^{17} +(-233.647 + 404.688i) q^{19} +(-118.001 - 324.205i) q^{20} +(-870.626 + 730.542i) q^{22} +(-177.454 + 487.552i) q^{23} +(61.3597 - 347.988i) q^{25} +341.302i q^{26} +158.091 q^{28} +(-1518.15 - 267.691i) q^{29} +(-719.064 - 261.718i) q^{31} +(904.971 + 1078.50i) q^{32} +(2614.18 - 951.483i) q^{34} +(-107.796 - 62.2363i) q^{35} +(-254.299 - 440.459i) q^{37} +(1825.43 - 2175.46i) q^{38} +(85.8024 + 486.610i) q^{40} +(562.688 - 99.2171i) q^{41} +(850.976 + 714.053i) q^{43} +(3390.27 - 1957.37i) q^{44} +(1576.57 - 2730.70i) q^{46} +(-54.5162 - 149.782i) q^{47} +(-1795.58 + 1506.67i) q^{49} +(-734.467 + 2017.93i) q^{50} +(204.143 - 1157.75i) q^{52} +1535.13i q^{53} -3082.26 q^{55} +(-222.974 - 39.3164i) q^{56} +(8803.55 + 3204.23i) q^{58} +(-1352.46 - 1611.80i) q^{59} +(-1362.35 + 495.855i) q^{61} +(4027.36 + 2325.20i) q^{62} +(-3056.17 - 5293.44i) q^{64} +(-594.974 + 709.063i) q^{65} +(-1241.97 - 7043.56i) q^{67} +(-9436.84 + 1663.97i) q^{68} +(579.476 + 486.238i) q^{70} +(2436.79 - 1406.88i) q^{71} +(-2132.26 + 3693.19i) q^{73} +(1057.14 + 2904.48i) q^{74} +(-7493.38 + 6287.69i) q^{76} +(483.054 - 1327.18i) q^{77} +(-992.133 + 5626.67i) q^{79} +2517.31i q^{80} -3472.36 q^{82} +(-4026.67 - 710.011i) q^{83} +(7089.69 + 2580.44i) q^{85} +(-4339.49 - 5171.60i) q^{86} +(-5268.48 + 1917.57i) q^{88} +(-5385.27 - 3109.19i) q^{89} +(-212.068 - 367.312i) q^{91} +(-6981.30 + 8319.99i) q^{92} +(168.210 + 953.968i) q^{94} +(7584.75 - 1337.40i) q^{95} +(7112.63 + 5968.20i) q^{97} +(12336.4 - 7122.44i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.98494 1.05531i −1.49623 0.263826i −0.635189 0.772356i \(-0.719078\pi\)
−0.861044 + 0.508530i \(0.830189\pi\)
\(3\) 0 0
\(4\) 19.6707 + 7.15955i 1.22942 + 0.447472i
\(5\) −10.5942 12.6257i −0.423767 0.505026i 0.511346 0.859375i \(-0.329147\pi\)
−0.935113 + 0.354349i \(0.884703\pi\)
\(6\) 0 0
\(7\) 7.09675 2.58301i 0.144832 0.0527144i −0.268587 0.963255i \(-0.586557\pi\)
0.413419 + 0.910541i \(0.364335\pi\)
\(8\) −25.9633 14.9899i −0.405677 0.234218i
\(9\) 0 0
\(10\) 50.0816 + 86.7438i 0.500816 + 0.867438i
\(11\) 120.209 143.260i 0.993463 1.18396i 0.0105406 0.999944i \(-0.496645\pi\)
0.982923 0.184019i \(-0.0589108\pi\)
\(12\) 0 0
\(13\) −9.75217 55.3073i −0.0577051 0.327262i 0.942266 0.334865i \(-0.108691\pi\)
−0.999971 + 0.00760334i \(0.997580\pi\)
\(14\) −45.1995 + 7.96989i −0.230610 + 0.0406627i
\(15\) 0 0
\(16\) −117.001 98.1758i −0.457037 0.383499i
\(17\) −396.435 + 228.882i −1.37175 + 0.791979i −0.991148 0.132761i \(-0.957616\pi\)
−0.380599 + 0.924740i \(0.624282\pi\)
\(18\) 0 0
\(19\) −233.647 + 404.688i −0.647221 + 1.12102i 0.336562 + 0.941661i \(0.390736\pi\)
−0.983784 + 0.179359i \(0.942598\pi\)
\(20\) −118.001 324.205i −0.295002 0.810512i
\(21\) 0 0
\(22\) −870.626 + 730.542i −1.79881 + 1.50938i
\(23\) −177.454 + 487.552i −0.335452 + 0.921648i 0.651214 + 0.758894i \(0.274260\pi\)
−0.986667 + 0.162754i \(0.947962\pi\)
\(24\) 0 0
\(25\) 61.3597 347.988i 0.0981755 0.556781i
\(26\) 341.302i 0.504885i
\(27\) 0 0
\(28\) 158.091 0.201647
\(29\) −1518.15 267.691i −1.80518 0.318301i −0.833127 0.553082i \(-0.813452\pi\)
−0.972048 + 0.234781i \(0.924563\pi\)
\(30\) 0 0
\(31\) −719.064 261.718i −0.748246 0.272339i −0.0603785 0.998176i \(-0.519231\pi\)
−0.687867 + 0.725836i \(0.741453\pi\)
\(32\) 904.971 + 1078.50i 0.883761 + 1.05323i
\(33\) 0 0
\(34\) 2614.18 951.483i 2.26140 0.823082i
\(35\) −107.796 62.2363i −0.0879971 0.0508051i
\(36\) 0 0
\(37\) −254.299 440.459i −0.185755 0.321738i 0.758075 0.652167i \(-0.226140\pi\)
−0.943831 + 0.330429i \(0.892807\pi\)
\(38\) 1825.43 2175.46i 1.26415 1.50655i
\(39\) 0 0
\(40\) 85.8024 + 486.610i 0.0536265 + 0.304131i
\(41\) 562.688 99.2171i 0.334734 0.0590227i −0.00375496 0.999993i \(-0.501195\pi\)
0.338489 + 0.940970i \(0.390084\pi\)
\(42\) 0 0
\(43\) 850.976 + 714.053i 0.460236 + 0.386183i 0.843218 0.537572i \(-0.180658\pi\)
−0.382982 + 0.923756i \(0.625103\pi\)
\(44\) 3390.27 1957.37i 1.75117 1.01104i
\(45\) 0 0
\(46\) 1576.57 2730.70i 0.745070 1.29050i
\(47\) −54.5162 149.782i −0.0246792 0.0678054i 0.926741 0.375700i \(-0.122598\pi\)
−0.951420 + 0.307895i \(0.900376\pi\)
\(48\) 0 0
\(49\) −1795.58 + 1506.67i −0.747847 + 0.627518i
\(50\) −734.467 + 2017.93i −0.293787 + 0.807173i
\(51\) 0 0
\(52\) 204.143 1157.75i 0.0754968 0.428164i
\(53\) 1535.13i 0.546503i 0.961943 + 0.273251i \(0.0880991\pi\)
−0.961943 + 0.273251i \(0.911901\pi\)
\(54\) 0 0
\(55\) −3082.26 −1.01893
\(56\) −222.974 39.3164i −0.0711015 0.0125371i
\(57\) 0 0
\(58\) 8803.55 + 3204.23i 2.61699 + 0.952506i
\(59\) −1352.46 1611.80i −0.388527 0.463028i 0.535959 0.844244i \(-0.319950\pi\)
−0.924486 + 0.381215i \(0.875506\pi\)
\(60\) 0 0
\(61\) −1362.35 + 495.855i −0.366124 + 0.133258i −0.518530 0.855060i \(-0.673520\pi\)
0.152405 + 0.988318i \(0.451298\pi\)
\(62\) 4027.36 + 2325.20i 1.04770 + 0.604890i
\(63\) 0 0
\(64\) −3056.17 5293.44i −0.746135 1.29234i
\(65\) −594.974 + 709.063i −0.140822 + 0.167826i
\(66\) 0 0
\(67\) −1241.97 7043.56i −0.276669 1.56907i −0.733609 0.679572i \(-0.762165\pi\)
0.456939 0.889498i \(-0.348946\pi\)
\(68\) −9436.84 + 1663.97i −2.04084 + 0.359855i
\(69\) 0 0
\(70\) 579.476 + 486.238i 0.118260 + 0.0992323i
\(71\) 2436.79 1406.88i 0.483395 0.279088i −0.238435 0.971158i \(-0.576635\pi\)
0.721830 + 0.692070i \(0.243301\pi\)
\(72\) 0 0
\(73\) −2132.26 + 3693.19i −0.400125 + 0.693036i −0.993741 0.111712i \(-0.964367\pi\)
0.593616 + 0.804749i \(0.297700\pi\)
\(74\) 1057.14 + 2904.48i 0.193051 + 0.530402i
\(75\) 0 0
\(76\) −7493.38 + 6287.69i −1.29733 + 1.08859i
\(77\) 483.054 1327.18i 0.0814730 0.223845i
\(78\) 0 0
\(79\) −992.133 + 5626.67i −0.158970 + 0.901565i 0.796096 + 0.605171i \(0.206895\pi\)
−0.955066 + 0.296394i \(0.904216\pi\)
\(80\) 2517.31i 0.393330i
\(81\) 0 0
\(82\) −3472.36 −0.516412
\(83\) −4026.67 710.011i −0.584508 0.103064i −0.126428 0.991976i \(-0.540351\pi\)
−0.458079 + 0.888911i \(0.651462\pi\)
\(84\) 0 0
\(85\) 7089.69 + 2580.44i 0.981272 + 0.357154i
\(86\) −4339.49 5171.60i −0.586735 0.699243i
\(87\) 0 0
\(88\) −5268.48 + 1917.57i −0.680330 + 0.247620i
\(89\) −5385.27 3109.19i −0.679873 0.392525i 0.119934 0.992782i \(-0.461732\pi\)
−0.799807 + 0.600257i \(0.795065\pi\)
\(90\) 0 0
\(91\) −212.068 367.312i −0.0256090 0.0443560i
\(92\) −6981.30 + 8319.99i −0.824823 + 0.982986i
\(93\) 0 0
\(94\) 168.210 + 953.968i 0.0190369 + 0.107964i
\(95\) 7584.75 1337.40i 0.840416 0.148188i
\(96\) 0 0
\(97\) 7112.63 + 5968.20i 0.755939 + 0.634308i 0.937066 0.349152i \(-0.113530\pi\)
−0.181127 + 0.983460i \(0.557975\pi\)
\(98\) 12336.4 7122.44i 1.28451 0.741612i
\(99\) 0 0
\(100\) 3698.42 6405.86i 0.369842 0.640586i
\(101\) −6539.12 17966.1i −0.641027 1.76121i −0.648476 0.761235i \(-0.724593\pi\)
0.00744872 0.999972i \(-0.497629\pi\)
\(102\) 0 0
\(103\) −4736.32 + 3974.24i −0.446443 + 0.374611i −0.838114 0.545495i \(-0.816342\pi\)
0.391671 + 0.920105i \(0.371897\pi\)
\(104\) −575.854 + 1582.15i −0.0532409 + 0.146278i
\(105\) 0 0
\(106\) 1620.03 9187.63i 0.144182 0.817696i
\(107\) 1546.43i 0.135072i 0.997717 + 0.0675358i \(0.0215137\pi\)
−0.997717 + 0.0675358i \(0.978486\pi\)
\(108\) 0 0
\(109\) 8909.57 0.749901 0.374951 0.927045i \(-0.377660\pi\)
0.374951 + 0.927045i \(0.377660\pi\)
\(110\) 18447.1 + 3252.73i 1.52456 + 0.268821i
\(111\) 0 0
\(112\) −1083.92 394.514i −0.0864093 0.0314504i
\(113\) 10815.5 + 12889.4i 0.847012 + 1.00943i 0.999776 + 0.0211670i \(0.00673816\pi\)
−0.152764 + 0.988263i \(0.548817\pi\)
\(114\) 0 0
\(115\) 8035.64 2924.73i 0.607610 0.221152i
\(116\) −27946.6 16135.0i −2.07689 1.19909i
\(117\) 0 0
\(118\) 6393.46 + 11073.8i 0.459168 + 0.795302i
\(119\) −2222.20 + 2648.31i −0.156924 + 0.187015i
\(120\) 0 0
\(121\) −3530.71 20023.6i −0.241152 1.36764i
\(122\) 8676.85 1529.96i 0.582965 0.102792i
\(123\) 0 0
\(124\) −12270.7 10296.4i −0.798043 0.669638i
\(125\) −13964.6 + 8062.45i −0.893732 + 0.515997i
\(126\) 0 0
\(127\) −7193.47 + 12459.5i −0.445996 + 0.772488i −0.998121 0.0612733i \(-0.980484\pi\)
0.552125 + 0.833762i \(0.313817\pi\)
\(128\) 5000.37 + 13738.4i 0.305198 + 0.838526i
\(129\) 0 0
\(130\) 4309.16 3615.82i 0.254980 0.213954i
\(131\) 1057.26 2904.79i 0.0616082 0.169267i −0.905069 0.425264i \(-0.860181\pi\)
0.966678 + 0.255997i \(0.0824036\pi\)
\(132\) 0 0
\(133\) −612.822 + 3475.48i −0.0346442 + 0.196477i
\(134\) 43465.9i 2.42069i
\(135\) 0 0
\(136\) 13723.7 0.741982
\(137\) 5162.83 + 910.346i 0.275072 + 0.0485026i 0.309482 0.950905i \(-0.399844\pi\)
−0.0344104 + 0.999408i \(0.510955\pi\)
\(138\) 0 0
\(139\) −19913.9 7248.08i −1.03069 0.375140i −0.229345 0.973345i \(-0.573659\pi\)
−0.801343 + 0.598205i \(0.795881\pi\)
\(140\) −1674.85 1996.01i −0.0854514 0.101837i
\(141\) 0 0
\(142\) −16068.7 + 5848.54i −0.796902 + 0.290049i
\(143\) −9095.60 5251.35i −0.444794 0.256802i
\(144\) 0 0
\(145\) 12703.8 + 22003.6i 0.604224 + 1.04655i
\(146\) 16658.9 19853.3i 0.781521 0.931381i
\(147\) 0 0
\(148\) −1848.75 10484.8i −0.0844025 0.478671i
\(149\) 28666.8 5054.73i 1.29124 0.227680i 0.514493 0.857495i \(-0.327980\pi\)
0.776745 + 0.629815i \(0.216869\pi\)
\(150\) 0 0
\(151\) −27382.8 22976.9i −1.20095 1.00771i −0.999603 0.0281918i \(-0.991025\pi\)
−0.201343 0.979521i \(-0.564530\pi\)
\(152\) 12132.5 7004.70i 0.525125 0.303181i
\(153\) 0 0
\(154\) −4291.62 + 7433.31i −0.180959 + 0.313430i
\(155\) 4313.54 + 11851.3i 0.179544 + 0.493292i
\(156\) 0 0
\(157\) 18847.0 15814.5i 0.764616 0.641589i −0.174708 0.984620i \(-0.555898\pi\)
0.939324 + 0.343031i \(0.111454\pi\)
\(158\) 11875.7 32628.2i 0.475713 1.30701i
\(159\) 0 0
\(160\) 4029.37 22851.7i 0.157397 0.892644i
\(161\) 3918.40i 0.151167i
\(162\) 0 0
\(163\) 17266.5 0.649875 0.324938 0.945735i \(-0.394657\pi\)
0.324938 + 0.945735i \(0.394657\pi\)
\(164\) 11778.8 + 2076.92i 0.437940 + 0.0772206i
\(165\) 0 0
\(166\) 23350.1 + 8498.74i 0.847369 + 0.308417i
\(167\) 3705.73 + 4416.31i 0.132874 + 0.158353i 0.828379 0.560168i \(-0.189264\pi\)
−0.695505 + 0.718522i \(0.744819\pi\)
\(168\) 0 0
\(169\) 23874.8 8689.71i 0.835922 0.304251i
\(170\) −39708.2 22925.5i −1.37399 0.793271i
\(171\) 0 0
\(172\) 11627.0 + 20138.5i 0.393016 + 0.680724i
\(173\) −12635.0 + 15057.8i −0.422166 + 0.503118i −0.934645 0.355582i \(-0.884283\pi\)
0.512479 + 0.858700i \(0.328727\pi\)
\(174\) 0 0
\(175\) −463.401 2628.08i −0.0151315 0.0858148i
\(176\) −28129.2 + 4959.95i −0.908098 + 0.160122i
\(177\) 0 0
\(178\) 28949.4 + 24291.4i 0.913690 + 0.766677i
\(179\) 19435.1 11220.9i 0.606570 0.350203i −0.165052 0.986285i \(-0.552779\pi\)
0.771622 + 0.636082i \(0.219446\pi\)
\(180\) 0 0
\(181\) 13955.7 24172.0i 0.425985 0.737828i −0.570527 0.821279i \(-0.693261\pi\)
0.996512 + 0.0834510i \(0.0265942\pi\)
\(182\) 881.586 + 2422.14i 0.0266147 + 0.0731233i
\(183\) 0 0
\(184\) 11915.7 9998.43i 0.351951 0.295322i
\(185\) −2866.99 + 7876.99i −0.0837689 + 0.230153i
\(186\) 0 0
\(187\) −14865.6 + 84306.8i −0.425107 + 2.41090i
\(188\) 3336.63i 0.0944045i
\(189\) 0 0
\(190\) −46805.6 −1.29655
\(191\) −52758.3 9302.72i −1.44619 0.255002i −0.605207 0.796068i \(-0.706910\pi\)
−0.840980 + 0.541067i \(0.818021\pi\)
\(192\) 0 0
\(193\) −40023.4 14567.3i −1.07448 0.391080i −0.256631 0.966509i \(-0.582613\pi\)
−0.817851 + 0.575430i \(0.804835\pi\)
\(194\) −36270.3 43225.3i −0.963714 1.14851i
\(195\) 0 0
\(196\) −46107.4 + 16781.7i −1.20021 + 0.436842i
\(197\) 7509.39 + 4335.55i 0.193496 + 0.111715i 0.593618 0.804747i \(-0.297699\pi\)
−0.400122 + 0.916462i \(0.631032\pi\)
\(198\) 0 0
\(199\) −31430.7 54439.5i −0.793684 1.37470i −0.923671 0.383185i \(-0.874827\pi\)
0.129987 0.991516i \(-0.458506\pi\)
\(200\) −6809.42 + 8115.15i −0.170235 + 0.202879i
\(201\) 0 0
\(202\) 20176.5 + 114427.i 0.494473 + 2.80430i
\(203\) −11465.4 + 2021.66i −0.278226 + 0.0490587i
\(204\) 0 0
\(205\) −7213.90 6053.18i −0.171657 0.144038i
\(206\) 32540.6 18787.3i 0.766816 0.442721i
\(207\) 0 0
\(208\) −4288.82 + 7428.46i −0.0991314 + 0.171701i
\(209\) 29889.0 + 82119.3i 0.684256 + 1.87998i
\(210\) 0 0
\(211\) 43363.7 36386.5i 0.974006 0.817288i −0.00916815 0.999958i \(-0.502918\pi\)
0.983174 + 0.182670i \(0.0584739\pi\)
\(212\) −10990.8 + 30197.0i −0.244545 + 0.671881i
\(213\) 0 0
\(214\) 1631.96 9255.31i 0.0356354 0.202099i
\(215\) 18308.9i 0.396083i
\(216\) 0 0
\(217\) −5779.04 −0.122726
\(218\) −53323.2 9402.32i −1.12203 0.197844i
\(219\) 0 0
\(220\) −60630.2 22067.6i −1.25269 0.455942i
\(221\) 16524.9 + 19693.7i 0.338342 + 0.403220i
\(222\) 0 0
\(223\) −32580.8 + 11858.5i −0.655168 + 0.238462i −0.648149 0.761514i \(-0.724456\pi\)
−0.00701901 + 0.999975i \(0.502234\pi\)
\(224\) 9208.14 + 5316.32i 0.183517 + 0.105953i
\(225\) 0 0
\(226\) −51127.8 88555.9i −1.00101 1.73381i
\(227\) 3339.70 3980.10i 0.0648120 0.0772400i −0.732664 0.680590i \(-0.761723\pi\)
0.797476 + 0.603350i \(0.206168\pi\)
\(228\) 0 0
\(229\) 7561.02 + 42880.7i 0.144182 + 0.817694i 0.968021 + 0.250870i \(0.0807168\pi\)
−0.823839 + 0.566824i \(0.808172\pi\)
\(230\) −51179.3 + 9024.29i −0.967472 + 0.170591i
\(231\) 0 0
\(232\) 35403.6 + 29707.1i 0.657766 + 0.551931i
\(233\) 81822.2 47240.1i 1.50716 0.870159i 0.507194 0.861832i \(-0.330683\pi\)
0.999965 0.00832740i \(-0.00265072\pi\)
\(234\) 0 0
\(235\) −1313.54 + 2275.12i −0.0237853 + 0.0411973i
\(236\) −15064.1 41388.3i −0.270470 0.743110i
\(237\) 0 0
\(238\) 16094.5 13504.9i 0.284134 0.238417i
\(239\) −6808.48 + 18706.1i −0.119194 + 0.327483i −0.984914 0.173046i \(-0.944639\pi\)
0.865720 + 0.500529i \(0.166861\pi\)
\(240\) 0 0
\(241\) 5724.19 32463.5i 0.0985554 0.558935i −0.895044 0.445977i \(-0.852856\pi\)
0.993600 0.112958i \(-0.0360326\pi\)
\(242\) 123566.i 2.10993i
\(243\) 0 0
\(244\) −30348.5 −0.509750
\(245\) 38045.4 + 6708.43i 0.633826 + 0.111761i
\(246\) 0 0
\(247\) 24660.8 + 8975.79i 0.404215 + 0.147122i
\(248\) 14746.2 + 17573.8i 0.239759 + 0.285734i
\(249\) 0 0
\(250\) 92085.4 33516.3i 1.47337 0.536261i
\(251\) −36889.4 21298.1i −0.585537 0.338060i 0.177794 0.984068i \(-0.443104\pi\)
−0.763331 + 0.646008i \(0.776437\pi\)
\(252\) 0 0
\(253\) 48514.8 + 84030.2i 0.757938 + 1.31279i
\(254\) 56201.0 66977.8i 0.871118 1.03816i
\(255\) 0 0
\(256\) 1553.65 + 8811.21i 0.0237069 + 0.134448i
\(257\) 14099.5 2486.12i 0.213470 0.0376406i −0.0658901 0.997827i \(-0.520989\pi\)
0.279360 + 0.960186i \(0.409878\pi\)
\(258\) 0 0
\(259\) −2942.41 2468.97i −0.0438635 0.0368058i
\(260\) −16780.1 + 9688.01i −0.248227 + 0.143314i
\(261\) 0 0
\(262\) −9393.07 + 16269.3i −0.136837 + 0.237009i
\(263\) −32691.1 89818.0i −0.472626 1.29853i −0.915634 0.402012i \(-0.868311\pi\)
0.443008 0.896518i \(-0.353911\pi\)
\(264\) 0 0
\(265\) 19382.0 16263.4i 0.275998 0.231590i
\(266\) 7335.40 20153.8i 0.103672 0.284836i
\(267\) 0 0
\(268\) 25998.3 147444.i 0.361972 2.05285i
\(269\) 18139.2i 0.250677i −0.992114 0.125338i \(-0.959998\pi\)
0.992114 0.125338i \(-0.0400017\pi\)
\(270\) 0 0
\(271\) 128010. 1.74303 0.871513 0.490373i \(-0.163140\pi\)
0.871513 + 0.490373i \(0.163140\pi\)
\(272\) 68854.1 + 12140.8i 0.930662 + 0.164101i
\(273\) 0 0
\(274\) −29938.5 10896.7i −0.398776 0.145143i
\(275\) −42476.6 50621.7i −0.561674 0.669377i
\(276\) 0 0
\(277\) 50103.9 18236.3i 0.652998 0.237672i 0.00578738 0.999983i \(-0.498158\pi\)
0.647210 + 0.762312i \(0.275936\pi\)
\(278\) 111535. + 64394.6i 1.44318 + 0.833220i
\(279\) 0 0
\(280\) 1865.84 + 3231.72i 0.0237989 + 0.0412209i
\(281\) −19299.9 + 23000.8i −0.244424 + 0.291293i −0.874283 0.485416i \(-0.838668\pi\)
0.629859 + 0.776709i \(0.283113\pi\)
\(282\) 0 0
\(283\) 449.898 + 2551.50i 0.00561747 + 0.0318583i 0.987488 0.157696i \(-0.0504067\pi\)
−0.981870 + 0.189555i \(0.939296\pi\)
\(284\) 58006.1 10228.0i 0.719178 0.126811i
\(285\) 0 0
\(286\) 48894.8 + 41027.6i 0.597765 + 0.501584i
\(287\) 3736.98 2157.55i 0.0453688 0.0261937i
\(288\) 0 0
\(289\) 63013.3 109142.i 0.754461 1.30676i
\(290\) −52810.9 145097.i −0.627953 1.72529i
\(291\) 0 0
\(292\) −68384.7 + 57381.6i −0.802035 + 0.672987i
\(293\) −16296.1 + 44773.2i −0.189823 + 0.521535i −0.997698 0.0678198i \(-0.978396\pi\)
0.807874 + 0.589355i \(0.200618\pi\)
\(294\) 0 0
\(295\) −6021.82 + 34151.4i −0.0691964 + 0.392432i
\(296\) 15247.7i 0.174029i
\(297\) 0 0
\(298\) −176903. −1.99206
\(299\) 28695.7 + 5059.83i 0.320978 + 0.0565970i
\(300\) 0 0
\(301\) 7883.57 + 2869.38i 0.0870141 + 0.0316706i
\(302\) 139636. + 166412.i 1.53103 + 1.82461i
\(303\) 0 0
\(304\) 67067.6 24410.6i 0.725714 0.264138i
\(305\) 20693.5 + 11947.4i 0.222451 + 0.128432i
\(306\) 0 0
\(307\) 11346.8 + 19653.3i 0.120392 + 0.208525i 0.919922 0.392101i \(-0.128252\pi\)
−0.799530 + 0.600626i \(0.794918\pi\)
\(308\) 19004.0 22648.1i 0.200329 0.238743i
\(309\) 0 0
\(310\) −13309.4 75481.6i −0.138496 0.785449i
\(311\) 33510.1 5908.73i 0.346461 0.0610905i 0.00229010 0.999997i \(-0.499271\pi\)
0.344171 + 0.938907i \(0.388160\pi\)
\(312\) 0 0
\(313\) −110952. 93099.5i −1.13252 0.950295i −0.133349 0.991069i \(-0.542573\pi\)
−0.999168 + 0.0407737i \(0.987018\pi\)
\(314\) −129487. + 74759.6i −1.31331 + 0.758242i
\(315\) 0 0
\(316\) −59800.3 + 103577.i −0.598866 + 1.03727i
\(317\) 10091.2 + 27725.3i 0.100421 + 0.275904i 0.979722 0.200363i \(-0.0642120\pi\)
−0.879301 + 0.476266i \(0.841990\pi\)
\(318\) 0 0
\(319\) −220845. + 185311.i −2.17023 + 1.82104i
\(320\) −34455.5 + 94665.7i −0.336480 + 0.924470i
\(321\) 0 0
\(322\) 4135.11 23451.4i 0.0398819 0.226181i
\(323\) 213910.i 2.05034i
\(324\) 0 0
\(325\) −19844.7 −0.187878
\(326\) −103339. 18221.5i −0.972366 0.171454i
\(327\) 0 0
\(328\) −16096.5 5858.65i −0.149618 0.0544565i
\(329\) −773.777 922.151i −0.00714865 0.00851943i
\(330\) 0 0
\(331\) −22731.9 + 8273.74i −0.207482 + 0.0755172i −0.443670 0.896190i \(-0.646324\pi\)
0.236189 + 0.971707i \(0.424102\pi\)
\(332\) −74124.1 42795.6i −0.672486 0.388260i
\(333\) 0 0
\(334\) −17518.0 30342.0i −0.157033 0.271989i
\(335\) −75771.8 + 90301.4i −0.675178 + 0.804646i
\(336\) 0 0
\(337\) 7201.64 + 40842.5i 0.0634120 + 0.359627i 0.999959 + 0.00908453i \(0.00289173\pi\)
−0.936547 + 0.350543i \(0.885997\pi\)
\(338\) −152059. + 26812.1i −1.33100 + 0.234692i
\(339\) 0 0
\(340\) 120984. + 101518.i 1.04658 + 0.878183i
\(341\) −123932. + 71552.0i −1.06579 + 0.615337i
\(342\) 0 0
\(343\) −17917.5 + 31034.0i −0.152296 + 0.263784i
\(344\) −11390.5 31295.3i −0.0962559 0.264461i
\(345\) 0 0
\(346\) 91510.3 76786.2i 0.764395 0.641403i
\(347\) −36634.2 + 100652.i −0.304248 + 0.835916i 0.689501 + 0.724284i \(0.257830\pi\)
−0.993750 + 0.111631i \(0.964392\pi\)
\(348\) 0 0
\(349\) −35243.1 + 199874.i −0.289350 + 1.64098i 0.399970 + 0.916528i \(0.369020\pi\)
−0.689320 + 0.724457i \(0.742091\pi\)
\(350\) 16217.9i 0.132391i
\(351\) 0 0
\(352\) 263292. 2.12496
\(353\) 24057.6 + 4242.00i 0.193064 + 0.0340425i 0.269344 0.963044i \(-0.413193\pi\)
−0.0762797 + 0.997086i \(0.524304\pi\)
\(354\) 0 0
\(355\) −43578.6 15861.3i −0.345794 0.125859i
\(356\) −83671.7 99716.0i −0.660204 0.786801i
\(357\) 0 0
\(358\) −128159. + 46646.2i −0.999963 + 0.363957i
\(359\) −33774.1 19499.5i −0.262056 0.151298i 0.363216 0.931705i \(-0.381679\pi\)
−0.625272 + 0.780407i \(0.715012\pi\)
\(360\) 0 0
\(361\) −44021.2 76247.0i −0.337791 0.585071i
\(362\) −109033. + 129940.i −0.832032 + 0.991577i
\(363\) 0 0
\(364\) −1541.73 8743.60i −0.0116361 0.0659914i
\(365\) 69218.5 12205.1i 0.519561 0.0916127i
\(366\) 0 0
\(367\) −107689. 90361.5i −0.799536 0.670890i 0.148550 0.988905i \(-0.452539\pi\)
−0.948086 + 0.318015i \(0.896984\pi\)
\(368\) 68628.2 39622.5i 0.506765 0.292581i
\(369\) 0 0
\(370\) 25471.4 44117.7i 0.186058 0.322262i
\(371\) 3965.24 + 10894.4i 0.0288086 + 0.0791509i
\(372\) 0 0
\(373\) 106543. 89399.9i 0.765783 0.642568i −0.173842 0.984774i \(-0.555618\pi\)
0.939625 + 0.342205i \(0.111174\pi\)
\(374\) 177939. 488883.i 1.27212 3.49512i
\(375\) 0 0
\(376\) −829.801 + 4706.04i −0.00586946 + 0.0332874i
\(377\) 86575.5i 0.609133i
\(378\) 0 0
\(379\) −205238. −1.42883 −0.714414 0.699723i \(-0.753307\pi\)
−0.714414 + 0.699723i \(0.753307\pi\)
\(380\) 158772. + 27995.9i 1.09953 + 0.193877i
\(381\) 0 0
\(382\) 305938. + 111352.i 2.09656 + 0.763084i
\(383\) −118294. 140977.i −0.806428 0.961064i 0.193371 0.981126i \(-0.438058\pi\)
−0.999799 + 0.0200622i \(0.993614\pi\)
\(384\) 0 0
\(385\) −21874.1 + 7961.50i −0.147573 + 0.0537123i
\(386\) 224165. + 129421.i 1.50450 + 0.868624i
\(387\) 0 0
\(388\) 97180.7 + 168322.i 0.645530 + 1.11809i
\(389\) 82339.4 98128.2i 0.544137 0.648477i −0.421973 0.906608i \(-0.638662\pi\)
0.966110 + 0.258131i \(0.0831067\pi\)
\(390\) 0 0
\(391\) −41242.6 233899.i −0.269770 1.52994i
\(392\) 69204.1 12202.6i 0.450360 0.0794106i
\(393\) 0 0
\(394\) −40367.9 33872.7i −0.260042 0.218201i
\(395\) 81551.2 47083.6i 0.522680 0.301769i
\(396\) 0 0
\(397\) −40759.2 + 70596.9i −0.258609 + 0.447925i −0.965870 0.259029i \(-0.916598\pi\)
0.707260 + 0.706953i \(0.249931\pi\)
\(398\) 130660. + 358986.i 0.824854 + 2.26627i
\(399\) 0 0
\(400\) −41343.2 + 34691.0i −0.258395 + 0.216819i
\(401\) −20232.1 + 55587.3i −0.125821 + 0.345690i −0.986570 0.163339i \(-0.947773\pi\)
0.860749 + 0.509030i \(0.169996\pi\)
\(402\) 0 0
\(403\) −7462.48 + 42321.8i −0.0459487 + 0.260588i
\(404\) 400222.i 2.45210i
\(405\) 0 0
\(406\) 70753.2 0.429234
\(407\) −93669.0 16516.4i −0.565467 0.0997070i
\(408\) 0 0
\(409\) 273913. + 99696.1i 1.63744 + 0.595980i 0.986589 0.163225i \(-0.0521897\pi\)
0.650852 + 0.759205i \(0.274412\pi\)
\(410\) 36786.8 + 43840.8i 0.218839 + 0.260802i
\(411\) 0 0
\(412\) −121620. + 44266.2i −0.716494 + 0.260782i
\(413\) −13761.4 7945.14i −0.0806793 0.0465802i
\(414\) 0 0
\(415\) 33695.0 + 58361.4i 0.195645 + 0.338867i
\(416\) 50823.6 60569.2i 0.293683 0.349998i
\(417\) 0 0
\(418\) −92222.7 523021.i −0.527819 2.99341i
\(419\) −121024. + 21339.9i −0.689358 + 0.121552i −0.507344 0.861744i \(-0.669373\pi\)
−0.182014 + 0.983296i \(0.558262\pi\)
\(420\) 0 0
\(421\) −58336.5 48950.2i −0.329137 0.276179i 0.463211 0.886248i \(-0.346697\pi\)
−0.792348 + 0.610069i \(0.791142\pi\)
\(422\) −297928. + 172009.i −1.67296 + 0.965886i
\(423\) 0 0
\(424\) 23011.4 39857.0i 0.128001 0.221704i
\(425\) 55323.0 + 151999.i 0.306287 + 0.841516i
\(426\) 0 0
\(427\) −8387.46 + 7037.92i −0.0460018 + 0.0386001i
\(428\) −11071.8 + 30419.4i −0.0604407 + 0.166059i
\(429\) 0 0
\(430\) −19321.5 + 109578.i −0.104497 + 0.592633i
\(431\) 188543.i 1.01497i 0.861659 + 0.507487i \(0.169425\pi\)
−0.861659 + 0.507487i \(0.830575\pi\)
\(432\) 0 0
\(433\) 4635.55 0.0247244 0.0123622 0.999924i \(-0.496065\pi\)
0.0123622 + 0.999924i \(0.496065\pi\)
\(434\) 34587.2 + 6098.66i 0.183627 + 0.0323783i
\(435\) 0 0
\(436\) 175258. + 63788.5i 0.921942 + 0.335560i
\(437\) −155845. 185729.i −0.816074 0.972559i
\(438\) 0 0
\(439\) 45262.1 16474.0i 0.234858 0.0854813i −0.221910 0.975067i \(-0.571229\pi\)
0.456768 + 0.889586i \(0.349007\pi\)
\(440\) 80025.7 + 46202.9i 0.413356 + 0.238651i
\(441\) 0 0
\(442\) −78117.9 135304.i −0.399858 0.692574i
\(443\) −8365.55 + 9969.67i −0.0426272 + 0.0508011i −0.786937 0.617034i \(-0.788334\pi\)
0.744310 + 0.667835i \(0.232779\pi\)
\(444\) 0 0
\(445\) 17797.0 + 100932.i 0.0898725 + 0.509692i
\(446\) 207508. 36589.3i 1.04320 0.183944i
\(447\) 0 0
\(448\) −35361.9 29672.1i −0.176189 0.147840i
\(449\) −128969. + 74460.5i −0.639726 + 0.369346i −0.784509 0.620118i \(-0.787085\pi\)
0.144783 + 0.989463i \(0.453752\pi\)
\(450\) 0 0
\(451\) 53426.4 92537.3i 0.262666 0.454950i
\(452\) 120466. + 330978.i 0.589641 + 1.62003i
\(453\) 0 0
\(454\) −24188.1 + 20296.2i −0.117352 + 0.0984699i
\(455\) −2390.87 + 6568.87i −0.0115487 + 0.0317298i
\(456\) 0 0
\(457\) 3815.40 21638.2i 0.0182687 0.103607i −0.974310 0.225211i \(-0.927693\pi\)
0.992579 + 0.121604i \(0.0388039\pi\)
\(458\) 264617.i 1.26150i
\(459\) 0 0
\(460\) 179006. 0.845966
\(461\) −136057. 23990.6i −0.640206 0.112886i −0.155884 0.987775i \(-0.549823\pi\)
−0.484322 + 0.874890i \(0.660934\pi\)
\(462\) 0 0
\(463\) −192898. 70209.0i −0.899840 0.327515i −0.149651 0.988739i \(-0.547815\pi\)
−0.750189 + 0.661224i \(0.770037\pi\)
\(464\) 151345. + 180366.i 0.702963 + 0.837759i
\(465\) 0 0
\(466\) −539553. + 196381.i −2.48463 + 0.904333i
\(467\) 186474. + 107661.i 0.855035 + 0.493655i 0.862346 0.506319i \(-0.168994\pi\)
−0.00731154 + 0.999973i \(0.502327\pi\)
\(468\) 0 0
\(469\) −27007.5 46778.4i −0.122783 0.212667i
\(470\) 10262.4 12230.3i 0.0464573 0.0553656i
\(471\) 0 0
\(472\) 10953.6 + 62121.0i 0.0491670 + 0.278840i
\(473\) 204590. 36074.7i 0.914454 0.161243i
\(474\) 0 0
\(475\) 126490. + 106138.i 0.560621 + 0.470417i
\(476\) −62672.9 + 36184.2i −0.276609 + 0.159700i
\(477\) 0 0
\(478\) 60489.0 104770.i 0.264741 0.458544i
\(479\) −72574.2 199396.i −0.316309 0.869051i −0.991347 0.131268i \(-0.958095\pi\)
0.675038 0.737783i \(-0.264127\pi\)
\(480\) 0 0
\(481\) −21880.6 + 18360.0i −0.0945735 + 0.0793566i
\(482\) −68517.9 + 188251.i −0.294924 + 0.810296i
\(483\) 0 0
\(484\) 73908.7 419157.i 0.315504 1.78931i
\(485\) 153030.i 0.650568i
\(486\) 0 0
\(487\) −5941.97 −0.0250537 −0.0125269 0.999922i \(-0.503988\pi\)
−0.0125269 + 0.999922i \(0.503988\pi\)
\(488\) 42803.9 + 7547.49i 0.179740 + 0.0316930i
\(489\) 0 0
\(490\) −220620. 80299.1i −0.918867 0.334440i
\(491\) 240755. + 286921.i 0.998649 + 1.19014i 0.981729 + 0.190287i \(0.0609418\pi\)
0.0169206 + 0.999857i \(0.494614\pi\)
\(492\) 0 0
\(493\) 663118. 241355.i 2.72833 0.993032i
\(494\) −138121. 79744.2i −0.565986 0.326772i
\(495\) 0 0
\(496\) 58437.1 + 101216.i 0.237534 + 0.411421i
\(497\) 13659.3 16278.6i 0.0552989 0.0659027i
\(498\) 0 0
\(499\) −13156.0 74611.3i −0.0528351 0.299642i 0.946927 0.321448i \(-0.104170\pi\)
−0.999762 + 0.0218057i \(0.993058\pi\)
\(500\) −332416. + 58614.0i −1.32967 + 0.234456i
\(501\) 0 0
\(502\) 198305. + 166397.i 0.786911 + 0.660296i
\(503\) −88820.2 + 51280.3i −0.351055 + 0.202682i −0.665150 0.746710i \(-0.731632\pi\)
0.314095 + 0.949392i \(0.398299\pi\)
\(504\) 0 0
\(505\) −157557. + 272896.i −0.617809 + 1.07008i
\(506\) −201681. 554113.i −0.787704 2.16420i
\(507\) 0 0
\(508\) −230705. + 193584.i −0.893983 + 0.750141i
\(509\) 117615. 323146.i 0.453972 1.24728i −0.475934 0.879481i \(-0.657890\pi\)
0.929906 0.367797i \(-0.119888\pi\)
\(510\) 0 0
\(511\) −5592.62 + 31717.3i −0.0214177 + 0.121466i
\(512\) 288296.i 1.09976i
\(513\) 0 0
\(514\) −87008.2 −0.329332
\(515\) 100355. + 17695.3i 0.378376 + 0.0667179i
\(516\) 0 0
\(517\) −28011.1 10195.2i −0.104797 0.0381430i
\(518\) 15004.6 + 17881.8i 0.0559197 + 0.0666425i
\(519\) 0 0
\(520\) 26076.3 9491.00i 0.0964361 0.0350999i
\(521\) −2025.59 1169.47i −0.00746235 0.00430839i 0.496264 0.868172i \(-0.334705\pi\)
−0.503727 + 0.863863i \(0.668038\pi\)
\(522\) 0 0
\(523\) 96052.9 + 166369.i 0.351162 + 0.608230i 0.986453 0.164042i \(-0.0524534\pi\)
−0.635291 + 0.772272i \(0.719120\pi\)
\(524\) 41594.0 49569.8i 0.151485 0.180532i
\(525\) 0 0
\(526\) 100869. + 572054.i 0.364573 + 2.06760i
\(527\) 344965. 60826.6i 1.24209 0.219014i
\(528\) 0 0
\(529\) 8153.95 + 6841.97i 0.0291378 + 0.0244495i
\(530\) −133163. + 76881.5i −0.474057 + 0.273697i
\(531\) 0 0
\(532\) −36937.5 + 63977.7i −0.130510 + 0.226050i
\(533\) −10974.9 30153.2i −0.0386318 0.106140i
\(534\) 0 0
\(535\) 19524.7 16383.2i 0.0682146 0.0572389i
\(536\) −73336.8 + 201491.i −0.255266 + 0.701336i
\(537\) 0 0
\(538\) −19142.4 + 108562.i −0.0661352 + 0.375071i
\(539\) 438350.i 1.50884i
\(540\) 0 0
\(541\) −97098.5 −0.331755 −0.165878 0.986146i \(-0.553046\pi\)
−0.165878 + 0.986146i \(0.553046\pi\)
\(542\) −766129. 135089.i −2.60797 0.459856i
\(543\) 0 0
\(544\) −605612. 220425.i −2.04643 0.744839i
\(545\) −94389.6 112489.i −0.317783 0.378720i
\(546\) 0 0
\(547\) 187642. 68296.1i 0.627127 0.228256i −0.00885339 0.999961i \(-0.502818\pi\)
0.635980 + 0.771705i \(0.280596\pi\)
\(548\) 95038.7 + 54870.6i 0.316475 + 0.182717i
\(549\) 0 0
\(550\) 200799. + 347793.i 0.663797 + 1.14973i
\(551\) 463043. 551833.i 1.52517 1.81763i
\(552\) 0 0
\(553\) 7492.79 + 42493.7i 0.0245015 + 0.138955i
\(554\) −319113. + 56268.3i −1.03974 + 0.183334i
\(555\) 0 0
\(556\) −339828. 285149.i −1.09928 0.922408i
\(557\) −136110. + 78583.1i −0.438712 + 0.253290i −0.703051 0.711139i \(-0.748179\pi\)
0.264339 + 0.964430i \(0.414846\pi\)
\(558\) 0 0
\(559\) 31193.5 54028.7i 0.0998253 0.172902i
\(560\) 6502.23 + 17864.7i 0.0207342 + 0.0569666i
\(561\) 0 0
\(562\) 139782. 117291.i 0.442566 0.371357i
\(563\) −164752. + 452653.i −0.519773 + 1.42807i 0.350997 + 0.936376i \(0.385843\pi\)
−0.870771 + 0.491689i \(0.836380\pi\)
\(564\) 0 0
\(565\) 48155.9 273105.i 0.150852 0.855526i
\(566\) 15745.3i 0.0491495i
\(567\) 0 0
\(568\) −84356.3 −0.261469
\(569\) 431178. + 76028.3i 1.33178 + 0.234828i 0.793825 0.608146i \(-0.208087\pi\)
0.537953 + 0.842975i \(0.319198\pi\)
\(570\) 0 0
\(571\) 86789.3 + 31588.7i 0.266191 + 0.0968857i 0.471668 0.881776i \(-0.343652\pi\)
−0.205476 + 0.978662i \(0.565874\pi\)
\(572\) −141320. 168418.i −0.431927 0.514750i
\(573\) 0 0
\(574\) −24642.5 + 8969.12i −0.0747929 + 0.0272224i
\(575\) 158774. + 91668.0i 0.480223 + 0.277257i
\(576\) 0 0
\(577\) −121423. 210311.i −0.364711 0.631699i 0.624018 0.781410i \(-0.285499\pi\)
−0.988730 + 0.149711i \(0.952166\pi\)
\(578\) −492309. + 586711.i −1.47361 + 1.75618i
\(579\) 0 0
\(580\) 92356.6 + 523780.i 0.274544 + 1.55702i
\(581\) −30410.3 + 5362.15i −0.0900882 + 0.0158850i
\(582\) 0 0
\(583\) 219922. + 184536.i 0.647039 + 0.542930i
\(584\) 110721. 63925.0i 0.324643 0.187433i
\(585\) 0 0
\(586\) 144781. 250768.i 0.421614 0.730258i
\(587\) −188159. 516964.i −0.546072 1.50032i −0.838971 0.544177i \(-0.816842\pi\)
0.292899 0.956144i \(-0.405380\pi\)
\(588\) 0 0
\(589\) 273921. 229847.i 0.789579 0.662535i
\(590\) 72080.4 198039.i 0.207068 0.568915i
\(591\) 0 0
\(592\) −13489.1 + 76500.3i −0.0384892 + 0.218283i
\(593\) 265204.i 0.754172i 0.926178 + 0.377086i \(0.123074\pi\)
−0.926178 + 0.377086i \(0.876926\pi\)
\(594\) 0 0
\(595\) 56979.0 0.160946
\(596\) 600085. + 105811.i 1.68935 + 0.297878i
\(597\) 0 0
\(598\) −166402. 60565.5i −0.465326 0.169365i
\(599\) −96884.8 115463.i −0.270024 0.321802i 0.613944 0.789350i \(-0.289582\pi\)
−0.883968 + 0.467548i \(0.845138\pi\)
\(600\) 0 0
\(601\) −292365. + 106412.i −0.809424 + 0.294606i −0.713386 0.700772i \(-0.752839\pi\)
−0.0960378 + 0.995378i \(0.530617\pi\)
\(602\) −44154.6 25492.7i −0.121838 0.0703432i
\(603\) 0 0
\(604\) −374134. 648019.i −1.02554 1.77629i
\(605\) −215406. + 256711.i −0.588502 + 0.701349i
\(606\) 0 0
\(607\) 34423.9 + 195228.i 0.0934293 + 0.529864i 0.995217 + 0.0976852i \(0.0311438\pi\)
−0.901788 + 0.432178i \(0.857745\pi\)
\(608\) −647901. + 114242.i −1.75268 + 0.309044i
\(609\) 0 0
\(610\) −111241. 93342.2i −0.298954 0.250852i
\(611\) −7752.39 + 4475.85i −0.0207660 + 0.0119893i
\(612\) 0 0
\(613\) −312175. + 540703.i −0.830763 + 1.43892i 0.0666714 + 0.997775i \(0.478762\pi\)
−0.897434 + 0.441148i \(0.854571\pi\)
\(614\) −47169.8 129598.i −0.125120 0.343765i
\(615\) 0 0
\(616\) −32436.0 + 27217.0i −0.0854802 + 0.0717264i
\(617\) −57927.0 + 159153.i −0.152164 + 0.418066i −0.992230 0.124418i \(-0.960294\pi\)
0.840066 + 0.542484i \(0.182516\pi\)
\(618\) 0 0
\(619\) 25857.6 146646.i 0.0674850 0.382726i −0.932294 0.361701i \(-0.882196\pi\)
0.999779 0.0210249i \(-0.00669292\pi\)
\(620\) 264007.i 0.686803i
\(621\) 0 0
\(622\) −206791. −0.534504
\(623\) −46249.0 8154.95i −0.119159 0.0210109i
\(624\) 0 0
\(625\) 42207.9 + 15362.4i 0.108052 + 0.0393278i
\(626\) 565790. + 674282.i 1.44380 + 1.72065i
\(627\) 0 0
\(628\) 483959. 176147.i 1.22713 0.446638i
\(629\) 201626. + 116409.i 0.509619 + 0.294229i
\(630\) 0 0
\(631\) −298176. 516456.i −0.748883 1.29710i −0.948359 0.317200i \(-0.897257\pi\)
0.199476 0.979903i \(-0.436076\pi\)
\(632\) 110102. 131215.i 0.275653 0.328510i
\(633\) 0 0
\(634\) −31136.4 176583.i −0.0774622 0.439310i
\(635\) 233518. 41175.5i 0.579125 0.102115i
\(636\) 0 0
\(637\) 100841. + 84615.4i 0.248518 + 0.208531i
\(638\) 1.51730e6 876015.i 3.72761 2.15214i
\(639\) 0 0
\(640\) 120482. 208680.i 0.294144 0.509473i
\(641\) 50133.6 + 137741.i 0.122015 + 0.335233i 0.985630 0.168918i \(-0.0540275\pi\)
−0.863615 + 0.504152i \(0.831805\pi\)
\(642\) 0 0
\(643\) 121340. 101816.i 0.293482 0.246261i −0.484143 0.874989i \(-0.660869\pi\)
0.777625 + 0.628728i \(0.216424\pi\)
\(644\) −28054.0 + 77077.7i −0.0676430 + 0.185848i
\(645\) 0 0
\(646\) −225741. + 1.28024e6i −0.540934 + 3.06779i
\(647\) 428602.i 1.02387i −0.859023 0.511936i \(-0.828928\pi\)
0.859023 0.511936i \(-0.171072\pi\)
\(648\) 0 0
\(649\) −393484. −0.934196
\(650\) 118769. + 20942.2i 0.281110 + 0.0495673i
\(651\) 0 0
\(652\) 339645. + 123621.i 0.798969 + 0.290801i
\(653\) −472730. 563377.i −1.10863 1.32121i −0.942159 0.335167i \(-0.891207\pi\)
−0.166470 0.986046i \(-0.553237\pi\)
\(654\) 0 0
\(655\) −47875.7 + 17425.3i −0.111592 + 0.0406161i
\(656\) −75576.0 43633.8i −0.175621 0.101395i
\(657\) 0 0
\(658\) 3657.85 + 6335.59i 0.00844840 + 0.0146331i
\(659\) −318200. + 379216.i −0.732706 + 0.873205i −0.995799 0.0915652i \(-0.970813\pi\)
0.263093 + 0.964771i \(0.415257\pi\)
\(660\) 0 0
\(661\) 102468. + 581125.i 0.234523 + 1.33005i 0.843616 + 0.536947i \(0.180423\pi\)
−0.609093 + 0.793099i \(0.708466\pi\)
\(662\) 144780. 25528.7i 0.330365 0.0582522i
\(663\) 0 0
\(664\) 93902.8 + 78793.8i 0.212982 + 0.178713i
\(665\) 50372.6 29082.6i 0.113907 0.0657643i
\(666\) 0 0
\(667\) 399916. 692675.i 0.898912 1.55696i
\(668\) 41275.4 + 113403.i 0.0924993 + 0.254140i
\(669\) 0 0
\(670\) 548785. 460485.i 1.22251 1.02581i
\(671\) −92730.8 + 254776.i −0.205958 + 0.565865i
\(672\) 0 0
\(673\) 148961. 844798.i 0.328883 1.86519i −0.151968 0.988385i \(-0.548561\pi\)
0.480851 0.876802i \(-0.340328\pi\)
\(674\) 252040.i 0.554816i
\(675\) 0 0
\(676\) 531848. 1.16384
\(677\) 264276. + 46598.9i 0.576607 + 0.101671i 0.454344 0.890826i \(-0.349874\pi\)
0.122263 + 0.992498i \(0.460985\pi\)
\(678\) 0 0
\(679\) 65892.5 + 23982.9i 0.142921 + 0.0520190i
\(680\) −145391. 173271.i −0.314427 0.374720i
\(681\) 0 0
\(682\) 817232. 297448.i 1.75702 0.639503i
\(683\) 165671. + 95650.1i 0.355144 + 0.205043i 0.666949 0.745104i \(-0.267600\pi\)
−0.311804 + 0.950146i \(0.600933\pi\)
\(684\) 0 0
\(685\) −43202.2 74828.4i −0.0920714 0.159472i
\(686\) 139985. 166828.i 0.297464 0.354504i
\(687\) 0 0
\(688\) −29462.5 167090.i −0.0622434 0.353000i
\(689\) 84903.7 14970.8i 0.178850 0.0315360i
\(690\) 0 0
\(691\) 201952. + 169458.i 0.422953 + 0.354900i 0.829285 0.558826i \(-0.188748\pi\)
−0.406332 + 0.913725i \(0.633192\pi\)
\(692\) −356346. + 205737.i −0.744150 + 0.429635i
\(693\) 0 0
\(694\) 325472. 563734.i 0.675763 1.17046i
\(695\) 119460. + 328214.i 0.247316 + 0.679496i
\(696\) 0 0
\(697\) −200360. + 168122.i −0.412426 + 0.346067i
\(698\) 421855. 1.15904e6i 0.865870 2.37896i
\(699\) 0 0
\(700\) 9700.43 55013.9i 0.0197968 0.112273i
\(701\) 330892.i 0.673364i 0.941618 + 0.336682i \(0.109305\pi\)
−0.941618 + 0.336682i \(0.890695\pi\)
\(702\) 0 0
\(703\) 237665. 0.480899
\(704\) −1.12571e6 198494.i −2.27134 0.400499i
\(705\) 0 0
\(706\) −139506. 50776.2i −0.279888 0.101871i
\(707\) −92813.0 110610.i −0.185682 0.221287i
\(708\) 0 0
\(709\) −854464. + 311000.i −1.69981 + 0.618682i −0.995804 0.0915085i \(-0.970831\pi\)
−0.704010 + 0.710190i \(0.748609\pi\)
\(710\) 244077. + 140918.i 0.484183 + 0.279543i
\(711\) 0 0
\(712\) 93213.0 + 161450.i 0.183872 + 0.318476i
\(713\) 255202. 304138.i 0.502002 0.598263i
\(714\) 0 0
\(715\) 30058.7 + 170472.i 0.0587975 + 0.333457i
\(716\) 462638. 81575.6i 0.902434 0.159123i
\(717\) 0 0
\(718\) 181558. + 152345.i 0.352181 + 0.295515i
\(719\) 534889. 308818.i 1.03468 0.597372i 0.116358 0.993207i \(-0.462878\pi\)
0.918322 + 0.395835i \(0.129545\pi\)
\(720\) 0 0
\(721\) −23347.0 + 40438.2i −0.0449118 + 0.0777895i
\(722\) 183000. + 502789.i 0.351057 + 0.964520i
\(723\) 0 0
\(724\) 447579. 375563.i 0.853871 0.716483i
\(725\) −186307. + 511873.i −0.354448 + 0.973837i
\(726\) 0 0
\(727\) −113322. + 642684.i −0.214411 + 1.21599i 0.667514 + 0.744597i \(0.267358\pi\)
−0.881926 + 0.471389i \(0.843753\pi\)
\(728\) 12715.5i 0.0239923i
\(729\) 0 0
\(730\) −427149. −0.801555
\(731\) −500790. 88302.9i −0.937176 0.165249i
\(732\) 0 0
\(733\) −853703. 310723.i −1.58891 0.578316i −0.611792 0.791019i \(-0.709551\pi\)
−0.977117 + 0.212703i \(0.931773\pi\)
\(734\) 549151. + 654452.i 1.01929 + 1.21475i
\(735\) 0 0
\(736\) −686417. + 249835.i −1.26716 + 0.461209i
\(737\) −1.15835e6 668775.i −2.13258 1.23125i
\(738\) 0 0
\(739\) 346054. + 599383.i 0.633658 + 1.09753i 0.986798 + 0.161958i \(0.0517808\pi\)
−0.353139 + 0.935571i \(0.614886\pi\)
\(740\) −112791. + 134420.i −0.205974 + 0.245470i
\(741\) 0 0
\(742\) −12234.8 69386.9i −0.0222223 0.126029i
\(743\) −868910. + 153212.i −1.57397 + 0.277534i −0.891377 0.453263i \(-0.850260\pi\)
−0.682595 + 0.730797i \(0.739149\pi\)
\(744\) 0 0
\(745\) −367520. 308386.i −0.662169 0.555625i
\(746\) −731995. + 422618.i −1.31532 + 0.759399i
\(747\) 0 0
\(748\) −896014. + 1.55194e6i −1.60144 + 2.77378i
\(749\) 3994.45 + 10974.7i 0.00712022 + 0.0195626i
\(750\) 0 0
\(751\) −116154. + 97464.8i −0.205946 + 0.172810i −0.739927 0.672687i \(-0.765140\pi\)
0.533981 + 0.845497i \(0.320696\pi\)
\(752\) −8326.51 + 22876.9i −0.0147240 + 0.0404540i
\(753\) 0 0
\(754\) 91363.6 518149.i 0.160705 0.911405i
\(755\) 589146.i 1.03354i
\(756\) 0 0
\(757\) −593090. −1.03497 −0.517486 0.855692i \(-0.673132\pi\)
−0.517486 + 0.855692i \(0.673132\pi\)
\(758\) 1.22834e6 + 216589.i 2.13786 + 0.376963i
\(759\) 0 0
\(760\) −216973. 78971.6i −0.375645 0.136724i
\(761\) −503625. 600197.i −0.869638 1.03639i −0.998996 0.0447960i \(-0.985736\pi\)
0.129358 0.991598i \(-0.458708\pi\)
\(762\) 0 0
\(763\) 63229.1 23013.5i 0.108609 0.0395306i
\(764\) −971190. 560717.i −1.66386 0.960631i
\(765\) 0 0
\(766\) 559208. + 968577.i 0.953051 + 1.65073i
\(767\) −75955.0 + 90519.6i −0.129112 + 0.153869i
\(768\) 0 0
\(769\) 26752.7 + 151722.i 0.0452392 + 0.256564i 0.999037 0.0438864i \(-0.0139740\pi\)
−0.953797 + 0.300451i \(0.902863\pi\)
\(770\) 139317. 24565.3i 0.234975 0.0414324i
\(771\) 0 0
\(772\) −682993. 573099.i −1.14599 0.961601i
\(773\) −617858. + 356720.i −1.03402 + 0.596992i −0.918134 0.396270i \(-0.870304\pi\)
−0.115887 + 0.993262i \(0.536971\pi\)
\(774\) 0 0
\(775\) −135196. + 234167.i −0.225093 + 0.389872i
\(776\) −95204.5 261572.i −0.158101 0.434378i
\(777\) 0 0
\(778\) −596351. + 500398.i −0.985242 + 0.826716i
\(779\) −91318.4 + 250895.i −0.150482 + 0.413445i
\(780\) 0 0
\(781\) 91375.1 518214.i 0.149805 0.849585i
\(782\) 1.44339e6i 2.36032i
\(783\) 0 0
\(784\) 358004. 0.582446
\(785\) −399338. 70414.0i −0.648039 0.114267i
\(786\) 0 0
\(787\) 118383. + 43087.8i 0.191134 + 0.0695672i 0.435814 0.900037i \(-0.356461\pi\)
−0.244680 + 0.969604i \(0.578683\pi\)
\(788\) 116674. + 139047.i 0.187898 + 0.223928i
\(789\) 0 0
\(790\) −537766. + 195731.i −0.861666 + 0.313621i
\(791\) 110048. + 63536.4i 0.175886 + 0.101548i
\(792\) 0 0
\(793\) 40710.2 + 70512.2i 0.0647377 + 0.112129i
\(794\) 318442. 379505.i 0.505114 0.601972i
\(795\) 0 0
\(796\) −228501. 1.29589e6i −0.360630 2.04523i
\(797\) 989241. 174430.i 1.55735 0.274602i 0.672362 0.740222i \(-0.265280\pi\)
0.884985 + 0.465620i \(0.154169\pi\)
\(798\) 0 0
\(799\) 55894.6 + 46901.1i 0.0875540 + 0.0734665i
\(800\) 430835. 248742.i 0.673179 0.388660i
\(801\) 0 0
\(802\) 179750. 311335.i 0.279460 0.484038i
\(803\) 272767. + 749422.i 0.423020 + 1.16224i
\(804\) 0 0
\(805\) 49472.4 41512.2i 0.0763433 0.0640596i
\(806\) 89324.9 245418.i 0.137500 0.377778i
\(807\) 0 0
\(808\) −99533.0 + 564480.i −0.152456 + 0.864621i
\(809\) 583220.i 0.891118i −0.895253 0.445559i \(-0.853005\pi\)
0.895253 0.445559i \(-0.146995\pi\)
\(810\) 0 0
\(811\) 1.19604e6 1.81846 0.909228 0.416298i \(-0.136673\pi\)
0.909228 + 0.416298i \(0.136673\pi\)
\(812\) −240007. 42319.6i −0.364008 0.0641845i
\(813\) 0 0
\(814\) 543173. + 197699.i 0.819765 + 0.298370i
\(815\) −182925. 218001.i −0.275396 0.328204i
\(816\) 0 0
\(817\) −487797. + 177543.i −0.730794 + 0.265987i
\(818\) −1.53414e6 885736.i −2.29276 1.32372i
\(819\) 0 0
\(820\) −98564.4 170719.i −0.146586 0.253894i
\(821\) 590669. 703931.i 0.876310 1.04435i −0.122345 0.992488i \(-0.539041\pi\)
0.998654 0.0518575i \(-0.0165142\pi\)
\(822\) 0 0
\(823\) −141705. 803651.i −0.209212 1.18650i −0.890672 0.454646i \(-0.849766\pi\)
0.681460 0.731855i \(-0.261345\pi\)
\(824\) 182544. 32187.5i 0.268852 0.0474059i
\(825\) 0 0
\(826\) 73976.5 + 62073.6i 0.108426 + 0.0909802i
\(827\) 308224. 177953.i 0.450666 0.260192i −0.257445 0.966293i \(-0.582881\pi\)
0.708112 + 0.706101i \(0.249547\pi\)
\(828\) 0 0
\(829\) −224839. + 389432.i −0.327161 + 0.566660i −0.981947 0.189154i \(-0.939425\pi\)
0.654786 + 0.755814i \(0.272759\pi\)
\(830\) −140073. 384848.i −0.203329 0.558641i
\(831\) 0 0
\(832\) −262961. + 220651.i −0.379879 + 0.318756i
\(833\) 366981. 1.00827e6i 0.528876 1.45308i
\(834\) 0 0
\(835\) 16499.7 93574.4i 0.0236648 0.134210i
\(836\) 1.82934e6i 2.61747i
\(837\) 0 0
\(838\) 746843. 1.06351
\(839\) 167593. + 29551.1i 0.238085 + 0.0419807i 0.291417 0.956596i \(-0.405873\pi\)
−0.0533326 + 0.998577i \(0.516984\pi\)
\(840\) 0 0
\(841\) 1.56850e6 + 570888.i 2.21765 + 0.807158i
\(842\) 297483. + 354526.i 0.419602 + 0.500063i
\(843\) 0 0
\(844\) 1.11351e6 405283.i 1.56317 0.568949i
\(845\) −362647. 209374.i −0.507891 0.293231i
\(846\) 0 0
\(847\) −76777.7 132983.i −0.107021 0.185366i
\(848\) 150712. 179612.i 0.209583 0.249772i
\(849\) 0 0
\(850\) −170700. 968085.i −0.236262 1.33991i
\(851\) 259873. 45822.6i 0.358841 0.0632733i
\(852\) 0 0
\(853\) 81021.3 + 67984.9i 0.111353 + 0.0934360i 0.696764 0.717300i \(-0.254622\pi\)
−0.585411 + 0.810736i \(0.699067\pi\)
\(854\) 57625.6 33270.1i 0.0790132 0.0456183i
\(855\) 0 0
\(856\) 23180.9 40150.6i 0.0316361 0.0547954i
\(857\) 143295. + 393699.i 0.195105 + 0.536047i 0.998211 0.0597895i \(-0.0190430\pi\)
−0.803106 + 0.595836i \(0.796821\pi\)
\(858\) 0 0
\(859\) −770583. + 646596.i −1.04432 + 0.876288i −0.992485 0.122368i \(-0.960951\pi\)
−0.0518343 + 0.998656i \(0.516507\pi\)
\(860\) 131084. 360149.i 0.177236 0.486952i
\(861\) 0 0
\(862\) 198970. 1.12842e6i 0.267777 1.51864i
\(863\) 1.38007e6i 1.85302i −0.376271 0.926510i \(-0.622794\pi\)
0.376271 0.926510i \(-0.377206\pi\)
\(864\) 0 0
\(865\) 323972. 0.432988
\(866\) −27743.5 4891.92i −0.0369935 0.00652295i
\(867\) 0 0
\(868\) −113678. 41375.3i −0.150882 0.0549164i
\(869\) 686810. + 818509.i 0.909489 + 1.08389i
\(870\) 0 0
\(871\) −377448. + 137380.i −0.497532 + 0.181087i
\(872\) −231322. 133554.i −0.304218 0.175640i
\(873\) 0 0
\(874\) 736721. + 1.27604e6i 0.964451 + 1.67048i
\(875\) −78277.7 + 93287.8i −0.102240 + 0.121845i
\(876\) 0 0
\(877\) 38998.8 + 221173.i 0.0507051 + 0.287563i 0.999608 0.0280060i \(-0.00891576\pi\)
−0.948903 + 0.315569i \(0.897805\pi\)
\(878\) −288276. + 50830.8i −0.373955 + 0.0659383i
\(879\) 0 0
\(880\) 360629. + 302604.i 0.465688 + 0.390759i
\(881\) 216321. 124893.i 0.278707 0.160912i −0.354131 0.935196i \(-0.615223\pi\)
0.632838 + 0.774284i \(0.281890\pi\)
\(882\) 0 0
\(883\) 564079. 977013.i 0.723466 1.25308i −0.236136 0.971720i \(-0.575881\pi\)
0.959602 0.281361i \(-0.0907857\pi\)
\(884\) 184059. + 505699.i 0.235534 + 0.647124i
\(885\) 0 0
\(886\) 60588.3 50839.6i 0.0771829 0.0647642i
\(887\) −385201. + 1.05833e6i −0.489598 + 1.34516i 0.411447 + 0.911434i \(0.365024\pi\)
−0.901045 + 0.433726i \(0.857199\pi\)
\(888\) 0 0
\(889\) −18867.4 + 107003.i −0.0238731 + 0.135391i
\(890\) 622852.i 0.786330i
\(891\) 0 0
\(892\) −725789. −0.912180
\(893\) 73352.6 + 12934.0i 0.0919841 + 0.0162193i
\(894\) 0 0
\(895\) −347570. 126505.i −0.433906 0.157929i
\(896\) 70972.8 + 84582.1i 0.0884048 + 0.105357i
\(897\) 0 0
\(898\) 850452. 309539.i 1.05462 0.383851i
\(899\) 1.02159e6 + 589815.i 1.26403 + 0.729788i
\(900\) 0 0
\(901\) −351363. 608578.i −0.432819 0.749664i
\(902\) −417409. + 497448.i −0.513037 + 0.611413i
\(903\) 0 0
\(904\) −87594.9 496775.i −0.107187 0.607887i
\(905\) −453036. + 79882.5i −0.553141 + 0.0975337i
\(906\) 0 0
\(907\) 560559. + 470365.i 0.681407 + 0.571769i 0.916417 0.400224i \(-0.131068\pi\)
−0.235010 + 0.971993i \(0.575512\pi\)
\(908\) 94189.9 54380.6i 0.114244 0.0659587i
\(909\) 0 0
\(910\) 21241.4 36791.2i 0.0256507 0.0444284i
\(911\) −439260. 1.20686e6i −0.529279 1.45418i −0.859922 0.510426i \(-0.829488\pi\)
0.330642 0.943756i \(-0.392735\pi\)
\(912\) 0 0
\(913\) −585759. + 491510.i −0.702712 + 0.589645i
\(914\) −45669.9 + 125477.i −0.0546685 + 0.150200i
\(915\) 0 0
\(916\) −158276. + 897627.i −0.188636 + 1.06981i
\(917\) 23345.5i 0.0277629i
\(918\) 0 0
\(919\) −321358. −0.380503 −0.190252 0.981735i \(-0.560930\pi\)
−0.190252 + 0.981735i \(0.560930\pi\)
\(920\) −252474. 44517.9i −0.298291 0.0525968i
\(921\) 0 0
\(922\) 788976. + 287164.i 0.928116 + 0.337807i
\(923\) −101575. 121052.i −0.119229 0.142092i
\(924\) 0 0
\(925\) −168878. + 61466.6i −0.197374 + 0.0718382i
\(926\) 1.08039e6 + 623763.i 1.25996 + 0.727440i
\(927\) 0 0
\(928\) −1.08518e6 1.87958e6i −1.26010 2.18256i
\(929\) −845059. + 1.00710e6i −0.979164 + 1.16692i 0.00680175 + 0.999977i \(0.497835\pi\)
−0.985966 + 0.166946i \(0.946610\pi\)
\(930\) 0 0
\(931\) −190200. 1.07868e6i −0.219438 1.24449i
\(932\) 1.94772e6 343435.i 2.24230 0.395378i
\(933\) 0 0
\(934\) −1.00242e6 841129.i −1.14909 0.964204i
\(935\) 1.22192e6 705474.i 1.39771 0.806971i
\(936\) 0 0
\(937\) −91197.1 + 157958.i −0.103873 + 0.179913i −0.913277 0.407339i \(-0.866457\pi\)
0.809404 + 0.587252i \(0.199790\pi\)
\(938\) 112273. + 308467.i 0.127605 + 0.350592i
\(939\) 0 0
\(940\) −42127.1 + 35348.9i −0.0476767 + 0.0400055i
\(941\) 314314. 863570.i 0.354964 0.975255i −0.625788 0.779994i \(-0.715222\pi\)
0.980751 0.195261i \(-0.0625555\pi\)
\(942\) 0 0
\(943\) −51478.0 + 291946.i −0.0578893 + 0.328306i
\(944\) 321362.i 0.360621i
\(945\) 0 0
\(946\) −1.26253e6 −1.41078
\(947\) 1.27507e6 + 224828.i 1.42178 + 0.250698i 0.831062 0.556180i \(-0.187733\pi\)
0.590718 + 0.806878i \(0.298845\pi\)
\(948\) 0 0
\(949\) 225055. + 81913.2i 0.249894 + 0.0909539i
\(950\) −645028. 768714.i −0.714712 0.851760i
\(951\) 0 0
\(952\) 97393.7 35448.4i 0.107462 0.0391131i
\(953\) 26148.8 + 15097.0i 0.0287917 + 0.0166229i 0.514327 0.857594i \(-0.328042\pi\)
−0.485535 + 0.874217i \(0.661375\pi\)
\(954\) 0 0
\(955\) 441478. + 764663.i 0.484064 + 0.838423i
\(956\) −267855. + 319217.i −0.293079 + 0.349278i
\(957\) 0 0
\(958\) 223928. + 1.26996e6i 0.243993 + 1.38375i
\(959\) 38990.7 6875.12i 0.0423959 0.00747555i
\(960\) 0 0
\(961\) −258901. 217244.i −0.280341 0.235234i
\(962\) 150330. 86792.8i 0.162440 0.0937850i
\(963\) 0 0
\(964\) 345023. 597597.i 0.371274 0.643065i
\(965\) 240093. + 659651.i 0.257825 + 0.708369i
\(966\) 0 0
\(967\) 671929. 563815.i 0.718572 0.602954i −0.208418 0.978040i \(-0.566831\pi\)
0.926990 + 0.375086i \(0.122387\pi\)
\(968\) −208484. + 572805.i −0.222496 + 0.611302i
\(969\) 0 0
\(970\) −161493. + 915874.i −0.171637 + 0.973402i
\(971\) 552699.i 0.586206i 0.956081 + 0.293103i \(0.0946879\pi\)
−0.956081 + 0.293103i \(0.905312\pi\)
\(972\) 0 0
\(973\) −160046. −0.169052
\(974\) 35562.3 + 6270.59i 0.0374862 + 0.00660984i
\(975\) 0 0
\(976\) 208078. + 75734.1i 0.218437 + 0.0795045i
\(977\) −661005. 787755.i −0.692494 0.825282i 0.299161 0.954203i \(-0.403293\pi\)
−0.991655 + 0.128921i \(0.958849\pi\)
\(978\) 0 0
\(979\) −1.09278e6 + 397739.i −1.14016 + 0.414986i
\(980\) 700350. + 404348.i 0.729228 + 0.421020i
\(981\) 0 0
\(982\) −1.13812e6 1.97127e6i −1.18022 2.04420i
\(983\) −1.15088e6 + 1.37157e6i −1.19103 + 1.41942i −0.307180 + 0.951652i \(0.599385\pi\)
−0.883853 + 0.467765i \(0.845059\pi\)
\(984\) 0 0
\(985\) −24816.7 140742.i −0.0255783 0.145062i
\(986\) −4.22342e6 + 744704.i −4.34421 + 0.766002i
\(987\) 0 0
\(988\) 420832. + 353120.i 0.431117 + 0.361750i
\(989\) −499147. + 288183.i −0.510312 + 0.294629i
\(990\) 0 0
\(991\) 219634. 380417.i 0.223641 0.387358i −0.732270 0.681015i \(-0.761539\pi\)
0.955911 + 0.293657i \(0.0948723\pi\)
\(992\) −368469. 1.01236e6i −0.374436 1.02875i
\(993\) 0 0
\(994\) −98929.1 + 83011.3i −0.100127 + 0.0840165i
\(995\) −354352. + 973575.i −0.357923 + 0.983384i
\(996\) 0 0
\(997\) 120978. 686100.i 0.121707 0.690235i −0.861502 0.507754i \(-0.830476\pi\)
0.983209 0.182481i \(-0.0584128\pi\)
\(998\) 460427.i 0.462274i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.2 66
3.2 odd 2 27.5.f.a.2.10 66
27.13 even 9 27.5.f.a.14.10 yes 66
27.14 odd 18 inner 81.5.f.a.71.2 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.10 66 3.2 odd 2
27.5.f.a.14.10 yes 66 27.13 even 9
81.5.f.a.8.2 66 1.1 even 1 trivial
81.5.f.a.71.2 66 27.14 odd 18 inner